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Using the adiabatic approximation we consider the process of the nonlinear propagation of a 
basic optical soliton in a fiber with a cubic nonlinearity and losses. The latter are 
compensated by periodic or distributed amplification with a band width comparable to the 
width of the soliton spectrum. We obtain analytical expressions describing the 
evolution of the dispersions of the fluctuations in the momentum and in the position of the 
soliton peak. We establish that when the amplification band width and the width of 
the soliton spectrum are approximately equal they are very close to the quantum momentum- 
coordinate indeterminacy relations of a basic soliton propagating in an ideal lossless 
nonlinear waveguide. We give the correction to the Gordon-Haus quantum limit taking into 
account the frequency drag of the soliton carrier frequency under the amplification line 
contour. 

INTRODUCTION 

Rather many papers (see, e.g., Refs. 1 to 25) have in 
recent years already been devoted to the problem of the 
storage and transformation of classical and quantum noise 
by an optical Schrodinger soliton propagating in a light 
conductor with a cubic nonlinearity. Whereas the features 
of the behavior of solitons in an ideal lossless fiber have 
been studied very thoroughly'-'6 it seems that an elucida- 
tion of the quantum aspects peculiar to their propagation 
in a waveguide with dissipation and of the possibility of its 
compensation through distributed or periodically posi- 
tioned amplifiers is only in its initial stage."-21 A pioneer- 
ing paper in this respect is Ref. 17 in which a semi-classical 
description is used to estimate the random drift of the 
carrier frequency of the soliton caused by noise photons 
produced in the amplifiers. The change in the propagation 
velocity then leads to fluctuating shifts of the soliton peak. 
The distance over which these shifts become comparable 
with the soliton length has been called the Gordon-Haus 
quantum limit. A more rigorous consistent quantum treat- 
ment of this effect has not yielded any important correc- 
tions to the quantitative re1ati0n.l~~~~ However, in experi- 
ments on the observation of groups of solitons propagating 
along paths even exceeding the Gordon-Haus quantum 
limit the corresponding changes in the distances between 
the solitons have as yet not been detected. 

What causes this violation of the theoretical predic- 
tion? The fact is, these prognoses were clearly based on 
assumptions about an unbounded frequency band of the 
amplifiers. However, it is clear even on a qualitative level 
that the finite width of the amplification line must limit the 
growth of the indeterminacy of the carrier frequency of the 
soliton and of the random shifts corresponding to it.19 The 
first quantitative estimates of this "saturation effect" were 
given in Ref. 20, the main result of which is the conclusion 
that there is not only a slowing down of the growth in the 
fluctuations of the carrier frequency but also the presence 
of a "bending point" after which these fluctuations de- 

crease without limits. The choice of a sufficiently large 
propagation length can thus apparently lead to an arbi- 
trarily stable soliton. This result induces definite misgivings 
about the adequacy of our considerations for two reasons. 
Firstly, the distributed acceleration noise acts along the 
whole of the path and does not "disturb" the soliton at its 
end worse than at its start. It would thus be reasonable to 
expect a gradual establishment of some stationary value of 
the frequency indeterminacy determined by the amplifica- 
tion band width. The second reason for doubt is not con- 
nected with physical subtleties of the effect but is based 
upon a purely logical contradiction. 

Suppose that at the entrance to the waveguide an ideal 
soliton without any indeterminacies (we forget temporarily 
the purely quantum effects, the more so as they are ne- 
glected in the semiclassical considerations applied by the 
authors of Ref. 20). We shall then have practically the 
same stable soliton, according to Ref. 20, at sufficiently 
large distances. What will happen after that? According to 
the authors of Ref. 20, the soliton will become even more 
stable. But how is it better than the original ideal soliton in 
which in the initial stage of the propagation there occurs a 
very strong growth of the frequency drift? If, however, the 
two solitons are identical, then why does the noise grow at 
the beginning of the path but decrease at the end? 

The above conclusion of Ref. 20 is thus erroneous. 
Moreover, the following fact causes a definite dissatisfac- 
tion. In that paper the basic parameter determining the 
effect of the finite amplification line width is the excess of 
the maximum amplification growth rate in the peak of the 
contour over the losses. Since the dissipation is assumed to 
be uniform over the frequency no growth in the soliton 
amplitude will occur in that case since there is no amplifi- 
cation (or loss) when integrated over the frequency. 
Therefore, if the amplification and absorption lines are 
identical (of course, apart from the sign) this excess will be 
equal to zero and the evolution of the noise will, according 
to Ref. 20, be described by the Gordon-Haus functions." 
However, it is very clear that also in that case the effect of 
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a finite amplification linewidth must show up (if only be- 
cause the noise photons will occur only in that bounded 
frequency band) and cause saturation of the growth of the 
frequency fluctuations. We note that in practice such a 
situation may occur in an active fiber (simultaneously 
playing the role of the propagation medium and of the 
amplifier) which is boosted externally by exciting radiation 
(see, e.g., Refs. 1 and 26 and the literature cited there). 

The solution proposed in Ref. 20 is thus not a compre- 
hensive one and the problem under consideration needs a 
more detailed study, which is the subject of the present 
paper. 

1. BASIC MODEL AND MAIN EQUATIONS 

For our considerations we start from the following 
Schrodinger equation with a nonvanishing right-hand side 
in the Heisenberg representation:9"0 

s ~ ( x , s )  =i[r,(x,s) +rY(x,s) I .  (1.1) 

Here 

is the distance measured from the soliton peak in a moving 
system of coordinates moving along the z-axis together 
with the soliton with a group velocity 

ko is the wavenumber and wo the carrier frequency, 

is the normalized path of the soliton, and the parameter 

k" = a=kCJ/ao; 

characterizes the dispersion of the group velocity; in order 
not to deviate from the usual notation for Schrodinger 
equation, in what follows we replace the independent vari- 
able s by t, considering it as the normalized time for the 
soliton propagation; C> 0 is the nonlinearity parameter 
which is proportional to the cubic susceptibility of the fi- 
ber, and x and y are the absorption and amplification 
growth rates (with respect to the intensity) which in gen- 
eral depend on x for absorption and amplification lines 
which are inhomogeneous along the spectrum, and in that 
case a convolution occurs, denoted by s . The field oper- 
ators 4 and ++ satisfy the commutation relations 

In fact, these normalized operators are the positive- and 
negative-frequency parts of the field. The normalization is 
such that 

where no is the average number of photons in the soliton, 
while the averaging is over its quantum state. 

The right-hand side of Eq. ( 1. I ) ,  which is also an 
operator, is a Langevin noise force with a zero average. If 
we change to the Fourier spectrum of the operators, for 
instance, 

the statistical properties of its terms have the form 

Here and henceforth we neglect thermal and technical 
noise for simplicity, restricting ourselves thereby to finding 
the minimum possible purely quantum contribution to the 
fluctuations. For a two-level amplifier this means, in par- 
ticular, that the inversion is complete: N2/(N2-Nl) = 1 
where the Nj are the level populations, i.e., the effective 
amplifier temperature is equal to zero. If these conditions 
are not satisfied, one can easily take this into account by 
introducing a correction factor (see, e.g., Ref. 10). 

We have also introduced in Eqs. (1.4) to (1.6) the 
soliton momentum p and taken into account the spectral 
dependence of its growth rates. The frequency w is con- 
nected with p  through the simple relation w =pv. 

If there is no amplification or loss, when we have 
y = x = rx,y--O, Eq. ( 1.1 ) changes to the well known non- 
linear Schrtidinger equation (see, e.g., Refs. 3 to 11). The 
classical analog of the latter will be obtained by replacing 
the operators 4 and #+ by a pair of complex slowly varying 
amplitudes t$(x,t) and 4*(x,t). The classical solution for a 
single basic soliton, which is valid for C>O, then has the 
form1"l9 

where we have introduced the initial momentum po deter- 
mining the camer frequency and, accordingly, the soliton 
propagation velocity, as well as the initial coordinate xo 
and phase qo. Without loss of generality we can put those 
equal to zero which is equivalent to the choice of suitable 
initial conditions. The condition po=O corresponds to a 
frequency mismatch with the carrier frequency: 

= w - wo =pv. According to ( 1.4) the classical spec- 
trum of the basic soliton then has the form 

- P in;c2t 
#o(p,t) =T exp (7) sech (lp). noC 

We note that 
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Since it is not possible to obtain an exact analytical 
solution of the initial operator Eq. ( 1.1 ) we discuss in what 
follows the possibilities of a simple and clear approximate 
description of the effects which arise when the basic soliton 
propagates in an active nonlinear channel. 

2. EVOLUTION OF THE MOMENTUM INDETERMINACY IN 
THE ADIABATIC APPROXIMATION 

It is well knownz2 that the adiabatic approximation 
assumes that the shape of the soliton remains unchanged 
while it propagates. This is not contradicted by experimen- 
tal results or by data from numerical calculations even for 
the extremely long paths which are at present possible. 
This, of course, does not exclude at all the possibility in 
principle that the adiabatic approximation is violated, 
which may, for instance, occur in fibers with random 
inhomogeneitiesZ4 but in the framework of our model when 
the conditions stipulated below are satisfied the use of the 
adiabatic approximation is completely appropriate. 

We select in the waveguide an elementary section char- 
acterized by the time At for it to be traversed. The effects 
occurring in it we can conveniently split into three succes- 
sive stages characterizing the action of various factors: a) 
the perturbation of the soliton by the action of the quan- 
tum noise; b) dissipation with amplification neglecting the 
noise produced by it; c) nonlinear (soliton) propagation. 
In the next At interval the picture is repeated, and so on. 

A similar separation of the factors was used in Ref. 18 
for the case of unbounded amplification and loss bands. It 
was then shown that if At 4 T = 87r/niC?, where T is the 
soliton period, i.e., the time during which the nonlinear 
phase advance has accumulated to 27r, such a model is 
equivalent to the situation in which all factors are mani- 
fested simultaneously and reduces in practice to the origi- 
nal Gordon-Haus result.17 It is then completely unimpor- 
tant whether the lumped active sections of the fiber (or 
simply the amplifiers) alternate periodically (at intervals 
At) or whether the amplification is distributed uniformly 
over the whole of its length. The condition At4 T also 
ensures that the soliton shape is unchanged,27 which guar- 
antees the adequacy of the adiabatic approximation. It is 
thus logical to expect that when it is satisfied our consid- 
erations are also valid. 

Thus, in the first stage there occurs a "noisification" of 
the soliton due to the Langevin forces: 

Here we have taken into account a possible shift of the 
soliton spectrum by an amount p' and a phase advance g, 
which do not alter the soliton shape, i.e., we work in the 
adiabatic approximation. 

We multiply both sides by exp[ip ( t )], expand 
exp[- ig,(t+ At) +ig,(t)] in a power series of the argument 
of the exponential, restricting ourselves to the first order, 
and we add the equation obtained to the corresponding 
Hermitian conjugate one. As a result we get 

where Re f = (f + f+)/2. 
We are first of all interested in the random drift Ap of 

the momentum on an elementary interval At which arises 
due to the action of the random forces r. To first order in 
Ap we can thus write 

It is completely obvious that the external force r causes 
not only a shift Ap of the spectrum but also leads to a 
number of other distortions of the soliton. To distinguish 
its contribution to the random drift Ap of the momentum 
we should take the "projection" of Re T on Re 4', i.e., a 
scalar product of the form 

After substituting (2.3) into (2.2), multiplying both sides 
of the relation obtained from the left by O1(p-pl,t), and 
integrating over p between infinite limits, we have thus 

- - - - Ap=- - - At. 
j- "",Re[O1(p,t) n2dp 

By virtue of the linearity of the problem considered 
[Eqs. (2.1 ) to (2.4) are linear in $1 it must be adequate to 
describe it using a classical approach.28 The operator $ can 
then be replaced by the classical single-soliton solution $o. 
According to (1.8) we have in this case 

The "quanticity" of the problem, on the other hand, will be 
guaranteed by introducing in it moments of the random 
force of the form 

( ~ e [ e ' ~ f ( ~ ' , t ' )  ] ~ e [ e ' ~ f ( p , t ) ]  ) 

= (Re F(p ' , t ' )~e  f(p, t))  

We have used here (1.5) and (1.6). 
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The dispersion of the fluctuations in the soliton mo- 
mentum, produced by the external forces on the elemen- 
tary section At, is thus equal to 

In the particular case of identical absorption and am- 
plification lines which are uniform over the spectrum 
( y = x = const) we have 

The only difference between this last result and the corre- 
sponding expression obtained in Ref. 19 on the basis of a 
completely different approach is that we have not yet taken 
into account the vacuum fluctuations at the entrance to the 
waveguide (this will be done in what follows) and also by 
a practically insignificant quantitative difference: instead of 
.rr in Ref. 19 we have three. 

We turn to the description of the next stage of the 
passing of the soliton through the elementary section At 
which directly takes into account that the amplification 
and loss spectral lines are not identical. In that case we 
have 

where, as before, we understand by 4 not operators but 
complex amplitudes. For their real parts we have, using 
(2.31, 

Here we have again used the scalar product of the perturb- 
ing function and 4' (p -p' ) . 

It is convenient for the further calculations to change 
to a dimensionless variable, 

Then we have 

In fact, Eq. (2.12) describes the evolution of the drift of 
the normalized momentum q', i.e., Aq is the increase in q'. 
In what follows we can thus omit the primes as q and q' 
exchange places. 

One can estimate the integral in (2.12) analytically by 
stipulating the line shapes. It is logical to assume them to 
be Lorentzian: 

FIG. 1. The function A ( Q )  constructed as the result of a numerical 
calculation of the integral in (2.16). 

In the M )  1 case with the absorption line width much 
larger than the width of the soliton spectrum we have 

dq 3yo - thy  sech2 ydy 

;iiZ -Q I-, 1 + (y-q12/@ , 
where we have changed from finite to differential incre- 
ments and introduced the integration variable y. 

We expand the Lorentzian in powers of q and, assum- 
ing the drift of the normalized momentum to be small, we 
restrict ourselves to the second order terms. Using the fact 
that tanh y sech2 y is odd we then find 

We show the function A(Q) in Fig. 1. In particular, 
A(Q= 1) ~0.3405. 

Finally in the third and last stage of the passage of the 
soliton through the element At there is a nonlinear inter- 
action and dispersive spreading. To describe it we restrict 
ourselves to simple qualitative considerations avoiding cal- 
culations. The fact is that neither of these processes should 
affect the shift of the soliton momentum (or its carrier 
frequency). A similar statement could follow even from 
the classical solution of the nonlinear Schrodinger equation 
without amplification or loss. This also does not contradict 
quantum  treatment^.^-" 

The specific action in this stage affects the soliton 
shape but it can be only particularly "favorable," i.e., mak- 
ing the actual envelope, which is distorted by noise and by 
amplification and losses which are non-uniform along the 
spectrum, more closely resembling an ideal one in the form 
of a hyperbolic secant. Indeed, the soliton can retain its 
exceptional stability just thanks to its remarkable "self- 
cleaning" with regards to the noise which has 
penetrated it. 

Of course, these arguments do not pretend to give an 
exhaustive proof. Their adequacy can only be ascertained 
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by experimental verification, even if only a numerical one 
performed in the framework of the semiclassical approach. 

Provisionally summarizing the transformation of a 
soliton on a section At of the waveguide we conclude that 
it acquires an indeterminacy of its momentum determined 
by the dispersion of the fluctuations in the form (2.7) mul- 
tiplied by exp( -24 yoAt), i.e., there occur two contrasting 
processes: a "build-up" of the carrier frequency due to 
noise which is external in relation to the soliton and its 
stabilization due to the finiteness of the amplification band. 

If we choose At to be greater than the inverse width of 
the amplification line the noise on the next elementary sec- 
tion can be assumed to be statistically independent of that 
on the previous one. Hence, the dispersion of the fluctua- 
tions in the momentum from each successive section of the 
fiber is ultimately summed up. This fact enables us to ex- 
press (Ap2(t+ht)) in terms of (Ap2(t)) or, in normalized 
form, ( h d ( t + b t ) )  in terms of ( h 8 ( t ) ) :  

Here we have equated the drift of the normalized soliton 
momentum from its average zero value equal to the mean 
square deviation = d m .  . - 

We note also'that whereas in Ref. 20 a parabolic ap- 
proximation of the amplification line was used in the 
"whole volume," in our case it appears only in the first 
term of Eq. (2.17) and does not affect the second one. 

Using (2.13) we have for M> 1 

We introduce AD= D(t+ At) - D(t), expand the expo- 
nent, and replace the finite increments by differential ones: 

1 dD 3 xo 3 m th2 y sech2 ydy 
--=- [-+- J-, 
YO dt 4no YO 2 1 + (Y+ dDI2/@ 1 

We write the solution of this equation in the form 

where J( D )  is the right-hand side of Eq. (2.19) and Do the 
initial dispersion of the fluctuations of the normalized soli- 
ton momentum at t=O. If the cause of those fluctuations is 
the vacuum quantum indeterminacy, we have Doz3/4no 
(Refs. 16, 18, and 19), where the approximate equality 
sign reflects that the number P has been replaced by three. 

Instead of the required solution D(t) we calculate the 
inverse function t(D) according to (2.20), i.e., the time 
during which the soliton acquires the dispersion D. 

As one should expect the growth of the momentum 
fluctuations with time saturates and the subsequent prop- 
agation of the soliton is characterized by the asymptotic 
approach to a stationary value of the dispersion, given by 
the equation 

In this connection we remind ourselves once again that this 
conclusion does not agree with the results of Ref. 20, as 
was discussed in detail in the Introduction. 

Concluding this section we note that the proposed ap- 
proach enables us also to analyze the particular case where 
the amplification and loss lines are identical: y (p) e x (p) . 
In accordance with (2.12) the coefficient A(Q) is equal to 
zero, i.e., one of the factors stabilizing the carrier frequency 
is absent. Nonetheless the growth in the soliton momentum 
fluctuations has also a tendency to saturate because the 
noise (the Langevin force T) acts only in a bounded fre- 
quency band. 

According to (2.7), Eq. (2.20) remains valid for y=x, 
only with the difference that J( D) now means 

9 m th2 y sech2 ydy 
J ( D )  =- (2.22) 

It is clear that the increase in D(t )  with t slows down 
gradually, i.e., saturation occurs again. This fact is illus- 
trated by the curves in Fig. 2. It is also not included in the 
framework of the results of Ref. 20 where the y=x case 
corresponds to the Gordon-Haus approximation when 
D(t)  grows without bound in proportion to t. Moreover, 
the differences between our considerations and Ref. 20 ap- 
pear not only in the far zone where saturation turns up but 
even at the very start of the path for small t. Indeed, in 
accordance with (2.20) and (2.22) finite amplification and 
(or) loss bandwidths lead to a decrease in the growth rate 
of the dispersion D, i.e., in dD/dt. This effect is connected 
with the integrated (over the spectrum) reduction of the 
amplification and loss noise as compared to the case of 
unbounded uniform lines. For instance, for Q= 1 the dis- 
persion D increases on the initial section approximately 
twice as slowly as for Q+ W .  

The next section is devoted to a more detailed analysis 
of the final relations (2.19) to (2.22). 

3. FURTHER APPROXIMATIONS 

We attempt to simplify the results obtained and to give 
them more clarity. First of all it would be desirable to get 
rid of the convolution integrals in the J( D) function. This 
can be done for Q 2  1. The Lorentzian contour is in this 
case already quite gentle in comparison with the graphical 
form of the other factor in the integrand, tanh2 y sech2 y, 
which can be replaced approximately by two S-functions. 
Indeed, in the range from 0 to w tanh2 y sech2 y has its 
center of gravity at the point y,=: 1.08. We then have 
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FIG. 2. The normalid dispersion of the soliton momentum fluctuations 
as a function of the normalized propagation time for y s x .  The solid 
curves are the result of a numerical solution of Eq. (2.20) taking (2.22) 
into account. The dashed c w e s  are various degrees of approximation 
corresponding to the 6rst equation in (3.2) and the rougher relation 
(3.3), with the latter occurring below the fonner: a: Q= 1; b: Q= 10. 
Everywhere we have Do=O. 

th2 y sech2 ydy 2 p  p + D+Z -- I =  I + ( ~ +  3 (p+ D+d)'-4dD' 
(3.1) 

We show in Fig. 3 the curves of the exact and the approx- 
imate values of the integral. It is clear that even for Q= 1 
we find good agreement. 

In the y=x case we have from (2.20) and (2.22) 

for Do=O. If, however, we have Do#O we must subtract 
from the right-hand sides of (3.2) the corresponding ex- 
pressions for D= Do. As a result we get 

For Q- oo we have D z  Do+3yot/2no which corresponds 
to the model of unbounded amplification and loss 
bands. '"19 

The curves constructed in accordance with the approx- 
imate expressions (3.2) and (3.3) are also shown in Fig. 2. 
It is clear that they satisfactorily approximate the more 
exact calculations. However, for Q= 1 one observes never- 
theless a considerable divergence which is connected with 
the approximate representation of the logarithm in the sec- 
ond part of Eq. (3.2). For a comparison we therefore show 
curves constructed without using the expansion of the log- 
arithm [first part of Eq. (3.2)]. We then reach much better 
agreement. 

We also note that in the far zone (for large t) the 
dispersion of the fluctuations of the soliton momentum 
(and its carrier frequency) continues to increase as 

We now turn to an analysis of the y$x case for 
%=const. We can obtain a rough estimate by assuming the 
amplification noise to be uniform over the spectrum (white 
noise) and by taking the boundedness of the spectrum into 

I I I 1 

0 4 8 12 D FIG. 3. Values of the integral (3.1) established as the result of 
a numerical calculation (solid curves) and of a rough approxi- 
mation (dashed curves): a: Q= 1; b: Q= 10. 

0 400 800 D 
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account only through the last terms in (2.19). We then 
obtain somewhat overestimated values of the dispersion 
which satisfy the equation 

where one can easily estimate the stationary value Ds 
which the dispersion approaches asymptotically: 

Further, according to (3.4) we have 

If, however, the input fluctuations are determined only by 
the vacuum quantum indeterminacy ( Do= 3/4no) we have 

The basic conclusion from these results is the follow- 
ing. If the width of the soliton spectrum is comparable with 
that of the amplification band ( Q z  1 ) the momentum fluc- 
tuations of this soliton will be comparable with its quan- 
tum indeterminacy. For instance, for Q= 1 the maximum 
dispersion Ds is not more than three times larger than Do. 

Moreover, for Ano) 1, which is practically always sat- 
isfied by virtue of the large number of photons in the soli- 
ton, we have, according to (3.5), D,(l, i.e., the random 
drift of the carrier frequency is considerably smaller than 
the width of the soliton spectrum. Apart from its funda- 
mental importance, this fact allows us to make our approx- 
imation slightly more precise. Indeed, for small D we have 

m th2 y sech2 y dy m th2 y sech2 ydy J i + ( y + . ~ D ) 2 / p = J - ~  

In the last approximate expression we used (3.1). For 
Q- co the coefficient B(Q) - 1, and for Q= 1 we have 
B z  1/2. 

We thus have 

where 

and the stationary value is 

It is interesting that Ds is independent of yo. One can 
understand this result simply by recalling that the growth 
of yo stimulates two mutually contradictory processes: an 
increase in the noise and stabilization of the carrier fre- 
quency as it approaches the maximum of the amplification 
line. In final reckoning they cancel one another and there 
remains no dependence on yo. 

Since for any finite Q the coefficient B is smaller than 
unity we get even closer to the quantum limit Do in our 
estimates of D. 

Thus, the optimum soliton propagation regime is ap- 
parently that for which the width of its spectrum is ap- 
proximately equal to the amplification line width. In that 
case the drift of the carrier frequency with time is less than 
a factor v2 since we have D,z2 Do. However, if there are 
small excess fluctuations at the entrance, D(t) will practi- 
cally not evolve at all. A broadening of the amplification 
band leads to an increase in the noise and a growth of 
D(t). On the other hand, its narrowing causes the soliton 
to lengthen (spread) due to the monochromaticity of its 
spectrum. We can only conjecture this last effect since it 
goes beyond the framework of our adiabatic assumption 
that the soliton shape remains unchanged on its journey. 

4. INDETERMINANCY OF THE SOLITON POSITION 

The soliton momentum fluctuations considered above 
cause a corresponding spread in its propagation velocity 
which cannot be caused by random shifts. Apart from its 
obvious fundamental importance it is important to know 
the indeterminacy of the soliton coordinate for purely 
practical considerations also. Indeed, if we are dealing with 
optical communication lines a soliton which is randomly 
shifted by an amount on the order of its eigenwidth trans- 
forms the signal into noise since at the moment it should be 
present, it is not. 

Thus, if we know the momentum indeterminacy we 
can write 

where (Ax;) = ( u 0 ( 0 ) )  is the dispersion of the coordi- 
nate indeterminacy at the start of the path. Its minimum 
value is caused by the quantum limit (vacuum 
fluctuations) l9 

(Ax;) = 2/3n;c2, (4.2) 

and under actual circumstances (no$ 1) it is insignificant. 
Generally speaking, the relation between Ax and Ap is 

not very rectilinear. In principle one can invent an action 
of l? such that a shift Ax does not lead to a drift of the 
carrier frequency and of the momentum Ap (and vice 
versa). However, in the adiabatic approximation used by 
us when the shape of the soliton and its spectrum remain 
unaltered, soliton shifts Ax lead inevitably to a transfor- 
mation of the spectrum with the necessary change in the 
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Q=lO 
6 . -  -------- -- Q=1 

FIG. 4. Logarithm of the normalized dispersion of the soli- 
ton position indeterminacy, 1~[(9~,?r/4n;~) (&)I, as a 
function of the normalized propagation time for y=x .  The 
solid curves are constructed as the result of a numerical cal- 
culation and the dashed ones using the approximation (4.5) 
to (4.7). Everywhere we have Do= (&o) =O. The calculated 

I and approximating curves are the same for Q= 10. 
120 9yot14no 

carrier frequency and a nonvanishing Ap (and vice versa). 
A single-valued connection of the form (4.1 ) is thus valid 
in the present approach. 

Simplest of all is the estimate of the position indeter- 
minacy when we put D(t)  = Ds: 

We have here used (3.11), (3.5), and (4.2). A more rig- 
orous estimate can be obtained by using (3.10). However, 
both in that case and in other cases the growth of the 
dispersion of the indeterminacy is quadratic in t in the far 
zone when we have Ayot) 1 and it is not linear at all, as 
was predicted by the authors of Ref. 20. It is also clear that 
the dispersion obtained, (Ax2(t)), is comparable to the 
quantum limit'6,'9 

calculated for an ideal fiber without amplification or loss. 
The result (4.3) given above refers to a variant of soli- 

ton propagation in a waveguide with x (p) z const (MB 1 ) . 
If, however, we have x(p) = y (p), then according to (3.3) 
and (4.1), 

coordinate indeterminacy. In particular, in the far zone 
(Ax2(t)) increases proportional to ?I2, but again not lin- 
early. 

We show in Fig. 4 curves illustrating the dynamics of 
(Ax2). They have been constructed in two variants: using 
Eq. (4.1) in the result of a numerical solution of Eq. 
(2.20) for x= y, and also with the approximate analytical 
description (4.5) to (4.7). It is clear that the agreement is 
good. 

5. CONCLUSION 

We estimate the maximum possible path of a soliton 
for which its random mean square displacement (Ax2)'" 
reaches its half-width. According to Refs. 8 and 19 the 
spreading of the average envelope ($+$) then causes it to 
broaden by a factor of two. Thus, assuming the momentum 
indeterminacy (hp2) to be approximately constant during 
the nonlinear propagation (as follows from the results of § 
3 for Q z  1 ) the characteristic time t, during which such a 
spreading takes place is equal 

This relation is valid for 

According to (2.11 ) and (3.11 ) we have 

4 C (l+B)no 
F ( t ) z ~  [ (a t+b) ' /2 -c ]3n[3(a t+b) 'n+2c] ,  {- A ' (5.3 

(4.6) where it follows that (5.2) is automatically satisfied for 

7 no> 1. 
a=- , c=@+:. (4.7) We introduce the soliton period T = ~ T / ~ ; C ~ ,  i.e., the 

no time during which a nonlinear phase advance equal to 277 is 
In the limit of an unbounded amplification band accumulated. Using (5.1) and (5.2) we then get 

(Q- CD ) we get the Gordon-Haus approximation with ac- 
count of the initial indeterminacy: (5.4) 

(Ax2(t)) = (Ax;) + 8 y o n o ~ 2 $ / 3 ~ .  (4'8) If the width of the soliton spectrum is approximately equal 
On the other hand, the boundedness of the amplification to the width of the amplification line ( Q z  1, Az0.34, B 
and loss bands leads to a slowing down in the growth of the z0.5), we have 
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This is also the limiting time for soliton propagation during 
which it can "escape" from its own legitimate position by 
an amount equal to its characteristic half-width. Since for 
optical solitons we have, as a rule, no- lo6, it is clear that 
we find t x )  T and the length of the path may reach very 
impressive magnitudes, considerably exceeding the 
Gordon-Haus quantum limit for which the boundedness 
of the amplification band was neglected. 

This main result is confirmed also by the results of a 
numerical experiment21 where in the framework of the 
semiclassical description the behavior of two interacting 
solitons was studied while they were amplified periodically. 
Notwithstanding the difference in the statement and the 
solution of the problem, in that case also conditions were 
found under which it is possible to exceed the Gordon- 
Haus limit. 

Definite parallels can also be traced with the results of 
Ref. 25 in which a completely different problem was 
solved: on the basis of a classical approach the effect was 
studied of the spectral composition of fluctuations acting 
on a soliton propagating in a stochastic medium. The ten- 
dency observed in Ref. 25 for the soliton fluctuations to 
saturate (the establishment of a stationary regime) and the 
significant dependence of its statistical characteristics on 
the spectral composition of the perturbation indicate, on 
the one hand, the importance of taking the latter into ac- 
count and, on the other hand, are the basis for drawing 
analogies of a very general nature to the role of the spectral 
properties of stochastic and regular perturbations. This 
fact was drawn to my attention by a referee, to whom I am 
grateful also for some very useful comments. 

We also note the following fact. The behavior of a 
soliton in media with random perturbations have recently 
been the subject of studies undertaken in the classical ap- 
proximation (see, e.g., Refs. 22 to 24) and, apparently, can 
at once be used for the equation for the position of the 
center of gravity of the soliton and (or) the drift of its 
carrier frequency. This work has, indeed, been carried out 
by V. A. ~~s1oukh . l )  The result turned out to be practi- 
cally identical with that given above. The existence of the 
model proposed in the present paper could really be justi- 
fied by its simplicity and clarity and also by its suitability 
for a rigorous quantum description, in contrast to the more 
formal methods a generalization of which to the corre- 

sponding procedures with quantum mechanical operators 
is a very complicated problem which requires a special 
justification. 

I am very grateful to V. A. Vysloukh; the completion 
of the present paper would hardly have been possible with- 
out constant stimulating discussions with him. 
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