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The mechanism for plasma ion heating by electromagnetic radiation is considered. Two 
oppositely directed electromagnetic waves in the plasma can create a beat wave, which gives 
rise to oscillatory perturbations in the density and velocity profiles. When a plasma 
element undergoes compression and expansion over a large range, viscous heating of the ions 
occurs. In the absence of electron-ion collisions the electrons oscillate without acquiring 
any energy, so that the energy of the electromagnetic field is converted directly to thermal 
energy of the ions. An explanation of this heating mechanism is presented, based on the 
laws of momentum and energy conservation. 

1. FORMULATION OF THE PROBLEM 

Demchenko et ale1 have shown that it is possible to 
achieve anomalously high ion heating in an expanding la- 
ser plasma under conditions such that the expansion takes 
place in an oscillatory high-frequency potential (an hf po- 
tential), which is produced when the laser radiation is re- 
flected from the critical surface. When plasma moves in an 
oscillatory hf potential a Lagrangian plasma element is 
subject to repeated compression and expansion, as the re- 
sult of which the viscosity of the ions causes them to be 
heated. Plasma flow through the hf potential "lattice" can 
also occur in a plasma at rest, producing a beat wave in it. 

We assume that two electromagnetic waves with fre- 
quencies wo and wl, respectively, are incident from the left 
and from the right, respectively, on a uniform plasma slab 
(Fig. 1) confined in the region x09;x9;x1, and that the 
frequencies differ by a small amount: ol=wo+Aw, 
wl >a,, Aw/wo(l. In this work we will not consider 
Fresnel reflection of waves from the plasma boundaries, 
assuming that the boundaries are smeared out and that the 
characteristic width of the spreading is much greater than 
the wavelength. In this case the waves penetrate into the 
plasma without reflection. In addition we assume that the 
width of the spreading in the boundary is much less than 
the slab thickness and that the waves interact with the 
plasma primarily in the uniform region. Neglecting the 
ponderomotive force, we can write the solution for the 
fields E= (O,E,,,O) and H= (O,O,H,) in the slab in the form 
(in what follows we drop the coordinate subscripts from 
the fields) : 

where we have written Ho=&,EO, HI=-PIEl,  
0 , 0 1 1  Po.1 = &, E =  1 --@a2, and 
up= (4 re  n d m , )  'I2 is the plasma frequency. From ( 1 ) we 
find that the square of the field amplitude ( E  1 is a beat 
wave. Let v be its phase velocity, so that the maxima of the 
function 1 El move with velocity v relative to the plasma. 

Then the problem can conveniently be treated in the K' 
coordinate frame moving with velocity v relative to the 
laboratory frame, so that both waves have the same fre- 
quency in this system. Making a Lorentz transformation 
x=a(x'+vtr), t=a(t'+vx'/CZ), in Eqs. (1)-(2) where 
a = ( 1 - v2/c2) - 'I2, we obtain expressions for the frequen- 
cies and wave numbers in the moving system of coordi- 
nates: 

Then we neglect the terms that are quadratic in v/c, since 
v/c& 1. From the condition w; = o; we find for the 
velocity v 

Since ol > wo holds, the K' system moves from right to left. 
Let us show that in the K' system the wave numbers are 
also equal (to within terms - v2/c2). Defining the dielec- 
tric constants in the K' system by means of the relations 

using Eqs. (3 )-(4), and retaining only terms - v/c we find 

From expansion el zz E ~ +  (d~/dw )0( w -aO) and expres- 
sion (5) for v we find to within terms of order -3/c2 that 
E; = E; holds. Consequently, it follows from (6) that when 
the frequencies are equal so are the wave numbers. Thus in 
the K' system the fields have only one frequency w; 
= w; = o ,  the plasma has a dielectric constant E; = E; 

= E, and it moves with velocity uo= -v from left to right 
along the x' axis. 
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FIG. 1. 

Now let us treat the problem including the hf poten- 
tial. We use the equations of plasma hydrodynamics with a 
high-frequency field.' The solution of the equations given 
by ~orbunov' remains unchanged even when ion viscosity 
is included, since in the high-frequency motion only elec- 
trons take part. According to the hydrodynamic model the 
process of nonlinear interaction between the radiation and 
the plasma occurs as follows. The ponderomotive force 
(the low component of the Lorentz force) acts on the elec- 
trons, which are collisionless (vei4w) in the high- 
frequency motion. When plasma quasineutrality holds the 
ions are coupled to the electrons by the self-consistent field, 
so that under the action of the ponderomotive force the 
plasma density and velocity profiles acquire components 
that are oscillatory in x'. For an oscillatory density profile 
the interaction of the waves with the plasma gives rise to a 
slow x' and t' dependence of the field amplitudes. If the 
wavelength A is much less than the characteristic spatial 
scale on which the field amplitudes vary, then we can as- 
sume that the plasma flow through the oscillating hf po- 
tential is locally steady, i.e., pu = pouo, where p=mjai is 
the plasma density, u is its velocity, and p and u have 
oscillatory components with slowly varying amplitudes. 
We will treat the case in which the energy exchange time 
&zm,/mevei between electrons and ions is much larger 
than the time over which the waves act on the plasma.3 Let 
the plasma be quasineutral (the Debye radius satisfies 
rDgA) and suppose that the thermal pressure 
p T = n , ~ e + n i ~ i = P ~ ~  (where c, is the sound speed) is pri- 
marily due to electrons, which is valid for ZTe% Ti (where 
Z is the ion charge). We will also neglect collisional ab- 
sorption and will assume T,=const. Then in the K' coor- 
dinate frame the process by which waves interact with the 
plasma is described by the equations 

where p is the ion viscosity (we assume p=const, 
c,= const) ; k = o/c; p, is the electromagnetic stress tensor 
averaged over an oscillation period,4 taken with the minus 
sign. It also includes the ponderomotive stress tensor. The 
quantity p, can be called the radiation pressure. From Eqs. 
( lo)-( 11) we obtain the relation 

which expresses the relationship between p, and the pon- 
deromotive force in the plasma.5 

For the hydrodynamic approximation to be valid for 
the ion component it is necessary that the conditions 
li< Lh and rii< th hold, where li=vT/rii and rii 
= 3 fi.T:"/4 &Z?e4~iini are the ion collision length and 
collision time,6 U T ~  = JTJml:is the ion thermal velocity, Lh 
and th are the characteristic length and time on which the 
hydrodynamic quantities vary (the time is treated in the 
Lagrangian approach). Assuming that the perturbation 
wavelength in the plasma is on the order of the radiation 
wavelength, we can write these conditions in the form 
kli< 1 and kli< vTi/uo. Thus, we are considering the case 
in which the ion perturbations undergo collisional dissipa- 
tion. When kli< 1 holds we can use the expression 
p =povTili for the ion viscosity ~oefficient.~ 

We make a comment here in connection with the use 
of the Maxwell equations in the form ( lo)-( 1 1 ), where 
the derivatives of the amplitudes with respect to time are 
omitted and only a high-frequency dependence in the form 
of exp( -iot) is assumed. The slow time dependence in the 
K' system is related to the motion of the plasma bound- 
aries on which the boundary conditions for the wave am- 
plitudes are imposed. Since both boundaries move with 
velocity uo, this amplitude dependence on x' and t' must 
have the form of a propagating wave, i.e., x' and t' must 
enter in the form of the combination x=x'-uotl. Differ- 
entiation of this dependence with respect to time yields the 
correction terms in Eqs. ( lo)-( 11 ), which are small (of 
order udc) compared to the main terms. 

2. SOLUTION OF THE EQUATIONS 

We will look for a solution for the fields in the form798 
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where p = &, P= P(x), R  = R  (x), x=xl - uOtl, and the 
phase q, is given in the form 

r=q,(x ' )=k~~fidx=k&' .  (16) 

From Eqs. ( lo)-( 11) we find equations for the ampli- 
tudes: 

Writing the amplitudes in the form P= I Plexp(ia), R= 
1 R  1 ea and expressing the density in the form of a sum 
p= po+pl, we find for the correction pl  from Eqs. (8)- 
(9) 

where a(x) is a slowly varying amplitude: 

and 6 is a phase shift introduced by the viscosity: 

M =udc, is the Mach number, and p, is the critical density 
( E =  1 -p/p,). From Eqs. (17)-(18) we can find equa- 
tions for l p12 and ( R  1 2 :  

Substituting the solution (19) in the right-hand sides of 
(22)-(23) and averaging the latter spatially over a wave- 
length, and also rewriting in terms of the fluxes 

where the bar indicates an average with respect to x, we 
find 

The dimensionless factor G has a resonant dependence on 
the Mach number. Equations (26)-(27) were treated by 
~ o r b u n o v ~  for the case of steady expansion of a nonuni- 
form plasma. They describe attenuation of a wave moving 
from the right due to backscattering on the oscillating den- 
sity profile, accompanied by amplification of the oppositely 
directed wave. 

As an example we consider the special case of the sys- 
tem (26)-(27) with qo(x) =ql(x). In this case the field 
amplitude at the minima vanishes. The solution takes the 
form 

where qll=ql(xl). In order to obtain this case it is neces- 
sary that the fluxes qoo=qo(xo) and q, = q, (x, ) incident 
from the left and the right satisfy a relation which follows 
from (29): qll/qao= 1 +qllB(xl--xo). 

Consider the energy equation for the ions including 
viscosity, neglecting thermal conductivity and energy ex- 
change with the electrons. In Lagrangian form the equa- 
tion can be written as 

where c1=3Ti/2rni is the specific internal energy of the 
ions, mi and Ti are the ion mass and temperature, V= l /p 
is the specific volume, and pTi=Ti/miV is the thermal 
pressure. For steady motion with oscillatory density and 
velocity profiles the specific volume of this Lagrangian par- 
ticle oscillates in time. Averaging (30) over time we obtain 

where the bar indicates a time average and (aV/dtl),,, is 
the amplitude of the derivative aV/dtt. Using the equation 
for the volume, 

and also Eqs. (8) and (19) we find for the viscous heating 
rate of the ions 

This heating can be regarded as work done by the effective 
frictional force arising between antinodes of the electro- 
magnetic field and the plasma when the relative velocity 
between them is uo. The frictional force per ion Fi can be 
expressed by means of the relation 
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The occurrence of ion heating and an effective frictional 
force imply that the transmission of momentum and en- 
ergy of plasma radiation must be treated. 

3. MOMENTUM AND ENERGY CONSERVATION LAWS 

Let us consider the momentum conservation law. Us- 
ing the definition (34) for the frictional force we can find 
the force density 

and the total force p acting on the plasma slab (per unit 
area) 

For the integral which appears in Eq. (36) we find using 
Eqs. (26)-(27) 

Consider the Maxwell stress tensor averaged over an oscil- 
lation period (we omit the minus sign): 

This is just the part of the total tensor which corresponds 
to the momentum transmitted by radiation to the plasma 
slab. The ponderomotive part gives the redistribution of 
momentum over the slab.4 Using ( 14)-( 15) and (24)- 
(25) we find 

From (36) we find using (37) and (39) 
- - 

p f =  T&(xi - Th(xo). (40) 

The relation (40) implies that the momentum acquired by 
the plasma slab is equal to the electromagnetic momentum 
lost due to the interaction between the radiation and the 
slab. Thus the approximations used in solving Eqs. (8)- 
( 11 ) and Eq. (30) enable us to find solutions which satisfy 
the momentum conservation law. 

Let us go on to the energy conservation law. The 
power expended in heating the ions (per unit area) is 

Taking into account (37), (39), and (40) we find 

qT="@f. (42) 

In the K' coordinate frame the plasma slab loses kinetic 
energy at a rate u@f due to the force ( a ) ,  and from (42) 
the loss of kinetic energy is equal to the increase in the 
thermal energy. 

It is interesting to trace the passage of energy to the 
slab in the laboratory coordinate frame, since in this sys- 
tem the plasma is at rest and its kinetic energy vanishes. 

Using the Lorentz transformation for the fields we can find 
a transformation equation for the energy flux density S 
when we pass from the moving coordinate frame to the 
laboratory frame:4910 

where U& = [E(E')~ + ( ~ ' ) ~ ] / 8 r  is the electromagnetic 
energy density and T& is the Maxwell stress tensor, taken 
with a minus sign (in this case we have T& = U&). To 
within terms - (u,,/c12 we can assume that UM = U& and 
TM = T& hold. Using Eq. (43) we find the power dissi- 
pated in the slab: 

- - - -  -- 
~ o - ~ ~ = ~ ~ - ~ ~ - u o ( ~ & o - ~ & l ) - u o ( ~ ~ - ~ ~ l ) ,  

(44) 

where the bar indicates a time average and we have written 
So=S(xo), S1 =S(xl) and similarly with the other indices. 
In order to determine the difference 3; - we use the 
Poynting theorem in the K' system: 

Integrating (45) with respect to x' from xh(t) to x; ( t)  and 
assuming dx2dt' = dxi/dtl = uo we find 

Averaging (46) over time and substituting the result in 
(44) we find 

Thus, in the laboratory coordinate system ion heating re- 
sults from the action of the ponderomotive force. 

We comment regarding the boundary conditions. We 
have assumed that in the plasma-vacuum transition region 
the zeroth-order approximation of geometric optics holds, 
where the width of the region is small and the effects in the 
next approximation are negligible. In this case we can in- 
troduce a local moving coordinate frame whose velocity 
according to (5) is v=v(x) a l/Bo(x). In analogy with 
(43) we have 

where the bar indicates a time average. In (48) S' is inde- 
pendence of x, since S' = c(E'H1* + - E'*H' )/16r, - 
E' aj3G1/2, H' Hence we have U& and T& 
a Bo(x), while v a l/Po(x), Eq. (48) implies that the en- 
ergy flux is constant in the transition region. If we replace 
the transition region by a surface we can use a boundary 
condition for Eqs. (26)-(27) on this surface in the form of 
the continuity of the fluxes qo and ql. 

To conclude this section we consider the limits of ap- 
plicability of the solutions. The linearization of Eqs. (8)- 
( 11 ) imposes a restriction on the magnitude of the pertur- 
bations pl  = p- po: pl/po(l, or taking into account ( 19), 
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It is particularly necessary to consider the resonant case 
uo=cs, in which the solution can deviate from linearity. 
Eliminating the velocity from Eqs. (8)-(9) and retaining 
the term quadratic in pl in the expansion we find an equa- 
tion which yields the relation between pl and the radiation 
pressure: 

The first term in ( 5 0 )  vanishes at resonance. The relation 
between pl and p, remains linear if we can ignore the 
quadratic term. This yields the condition for the applica- 
bility of the solution in the resonant case: 

For the case of classical viscosity p = pOvTili, Eq. (5  1 ) can 
be written in the form 

The left-hand side of ( 5 2 )  characterizes the ratio of the 
change in the quantity I E 1 in the beat wave to the thermal 
pressure. From ( 5 2 )  it follows that the limitation on this 
ratio may not be very severe. The right-hand side of ( 5 2 )  
contains three dimensional factors, of which the ratio 
pJpo is greater than unity, the product k&li may be less 
than unity from the condition for the applicability of the 
classical viscosity model, and the expression containing the 
temperatures is also less than unity. 

4. CONCLUSION 

The simplest method for heating a plasma by electro- 
magnetic radiation is based on absorption of the field en- 
ergy by electrons and conversion into electron thermal en- 

ergy, with the ions being heated by energy transfer from 
the electrons in Coulomb collisions. Because of the large 
difference between the electron and ion masses energy 
transfer from electrons to ions is inefficient. The heating 
mechanism considered above is an example of a direct 
transfer of electromagnetic energy to ion thermal energy. 
Here the electrons oscillate and do not acquire energy. In 
actuality, there always exists some collisional heating of 
electrons, but this heating rate falls off with increasing elec- 
tron temperature and decreasing plasma density and may 
be negligibly small. On the other hand, as the ion temper- 
ature rises the rate of direct ion heating increases. For 
example, when the classical collision model holds the ion 
viscosity is given by p o: T:l2, and according to (33) the 
heating rate is proportional to p. Thus, in the heating pro- 
cess it may be possible to reach the regime of direct ion 
heating with collisionless (v,.=O) electrons. 
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