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The behavior of the Stark levels of the hydrogen atom in the presence of a strong constant 
electric field F is investigated. It is shown that as F increases, the level experiences a 
singularity in the transition to the region which, according to classical mechanics, is where 
the onset of ionization occurs. A comparison is made with experimental results for 
three levels of the sodium atom at the magnetic quantum number m = 1. The concept of 
"ionization subthresholds" of the atom in the presence of a constant electric field is introduced 
and analyzed. 

INTRODUCTION 

The title of our article coincides with that of Section 54 
of the monograph by Bethe and ~ a l ~ e t e r , '  and it should be 
therefore clear that we are talking about the effect long 
predicted by theorists on the basis of fundamental ideas 
about the connection between quantum and classical me- 
chanics. However, a detailed theoretical analysis of this 
subtle effect was not carried out in Ref. 1, and therefore it 
has remained unclear how it should manifest itself experi- 
mentally. This can be explained by the fact that direct 
experimental detection of this effect remained impossible 
until the advent of modern laser technology, which has 
made it possible to examine the ionization (which by no 
means reduces to just a process of quantum-mechanical 
tunneling) of highly excited Rydberg states in a constant 
electric field. 

As the electric field increases, the energies of the qua- 
sistationary Stark states change and their widths grow. The 
following conclusion appears almost obvious: the Stark lev- 
els preserve their discrete character all the way to the tun- 
neling region, where they suddenly disappear [§3.4.4 in 
Ref. 2 (review)]. It is assumed that this is precisely how 
the transition to classical mechanics occurs. An entirely 
different point of view is expounded in Ref. 1. 

The point we are discussing here is by no means purely 
theoretical, but concerns problems directly tied up with the 
most recent experimental results. 

In theoretical work devoted to the Stark effect, it is 
frequently overlooked that the very concept of quasista- 
tionary states was introduced according to Ref. 3 only for 
systems with a low probability of decay, i.e., with a narrow 
linewidth. In no case do the authors of Ref. 3 connect this 
fact with the complexity of the calculations of the lifetimes 
of the levels in large fields. Here the concept simply loses 
meaning. At the same time, experiments on Stark 
carried out shortly after the writing of Ref. 2 indicate that 
the concept of quasistationary states can be usefully broad- 
ened. Stark lines continue to distinctly manifest themselves 
in experiments in fields so strong that their widths cannot 

be uniquely determined, but only a very rough estimate can 
be given. This aspect of the behavior of the lines can be 
understood on the basis of simple physical arguments. As 
the field increases the lifetimes of the excited states fall and 
the situation gradually arises in which the process of their 
creation is indistinguishable from their decay. Hence it is 
clear that in strong fields we must simply reject the concept 
of the width of a state, but not as such, since the line is 
clearly visible in the experiment. The possibility of such 
behavior of the levels is obvious, but experimental studies 
pertinent to this question have appeared only recently. 
Moreover, running ahead, we can assert that such behavior 
of the Stark lines is a consequence of the transition of 
quantum mechanics to classical mechanics in the limiting 
case. 

In fact, the effect was predicted in Ref. 1, and was first 
observed for rubidium for the magnetic quantum number 
m=O (Ref. 4), and later was studied in the three states of 
sodium with m = 1 (Ref. 5). However, in Refs. 4 and 5 the 
experimenters did not in any way connect the effect with 
the predictions of Bethe and ~a1~eter. l  And in fact this 
connection is in no way obvious. The effect has acquired a 
new name: "stabilization of the Stark state at a saddle 
point," since the experimenters observed it as an almost 
complete disappearance of the Stark signal while varying 
the field over a narrow interval. This fact was interpreted 
as an abrupt decrease (by 3-4 orders of magnitude or 
more) of the width of the level. With further increase of 
the field, a weaker signal reappeared. Over a wide interval 
of the field in the vicinity of the "stabilization" point the 
width of the Stark line, according to the estimates of Ref. 
5, was of the order of 0.2-0.3 cm-'. 

We will also consider another indirect manifestation of 
line disappearance, which was observed in 
on the ionization of Li and Na atoms in a weak field. The 
experiments showed that the Stark energies of the highly 
excited states of these atoms for m = 1, 2 are well described 
by the hydrogenic theory, but data on their lifetimes, at 
first glance, appear to lead to just the opposite conclusion. 
~einhardt' has explained this discrepancy by the influence 
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of the core. Also, "stabilization" of the Stark states for Rb 
and Na (Refs. 4 and 5) is explained by the presence of the 
core. We will show, however, that the Stark levels behave 
similarly in the case of hydrogen. 

We first consider the numerical solution of the Schro- 
dinger equation. At the conclusion of our treatment we will 
show that it is possible to do without it, not only for a 
qualitative understanding of the above-mentioned experi- 
ments, but also for a quantitative description of the effect. 
Nevertheless, a numerical treatment is necessary since it 
graphically defines the essence of the problem in which 
such substantial differences of opinion have arisen. Obvi- 
ously, any analytic (asymptotic) approach to the solution 
is justified only if it does not qualitatively contradict an 
exact numerical solution, which for the hydrogenic case is 
possible. 

1. THE PROBLEM OF LINE DISAPPEARANCE 

The Schrodinger equation for the hydrogen atom has 
the form 

It can be separated in the variables p, v, q: 

x=pvcosq, y=pv sin q, z=f(p2-2).  (2) 

Introducing the notation 

Y = ( ~ V ) - ~ / ~ M ( ~ ) N ( V ) ~ *  imp, ( 3 )  

and, substituting Eq. (3 ) into Eq. ( 1 ), we obtain the equa- 
tions 

z1+z2=4. (6) 

The behavior of M ( p )  and N(v) at zero and at infinity 
is determined by the formulas 

E 
N(v) , - . (10) 

v - m  I 
It is correct to assert that since Eq. ( 1 ) separates in its 

partial derivatives, it can be solved exactly numerically. 
Indeed, numerical integration of Eqs. (4) and (5) does not 
entail any fundamental difficulties. But when people speak 
of the possibility of an exact solution of Eq. ( I ) ,  they 
usually mean that it is thereby possible, at least in princi- 
ple, to find arbitrarily accurate values of the Stark energies 

Eo and linewidths r for any state and any F, no matter 
how large. Here it is taken as obvious that there is no point 
in this if only because levels that are too broadened cannot 
be observed experimentally. In fact, the heading of Section 
54 in Ref. 1 confirms that the creators of quantum mechan- 
ics did not foresee such a development of the theory. When 
they spoke of the disappearance of Stark lines, they in no 
case had in mind that they would simply spread out with 
increase of the field F. 

Bethe and salpeterl defined the threshold for disap- 
pearance of a line in terms of classical mechanics, which is 
the limiting case of quantum mechanics. According to clas- 
sical mechanics, a state is stable as long as it remains under 
the barrier. Above the barrier it rapidly disappears. The 
condition of disappearance of the barrier in Eq. (5), which 
was derived in Ref. 1, is 

(the value of Z2 in Ref. 1 is four times smaller than ours). 
Let us turn now to a discussion of what can be ob- 

tained as a result of numerical integration of Eqs. (4) and 
(5). Fixing the values of F and E, we can in principle find 
the exact value of Z1 for a given quantum number n l .  In 
the limit F-0 we go over to the field-free case. Solving Eq. 
(5) with F and E fixed, we can exactly determine the am- 
plitude BE(Zz) for all values of Z2. In this way we can 
exactly determine the positions of the minima (and max- 
ima) of the amplitude. As F-0 the minima gradually go 
over to the unperturbed eigenvalues of the problem, and 
the process occurs faster, the smaller the quantum number 
n,. Parametrizing the amplitude in the regions of the min- 
ima of BE(Z2) according to the Breit-Wigner formula 

we can find the values of the parameters Zo and y. Anal- 
ogously, solving the system of equations (4)-(6) simulta- 
neously, we can determine the Stark energy Eo and line- 
width r. Such a procedure is completely justified for small 
F. In this case the magnitude of r is small, and Eo can 
differ from the position of the amplitude minimum only by 
an amount - r2. As F increases, the situation gradually 
changes-the magnitude of r (and also Eo) begins to de- 
pend significantly on the points, on the basis of which the 
parametrization is made. Now we may ask, is it possible to 
determine Eo and r uniquely? 

A procedure has been proposed of summing the per- 
turbation theory (PT) series for the energy in the Borel 
sense,' which converges for all values of r. It allows one, in 
principle, to determine Eo and r ,  as accurately as one may 
like, for any values of the quantum numbers n l ,  n,, m. But 
in no case can it be said that this approach is uniquely 
rigorous from the mathematical point of view. The PT 
series diverges asymptotically and terms - r2 which are 
smaller than the irreducible error of the main series can be 
sensibly added to it. For small F, summing the new series 
in the Borel sense, we obtain practically the same results 
for Eo and r. But for large F, and this is the case that 
interests us, we get a different answer. 
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FIG. 1. Dependence of the separation con- 
stants 4-Zl  and Z2 on energy E: 1 ) the 
values of Z2 corresponding to the mini- 
mum of B,(Z,); 2) the values of & cor- 
responding to the minimum of Bq(E); 3) 
4-Z, , where Z1 corresponds to the eigen- 
value of Eq. ( 4 )  for E=const. The inter- 
section point of curves 3 and 1 corresponds 
to the "stabilization" point of the level 
(nl ,n2,m) =(3,18,1). Here F=0.599 

lop6 a.u. 

It would seem that for large F i t  should be possible to 
implement a procedure which makes use of the absence of 
a diverging wave in the solution. In this case we seek a pole 
in the complex E plane, whose real part corresponds to the 
Stark energy, and whose imaginary part corresponds to r. 
As F + O ,  the pole converges to the unperturbed solution of 
the problem, i.e., the approach is well founded. We can 
require that the absolute value of the coefficient of the 
diverging wave approach zero, and seek the values of Eo 
and r in this way. But this approach, although it would 
seem to be the unique approach, is in no way unique. We 
can require that the convergence to zero of the real and 
imaginary parts of the coefficient in question converge to 
zero in a different way. In such a case we would obtain 
different values of Eo and r. 

Naturally, significant differences between the results of 
the approaches arise only for large values of F. The fact 
that the pole in the complex plane cannot be used in a 
"rigorous" determination of the quasistationary state for 
any F was implicitly noted in the first edition of the mono- 
graph by Landau and ~ i f sh i t z .~  The procedure of introduc- 
ing a complex energy to describe it has been called the 
"original" method. Its usefulness is obvious since by this 
approach the connection between the linewidth and the 
lifetime of the level is revealed at once. But in the later 
editions of that book this method came to be called the 
"formal" method. This served as a reason to assume that 
the method was rigorously founded and that one could use 
it to find a unique solution, which one cannot because the 
problem does not have a unique solution. Thus, at large F 
we cannot uniquely determine the linewidth either experi- 
mentally or theoretically. If the theory were different, then 
it would contradict experiment. 

The minima of BE(Z2)-if they even exist, which, as 
we will show, is not always the case-can be found exactly. 
By solving Eqs. (4) and (5) simultaneously, i.e., satisfying 
condition ( 6 ) ,  where Z, corresponds to the exact eigen- 
value of Eq. (4), and Z2 corresponds to the minimum of 

BE(Z2), we can determine the Stark energy Eo. For small 
F we do not obtain any new results, but for large F this 
solution method has not yet been used. Let us consider in 
greater detail the case in which the magnetic quantum 
number satisfies m = 1, since here we have the possibility of 
comparing our results with the experimental data on 
~ o d i u m . ~  We solved Eq. (5) numerically for F held fixed, 
while varying the magnitude of E and observing the behav- 
ior of the minima of B,(Z,) (denoted as Z2) which come 
out of the unperturbed problem ( F  =O or F= const, E+ 
- cu ). Since the solution of Eq. (5) does not change when 
we make the substitutions F + A~F,  E+ A~E,  Z2 -+ AZ2, 
where A is an arbitrary positive real parameter, we do not 
need to solve Eq. (5) numerically for other values of F. 
These other solutions can be obtained by a scale transfor- 
mation. 

The solution shows that as E increases, the minimum 
of the amplitude becomes continually broader and shal- 
lower, and, as a result, the Breit-Wigner parametrization 
becomes correspondingly less reliable. But we can deter- 
mine the positions of the minima themselves (and also the 
accompanying maxima) precisely. The result of one of 
these calculations of Z2 is shown in Fig. 1. 

As E grows, Z2 decreases, as it should if we are to 
believe perturbation theory. But at some E=E, it turns 
around and begins to grow, and afterwards the minimum 
in BE(Z2) rapidly disappears, merging with the higher 
maximum. For E > E, it is no longer possible to talk of the 
width of the level, or even of a level as such; it has simply 
disappeared. 

Table I gives some data on these points and related 
information for different values of the quantum number n2, 
and also a comparison with formula ( 1 1 ). 

It is clear from Table I that Eq. ( 1 ) is asymptotically 
correct as n 2 - +  C U ,  as it should be according to Ref. 1. By 
solving the Schrodinger equation, we have obtained the 
transition to classical mechanics, in the process dispensing 
with the unrigorous (in the strong-field region) concept of 
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TABLE I. m= 1 .  F=0.638544. E, is the value of E at which Z2 begins to grow. 

15 2.54610 - 12.165 2.318 1.099 13.302 0.12770 0.80653 
16 2.76716 - 12.710 2.523 1.094 12.456 0.12705 0.80712 
17 2.99299 - 13.246 2.748 1.089 11.707 0.12644 0.80763 
18 3.22340 - 13.770 2.970 1.086 11.045 0.12591 0.80820 
19 3.45818 - 14.288 3.197 1.082 10.450 0.12540 0.80864 
21 3.94042 - 15.296 3.664 1.075 9.435 0.12455 0.80957 
23 4.43854 - 16.275 4.148 1.070 8.596 0.12379 0.81041 
29 6.02057 - 19.068 5.694 1.057 6.778 0.12201 0.81313 

E'/F = Z; is the asymptotic formula ( 1 1 ) from Ref. 1. 

quasistationary states, which entails width as well as posi- 
tion. Such an approach is natural, if only for the reason 
that in classical mechanics there is no concept of width: the 
level either exists and is stable or is simply absent. Thus, 
the transition from quantum mechanics to classical me- 
chanics does not have to take the form of a simple washing 
out of the quasistationary state. In fact, this point was 
discussed in Section 54 of Ref. 1. 

On the basis of the results presented in Table I, we can 
introduce a quantum-mechanical correction in formula 
( 1 1 ) which follows from classical mechanics: 

where A,- 1.6. 

The disappearance of the minima of BE(&) appear 
paradoxical if we proceed in an unrigorous way from per- 
turbation theory. It is just in this way that physicists usu- 
ally proceed, and in the majority of cases such an approach 
is justified. Indeed, we can find Z2 from the formula 

+3m+2)R-... , 

where 
I 

including in it a large enough number of decaying (in mag- 
nitude) terms and discarding the growing ones. For the 
case shown in Fig. 1, for all E, including E= Et, around 
ten terms in formula (13) decay. It would seem that the 
series (13) is entirely suitable for the calculation of Z2 
since the problem in question does not generally require 
great accuracy. But in this case, how are we to understand 
the disappearance of the level, taking into account that all 
the terms in Eq. (13) except the first are negative? The 
answer to this question is contained in the strict formalism 
of higher-order perturbation theory, which has been devel- 
oped only in recent years.8 We will not delve deeply here in 
the far-from-trivial mathematical subtleties of this ques- 
tion. We will only point out that the series (13) is sign- 

constant (the situation with sign-changing series is differ- 
ent) and asymptotically divergent, i.e., for any arbitrarily 
small R its terms, starting at some smallest term, grow. 
Therefore, the complete asymptotic expansion of Z2, anal- 
ogous to the expansion of the center of a doublet for sym- 
metric two-well problems,9 together with the power-law 
terms in R, contains some exponentially small terms (dif- 
ferent from the imaginary terms which characterize the 
width of the level). These terms do not manifest them- 
selves at small values of the field, especially for small n,. 
For this reason their influence cannot be noticed if we 
compare the results of very accurate numerical calcula- 
tions of Z2 with the results obtained using formula ( 13 ) for 
small F. However, starting at some value of F, these terms 
begin to grow very rapidly, causing the disappearance of 
minima. 

To calculate the Stark energies, we must solve Eqs. (4) 
and (5) while simultaneously satisfying condition (6). We 
will not describe this quite simple procedure. One example 
of the numerical determination of the critical values of the 
field Fd and the energy Ed at which "stabilization" of the 
level n = 3, n2 = 18, m = 1 occurs is shown in Fig. 1. At 
fields F < 0.599 . a.u. the above-mentioned Stark state 
exists, while for larger fields the condition Z1 + Z2 = 4, 
where Z2 corresponds to the minimum of BE(Z2) for 
n2= 18, cannot be satisfied, and therefore the level disap- 
pears. 

On the basis of the results presented in Table I, we 
propose an approximate analytic procedure which makes it 
possible to determine the "stabilization" points of the lev- 
els at various values of n2 and small nl.  We see that for all 
n2 

This result can be understood on the basis of formula ( 13), 
which for m = 1 can be represented in the form 
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Of course, we will not use formula (16) to calculate 
Z2, but only to clarify at which R the level disappears for 
large n2. It is clear that the left side of expression (16) 
depends significantly only on the quantity 

f = (n2+ 1 )R. (17) 

For the turning points of E,, as can be seen from Table 
I, 

Basing ourselves on these observations and using the 
PT formula for Z1, which is unquestionably valid for the 
fields under consideration and nl (n2, and also condition 
(6), we obtain 

where 

x0.126~+ ... . I (22) 

Formulas (19)-(22) not only agree well with the ex- 
act numerical calculations which we carried out for a few 
cases, but also make it possible to reliably decipher the 
results of McNicholl et who obtained three experi- 
mental points on the "stabilization" of the Stark levels of 
sodium. Of course, it is not experimentally possible to de- 
termine the quantum numbers nl and n ~ .  The magnetic 
quantum number m = 1 was determined from the condi- 
tions of the experiment. 

The experimental technique of McNicholl et al.,5 in 
principle developed already in earlier investigations of the 
dependence of the behavior of the Stark levels of alkali 
atoms on the magnitude of the field F, is described in Ref. 
2. The atomic beam technique was used. The Rydberg 
states of the Na atom were populated by two-step photo- 
excitation with the help of dye lasers. The Na+ ions that 
form by the decay of Na atoms give evidence of the pres- 
ence of the Stark level. If the field F is varied slowly by 
scanning the laser frequency, i.e., varying the energy E, the 
evolution of the Stark line can be traced out. In their stud- 
ies of the Stark levels, McNicholl et a ~ , ~  were able to 
achieve significantly larger values of F than those achieved 
in previous They observed that at certain values 
of Fd and Ed characteristic of the three levels the Na+ 
signal abruptly decreased. 

Table I1 presents a comparison of the experimental and 
theoretical values. Formulas (19)-(22) show at once that 
there are no other values of Fd and Ed simultaneously in 
"reasonably" close intervals about F and E. In discussing 
these results we should first of all note that our calculation 

TABLE 11. Comparison of the experimental data with the theoretical 
calculations of the fields and energies at which the Stark lines disappear. 

A a - 12.79. 0.6457. lop6 
b - 12.51 . low4 0.6185. 16 5 23 

B a - 12.77. 0.6378. lop6 
b - 12.86. 0.6087. lop6 17 4 23 

C a - 13.00. 0.5873. 
b - 13.20. 0.5995. 18 3 23 

a--experimental results,' given in atomic units. 
b-calculations based on formulas (19)-(22). 

is for the hydrogen atom, and the experiment-for sodium. 
For this reason alone we are at pains to expect better agree- 
ment. Still more important is the fact that the accuracy of 
the experimental measurement of the field F (Ref. 5) is less 
than the typical accuracy for experiments of this type, 
which is 2-3%. The very accurate experimental field val- 
ues adduced in Table I1 are in fact not such (as was clearly 
noted by the authors of Ref. 5), but were "refined" by 
comparison with theoretical data of a model which takes 
the core into account. According to this model and in 
contradiction with Section 54 of Ref. 1, there should be no 
"stabilization" effect for the hydrogen 

From their discussion in Section 54 of Ref. 1 it is ob- 
vious that Bethe and Salpeter checked formula (1 1) 
against the quasiclassical calculations of Lanczos and the 
experimental data of Traubenberg on the optical observa- 
tion of the disappearance of the Stark lines of the Balmer 
series in a field. This comparison did not show good agree- 
ment between the formula and experiment. The reason for 
the discrepancy as indicated by Bethe and Salpeter is that 
Traubenberg's experiment did not directly observe ioniza- 
tion of the atoms in a field, and the spectral lines were 
suppressed as a result of quantum tunneling even at con- 
siderably smaller fields. McNicholl et a ~ , ~  observed the 
ionization of the Stark levels directly. And here even the 
fact that they observed ionization in sodium, and not in 
hydrogen, did not lead to any significant difference between 
calculation and the experimental data. 

We have obtained values of Ed and Fd from an exact 
solution of the Schrodinger equation. But in practice the 
same results can be obtained in a simpler way. To deter- 
mine Ed and Fd for given values of nl and n2 and m = 1, we 
can use formula ( 11 ) in combination with the PT formula 
for the energy, retaining 4-5 terms in the latter. Such a 
calculation makes sense for small nl and large n2. In the 
calculation of Z2 in formula ( 1 1 ) the relation Z2 = 4 - Z1 
should be used, where Z1 can be calculated using pertur- 
bation theory. The results of such a calculation give values 
of Ed and Fd which differ from the "exact" values by not 
more than 2-3%, which is completely insignificant for 
practical applications. Thus we arrive at a completely par- 
adoxical conclusion: perturbation theory is valid in prac- 
tice not only qualitatively, but also quantitatively all the 
way to the actual disappearance of the level. 

Previously we considered the case m = 1. It is specifi- 
cally about this case that the discussion centers in Ref. 1. 
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But analogous results obtain also for the case m = 2. How- 
ever, the case m=O is special. Here the minimum of 
BE(Z2) does not disappear upon crossing the barrier, it 
just becomes less pronounced. Mathematically, this result 
differs from the others in that here the centrifugal potential 
(1 -m2)/4? in Eq. (5) has a different sign. In such a 
potential in classical mechanics the particle "falls" into the 
center. 

In our opinion--despite the convincing agreement be- 
tween the theoretical and experimental values of Fd and 
Ed, we have nonetheless not yet completely explained the 
experimental results of McNicholl  eta^,^ even qualita- 
tively. Indeed, their experimental studies clearly show that 
with further increase of the field, starting at Fd,  the level is 
regenerated anew, but in a more broadened form. Thus, the 
arguments of Section 54 of Ref. 1, despite their unques- 
tioned validity, do not give the complete picture of the 
behavior of the Stark lines in a field. Therefore, in their 
interpretations of their own data, the authors of Refs. 4 
and 5 were not able to correlate them with the predictions 
of Section 54, Ref. 1. 

In order to clarify this situation, let us again turn our 
attention to the procedure of exact solution of Eqs. (4)- 
(6). What then did we miss in the foregoing consideration? 
The traditional approach to solving these equations, start- 
ing from perturbation theory, was first applied by Schro- 
dinger and proceeds as follows: the value of E is fixed in 
Eqs. (4) and (5) and one then solves the problem of find- 
ing the eigenvalues Z1 and Z2 for given values of the quan- 
tum numbers nl, n2, and m. These problems iiie actually 
eigenvalue problems since the use of perturbation theory 
assumes that the wave functions decay exponentially at 
infinity, i.e., the decay of the atom is not taken into ac- 
count. After determining Z1 and Z2 for arbitrary E, its true 
value is found from condition (6). But there is another 
way to solve this problem. One can fix the values of Z, and 
Z2 in -. (4) and (5) and then, having determined the 
eigenvalue E, satisfy condition (6). Of course, within the 
framework of perturbation theory, as in the case F=O, we 
do not obtain any new solutions. But, solving out the prob- 
lem exactly according to the traditional scheme, we de- 
parted from the framework of perturbation theory. And 
only such an approach allowed us to find the "stabiliza- 
tion" points of the levels. 

Likewise, considering the second possible approach to 
solving Eqs. (4)-(6), we again had no choice but to depart 
from the framework of perturbation theory. As for Eq. 
(4), which even for F#O remains an eigenvalue problem, 
we do not obtain anything new via the second approach. 
Solving Eq. (5), we now fix the value of Z2 and find the 
minima of the function BZ,(E) for fixed values of n2. 
Again, as before, we are able to determine their positions 
exactly. For small F both minima have almost the same 
values of Z2 and E. They merge into one true eigenvalue 
only for F = O .  At larger values of F the positions of the 
minima corresponding to the same value of n2 diverge 
abruptly. An example of the calculation of the minima is 
shown in Fig. 1. One should bear in mind the small scale of 
this figure, which dramatizes the differences in the posi- 

tions of the minima. From the practical point of view, the 
difference in the positions of the minima is substantial only 
in the immediate vicinity of the disappearance of the min- 
ima of BE(Z2). Calculation shows that the minima of 
BZ2(E) do not disappear as E grows. They only become 
more and more washed out. The presence of a series of 
minima in BZ2(E) reflects the other face of quantum me- 
chanics, namely its wave character. Using the value of Z2 
found from BZ,(E), we can determine what we will choose 
to call the second component of the Stark line for the given 
values of nl and n2. 

We omit the Stark energies for any concrete levels as 
functions of the magnitude of the field F, calculated using 
our technique. The quantitative difference between them 
and the results which can be obtained using the standard 
perturbation theory for the energy, taken out to 4-5 terms, 
proves to be insubstantial even for the region where "sta- 
bilization" is observed. The two components of the Stark 
line, from the practical point of view, coincide. The pres- 
ence of the "second component" is manifested in experi- 
ment as the regeneration of the Stark line in a still more 
washed-out form after it "disappears" at the "stabiliza- 
tion" point. 

The two solutions of Eq. (1) found above are exact 
and explicitly manifested in experiment. We emphasize 
that we are talking here about not just qualitative, but also 
quantitative agreement of theory with experiment. By 
quantitative here we mean that an accuracy of 2-3% in the 
determination of Fd and Ed is sufficient for error-free iden- 
tification of the "stabilization" points. 

To conclude this section, we note one important cir- 
cumstance tied up with the concept of quasistationary 
states. Usually, in the solution of physical problems we 
have the Schrodinger equation with prescribed boundary 
values and a unique solution. Even if we are not able to 
solve it exactly, we are firmly convinced of the existence of 
a solution. In the consideration of quasistationary states, 
and not only in the Stark effect, we are faced with a dif- 
ferent situation. The Stark energy and linewidth are not 
quantities which can be determined, that is to say, calcu- 
lated with arbitrary accuracy.3 

It is useful to compare the Stark problem with the 
problem of auto-ionization states of atomic He or H-. 
Further, we may consider the elastic scattering of an elec- 
tron from He' or H. Solving this rigorously posed, non- 
relativistic quantum-mechanical problem numerically, we 
can, in principle, calculate the phase of the elastic scatter- 
ing exactly and thereby find the partial scattering cross 
section. If the phase varies rapidly by the amount .rr when 
the energy varies over some interval, we can introduce the 
concept of auto-ionization states of He or H-. However, 
this concept is only approximate. The usefulness of such a 
concept is obvious and not only for the reason that the 
calculation of energies and linewidths of auto-ionization 
states of He or H- on the basis of an approximate consid- 
eration of the Schrodinger equation is significantly simpler 
than calculating them from the exact scattering problem. 
But in no way does it follow that one should ascribe the 
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concept of an exact value to an approximate value in at- 
tempting to determine the energies and widths with super- 
fluous accuracy, as is sometimes done. In those cases in 
which the widths turn out to be too large, the concept of 
auto-ionization states simply loses meaning, but the scat- 
tering problem from which it arose continues to be exact. 
As regards the Stark states, rejecting only the concept of 
their widths, we can go a little further than in the problem 
of auto-ionization states of an atom, namely to their com- 
plete disappearance. 

2. BEHAVIOR OF THE "IONIZATION" THRESHOLD OF THE 
HYDROGEN ATOM IN A CONSTANT ELECTRIC FIELD 
(m>V 

In this section we will explain the experimental results 
of Littman, Zimmerman, and Kleppner on the behavior of 
the Stark lines of Li and Na for m = 1, 2 for total quantum 
number n= 12-19 mentioned in the ~ntroduction.~,~ To- 
ward this end, we will briefly describe the technique of the 
experiment. 

Atoms, located in a field, were excited by a tunable 
laser. In small fields, the atoms, in the process of being 
excited to the Stark states, did not decay since their life- 
times vis-$-vis decay in such fields are very large. After 
some delay, during which they do not undergo any con- 
siderable radiative decay, the atoms became ionized by the 
strong momentum of the field, and the Stark energies were 
determined from the ion signal. For Na as well as for Li, 
for m= l ,2, they turned out to be practically indistinguish- 
able from the corresponding hydrogen energies. However, 
for certain critical but still very small values of the field, 
the signals indicating the presence of the Stark states dis- 
appeared. On this basis the authors concluded that in such 
fields the corresponding states suddenly disappear. (We 
think that another conclusion is possible-namely, that in 
such fields the number of atoms entering into these states 
abruptly decreases. ) 

According to the estimates for the hydrogen atom, in 
the fields under consideration the indicated states have 
huge lifetimes vis-8-vis decay in the field. In addition, ac- 
cording to the hydrogenic theory the longest-lived states 
for a given total quantum number are those deepest in 
energy. But the experiment on Li and ~ a ~ , ~  would seem to 
give just the opposite picture. In their original report, Litt- 
man  eta^.,^ note one more important experimental fact 
which in their subsequent review article2 they did not dis- 
cuss, namely the nonmonotonic decrease of the lifetime as 
a function of the field for the above-mentioned states, 
which also at first glance sharply contradicts the hydro- 
genic theory. 

One more feature in their observations should be 
noted. The signals from the indicated states do not vanish 
completely at the critical field values. In the second ap- 
proach to the measurements, when additional momentum 
to knock the electron out of the excited atom is not used, it 
is clear directly from the decay of the atom that the Stark 
states continue to exist and behave in a way similar to the 
hydrogen states even in fields which are above critical. But 
in fields which are somewhat below critical, in such an 

approach it is impossible to directly register the signals 
from the Stark states. Kleppner et ala2 arrived at an almost 
correct explanation of their results, based on the simple 
saddle-point model. According to this model, an atom can 
ionize when its energy reaches a critical value: 

They also gave a second interpretation of their 
results-a valid one and one which does not contradict 
their model. When critical fields are reached, the states 
with large nl and small n2 having vanishingly small width 
with respect to decay in the field begin to intersect with 
very wide levels which have largc total quantum numbers 
n and large n2. This then explains the observed "disappear- 
ance" of the long-lived states. Starting from valid premises, 
Kleppner et ~ 1 . ~  then arrive at the strange conclusion that 
such decay behavior is possible only for atoms which have 
a core. In their opinion, true hydrogenic states should not 
"mix," thanks to the fact that this case is purely Coulomb. 
Experimental studies on hydrogen, analogous to those for 
Li and Na, are still lacking. In all probability, the experi- 
mental results of ~raubenber~ '  on the optical observation 
of the behavior of the spectral lines of the hydrogen atom 
with varying field had an influence on their conclusions. 
These data, at first glance, seem to contradict (strongly!) 
the observations for Li and Na. But in fact the large dif- 
ference in the results of these two experiments is due only 
to the fact that the examinad states had different total 
quantum numbers. 

Let us then refine the conclusions reached in Ref. 2. 
According to Section 54 of Ref. 1 and our treatment 

where Z2 = 4 - 2,. 
It will be useful to give a physical interpretation of Eq. 

(24), which is asymptotically exact for F + O .  
For F = O  the ionization spectrum of the atom begins at 

E=O. In the presence of a field the ionization threshold is 
lowered and is described by Eq. (24). In a way analogous 
to the splitting of stationary energy levels in a field, the 
ionization threshold also split with respect to the conserved 
quantum number nl . The observation of the disappearance 
of the Stark levels upon reaching the first ionization "sub- 
threshold'' defined by formula (24), with nl =0, is linked 
with their penetration into the energy region where ioniza- 
tion of the atom becomes possible and suppresses excita- 
tion of atoms to the quasistationary states. But, in contrast 
to the case F=O, some of the atoms fail to decay com- 
pletely even above the ionization subthreshold, as is clear 
from the As the subsequent ionization sub- 
thresholds at nl= I ,  2, ... are reached, the situation repeats 
itself. This explains the nonmonotonic behavior of the 
atomic decay probability with increasing F reported in 
Ref. 6. 

We will not adduce the results of calculations based on 
Eq. (24) since there are no experimental data as yet on 
hydrogen. As for quantitative results, they hardly differ 
from those obtained from Eq. (23) (with additional, semi- 
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empirical small corrections) by Kleppner et UI.,~ which 
they compared with the results of their experiment on Li. 

We will explain how this large difference arises be- 
tween the experimental results of Traubenberg and those 
reported in Refs. 2 and 6. Comparing the formula for the 
linewidth lo 

with the formula for the ionization subthresholds (24), one 
can easily convince oneself that with growth of the total 
quantum number n the Stark states reach the ionization 
region, in the process becoming narrower and narrower. 
Thus, in the limiting case nl + w for small n2 the linewidth 
behaves on the ionization curve like 

For small n the Stark levels decay significantly in the 
process of tunneling without reaching the ionization curve. 
For large n such decay does not take place. The experi- 
ments of Kleppner et were carried out for n= 12-19, 
and the optical observations of Traubenberg, for n=4-7. 
This difference in the total quantum numbers is completely 
sufficient to explain the huge qualitative difference in the 
obtained results. Of course, quantum tunneling still oper- 
ates in the same way, i.e., for the same quantum number n 
it is greater for deeper states. But in the experiment296 it 
simply could not manifest itself. Thus we see why when 
speaking of ionization of an atom in a field, Bethe and 
salpeterl did not have in mind its decay by quantum- 
mechanical tunneling. Certain hindrances to an under- 
standing of this circumstance could have been caused by 
the fact that Bethe and Salpeter referred to the tunneling 
phenomenon as ionization by wave mechanics. But to- 

gether with this phenomenon, the quasistationary state, for 
certain fields and energies, simply ceases to exist, in a way 
analogous to that in which there are no stationary states 
for E> 0 in atoms for F=O. The quasistationary spectrum 
for F#O can be characterized by the quantum numbers nl , 
n2, m. But, in contrast to the discrete spectrum, which 
does not penetrate into the energy region where ionization 
is possible, the quasidiscrete spectrum penetrates partially 
into this region. On the other hand, in arbitrarily small 
fields, for some negative energies quasistationary states 
with finite values of the quantum number n2 disappear, 
which is impossible for the discrete spectrum. Thus, the 
"continuous" and "discrete" spectra for the hydrogen 
atom for P#O interpenetrate. 

The authors thank I. L. Be'igman for helpful discus- 
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