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We find the necessary conditions for the stable propagation of an ultra-short light pulse 
through an ensemble of two-level systems: the transverse distribution of the density of the 
absorbing particles must be consistent with the given transverse structure of the light 
beam. We discuss the case of homogeneously and inhomogeneously broadened absorption 
contours and the effect of the deviation of the carrier frequency of the pulse from 
resonance on the matching conditions for the transverse distributions of the field and of the 
medium. We obtain a soliton solution using perturbation theory in the small diffraction 
parameter, the magnitude of which is inversely proportional to the square of the radius of the 
light beam. The soliton solution is characterized by a shift of the carrier frequency to 
the red from the resonance line (there is no shift for a pulse with a plane wavefront). We 
consider the dynamic behavior of the propagation of a "three-dimensional pulse" in 
a resonant medium. 

INTRODUCTION 

The interest of experimental physicists in the self- 
induced transparency (SIT) problem has been somewhat 
reduced in the last ten years. This is apparently connected 
with the fact that sufficient theoretical and experimental 
data were acc~mulated'-~ in the seventies to reveal all the 
basic features of the SIT effect. ~ a m b ~ ' ~  proposed a pow- 
erful theory of this effect and showed that the Maxwell- 
Bloch set of equations can have soliton solutions when 
applied to the analysis of the coherent interaction of ultra- 
short light pulses with an ensemble of two-level atoms. 

The recent experiments by V. S. Egorov and N. M. 
~ e u t o v a ~  made it necessary to look at this problem from a 
new point of view. Up to recently it was assumed that there 
were two processes limiting the optical length koL (ko is 
the linear absorption coefficient) a light pulse could 
traverse in a medium without destruction: 

1. Relaxation processes, koL 5 r/T2 where r is the 
pulse length and T2 the transverse relaxation time; in the 
experiments of Ref. 6 we have r /T2z3.  

2. The process of the development of a transverse 
instability798 with koL= 10. 

In the experiments of Ref. 6 a convergent geometry 
was used for the light beam: a lens was placed behind the 
laser light source focusing the beam onto an absorbing cell 
so that the focus was immediately behind the cell. Pulses 
passing through an absorbing medium with an optical 
thickness of koL ~ 6 0  were detected. The pulse spectrum in 
this case stretched beyond the limits of the Doppler ab- 
sorption contour in the red direction from the resonance. 
The shift of the pulse carrier frequency depended in an 
essential way on the ratio of the density of the matter and 
the power of the incoming pulse; the maximum measured 
shift was 2400 MHz. This result made the understanding 
of the SIT effect much more profound. 

The experiments of Ref. 6 showed that apart from the 
classical 2 r  pulse effect in a two-level medium, a pulse in a 

convergent beam itself produces conditions for transpar- 
ency such that its carrier frequency is repelled from reso- 
nance, thereby preventing it from interacting with the me- 
dium. 

The first attempts to explain this effect can be found in 
Refs. 9 and 10. In those it was assumed that the transverse 
structure of the beam remains unchanged and Gaussian 
during its propagation. Even in that approximation a red 
shift of the carrier frequency is observed away from reso- 
nance which is inversely proportional to the square of the 
beam radius. The fact that it is necessary to go beyond the 
plane-wave approximation to obtain an asymmetric fre- 
quency shift, i.e., a shift in the red direction alone turned 
out to be important. The shift is inversely proportional to 
the square of the radius of the light beam and hence does 
not occur in previous theoretical considerations of the SIT 
effect which were essentially limited to the assumption of a 
plane wavefront of the pulse. 

More complete experimental results and a theoretical 
study are found in the related Refs. 11 and 12. Conditions 
were found in those papers for the soliton propagation of a 
bounded light beam in an absorbing medium which make it 
possible to avoid the instability mechanism described in 
Refs. 7 and 8. Although in the realization of the experi- 
ments of Ref. 6 no special steps were taken to ensure the 
conditions for the existence of a "three-dimensional soli- 
ton" one can show that the same frequency shift occurs 
also for the nonstationary solution which was realized in 
the experiment. 

The aim of the present paper is a consideration of the 
coherent interaction of an ultra-short light pulse with a 
two-level medium having either a homogeneous or an in- 
homogeneous absorption line, taking into account the ini- 
tial shift of the pulse carrier frequency away from the cen- 
ter of the absorption contour and taking into account the 
transverse structure of the field. 
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BASIC EQUATIONS 

We take as the starting point for our discussion of the 
problem the Maxwell-Bloch equations for the amplitudes 
of the field and the polarization assuming radial symmetry 
(the latter condition is necessary only to avoid complicated 
formulae) : 

In this case the complete expressions for the field and the 
polarization have the form: 

@= (wo+6)t- ( k + x ) ~ .  ( 2 ~ )  

Here we have introduced the following notation: 

1 8 l a  

V is the pulse velocity, r is the pulse length, and d is the 
transition dipole moment. The angle brackets in Eqs. ( la) 
and (lb)  denote averages over the inhomogeneously 
broadened line contour g(Aw): 

In writing down Eqs. ( 1 ) we used normalized coordinates: 

where ro is the radius of the light beam. 
As is usual in problems in which light pulses contain- 

ing a large number of optical periods propagate through 
not too dense resonant media, we have applied the approx- 

imation of slowly varying phases and amplitudes (a de- 
tailed analysis of this approximation was given in Ref. 13). 
In the equations written down above we introduced the 
following quantities: E(u,v,p) and q(u,v,p), which are the 
slowly changing field amplitude and phase; and P(u,v,p) 
and Q(u,v,p), which are the parts of the polarization 
which are in phase and in quadrature with the field. 

We split off in Eq. (2c) the shift of the pulse carrier 
frequency S from the resonance frequency oo of the two- 
level system and, accordingly, the correction x to the wave- 
number. The dispersion relation x(6)  will be found from 
the solution of the problem. 

Equations ( l a )  and ( lb )  contain a diffraction param- 
eter uo which determines the extent to which rings of dif- 
ferent radii in the beam interact. In SIT experiments this 
quantity usually varies in the range from 10-~-10-~. The 
quantity uo shows how rapidly the change in the pulse 
shape along the propagation axis varies relative to the 
transverse changes. The smallness of the diffraction param- 
eter uo justifies its choice as the perturbation theory param- 
eter. 

The Bloch equations ( l c )  to ( le)  are written down 
neglecting processes involving polarization damping and 
inversion in the two-level system. This assumption be- 
comes valid when the pulse length is much smaller than 
the relaxation times ( r 4 T 1 ,  T2 where TI is the longitudi- 
nal and T2 the transverse relaxation time). During our 
further discussion we take damping processes into account 
to first order in the time ratios r/T, and r/T2. 

Before proceeding to solve the problem we note that 
we do not aim at describing transition processes which 
precede the establishment of the self-organization solution, 
but concentrate our attention on looking for soliton solu- 
tions of the system ( 1 ) . 

ZEROTH ORDER PERTURBATION THEORY 

It is difficult to find a complete analytical solution of 
the set of Eqs. ( 1). In this case it may help to choose a 
small parameter for the problem. We noted earlier that the 
diffraction parameter may claim this role because its rela- 
tive smallness is guaranteed in most experimental situa- 
tions. 

In the zeroth order of perturbation theory in the pa- 
rameter uo all radial derivatives are eliminated from the 
discussion and formally the system (1) takes the same 
form as in the plane-wave approximation. However, in re- 
ality all known quantities in the system ( 1) contain the 
variable p as a parameter and remain restricted in the 
transverse coordinate. We can now easily find the steady 
solution (i.e., the one depending solely on the wave coor- 
dinate u) for the field; it has been given several times in the 
literature (see, e.g., Ref. 14): 

Eo(u,p) =2 sech u, qo(u,p) =O. ( 5 4  

The remaining unknown quantities of the set of Eqs. ( 1) 
can be written down: 
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Po(~,p)=-2(6+Aw)F(Aw)r sech u, (5b) 

The subscript "0" indicates that we found Eqs. (5) in the 
zeroth order of perturbation theory. The solution (5) 
satisfies the following boundary conditions: the atoms are 
initially in their ground states, i.e., for u = co we must have 
Po=Qo=O, No= - 1; for any pulse we have 
Eo= aEdau =O for u = co . The parametric dependence 
(5) on the transverse coordinate p for the field, the polar- 
ization, and the inversion is contained in the characteristic 
parameters of the problem: r ( p ) ,  V(p), no(p), 6(p), ... . 
Finding the actual form of those functions is the object of 
the exposition which follows. We find an explicit expres- 
sion for the spectral response function F(Ao):  

Using (6) we can write down an expression for the velocity 

where 

To complete fully the solution of the problem in the zeroth 
approximation we find the dispersion relation connecting 
the correction x to the wavenumber and the shift S of the 
pulse camer frequency: 

The analysis given here is exactly the same as the so- 
lution of the problem of a pulse with a plane wavefront. 
Differences start when we turn to a discussion of the radial 
dependence of the pulse and medium parameters. It was 
shown in Ref. 11 for the Sr=0 case that satisfying the 
matching conditions for the transverse distributions of the 
field and of the medium, 

guarantees that the pulse velocity V is independent of the 
radius p and it is necessary for the existence of a stationary 
solution for the field. This matching condition removes the 
cause of the pulse instability7 whose physical mechanism is 
the lag of the periphery of the beam with smaller field 
amplitude values relative to the near-axis part where the 
field amplitude is larger. An analysis of Eqs. (7) and (8) 
generalizes the result (9a) obtained for exact resonance for 
a medium with a homogeneously broadened line and gives 
the matching condition taking into account the initial mis- 
match. For a homogeneously broadened absorption line 
(Ao=O) it has the form 

We have found the interdependence of the two me- 
dium and pulse parameters r ( p )  and n , ( ~ )  as functions of 
the transverse coordinate. However, when there is an ini- 
tial mismatch between the pulse carrier and the resonant 
frequency, Eq. (9b) is only one of the necessary matching 
conditions. We now find the second condition. In the com- 
plete expression (2a) for the field there occurs the quantity 
Q, defined by Eq. (2c). If the correction x to the wavenum- 
ber and the mismatch S depend on the transverse coordi- 
nate p the quantity Q, will also be a function of all three 
coordinates (t,z,p) and the radial derivatives of Q, in Eqs. 
( la)  and ( lb)  give a non-vanishing contribution. In order 
that after differentiation with respect to p there remain in 
Eqs. ( l a )  and (lb) only terms depending on the wave 
coordinate u and not containing the variable v,  one must 
ensure that the condition 

be satisfied. We get from the form of Eq. (10) at once the 
factorized dependence of f (u,p) on its variables: 

We have here introduced the functions f (u,p) and g( p)  
which are determined by the form of the initial conditions. 

For a medium with a homogeneously broadened ab- 
sorption line Eq. (8) can be simplified: 

or, if we use Eq. (7): 

For no realistic medium and pulse parameters are Eqs. 
( 10) and ( 1 lb) compatible. The only possibility to retain 
the self-organizing feature of the solution consists in as- 
suming the initial mismatch S (and hence, also x )  to be 
independent of the transverse coordinate p. Condition 
(10) then does not need to be satisfied since the radial 
derivatives of in Eqs. ( la)  and (lb)  vanish. 

We now carry out a similar study for a medium with 
an inhomogeneously broadened absorption line. We find 
several qualitative differences between the two forms of 
broadening. 

We have already drawn attention to the fact that for 
steady pulse propagation one needs ensure the condition 
that the pulse velocity is independent of the p coordinate 
so that 

where D= const. 
If the pulse carrier frequency is out of tune with the 

resonance frequency one needs again to satisfy condition 
( 10) for the existence of a self-organizing solution. Taking 
into account the form of the dispersion relation (8) we find 
the expression which connects the medium and pulse pa- 
rameters: 
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To obtain simple analytical formulas from Eqs. (12) 
and (13) we choose for the mismatch function g(Aw) a 
Lorentzian profile: 

lute magnitudes of the mismatch 6 and the width r-' of 
the pulse spectrum at any distance from the axis. For ho- 
mogeneous broadening r-' and 6 are not connected at all. 

FIRST-ORDER PERTURBATION THEORY 
where Tf is the half-width of the Lorentzian. Equation 
(13) gives a relation for the parameters r (p) ,  S(p), and 
Tf : 

Equation ( 15) determines a one-to-one connection 
(apart from the sign of the mismatch) between S(p) and 
r ( p )  assuming that the medium parameters do not vary. 
Equation (15) is valid if the pulse spectrum is narrower 
than the spectral line width; in the opposite case the self- 
organizing solution cannot exist. In general, the range of 
possible mismatch values is bounded: 0 < S < ( Tf ) -2. 

For a function with its maximum on the axis (e.g., a 
Gaussian) the condition ( ~ f ) - ~  > r-2(p) is satisfied for 
all p if it is true on the axis (p=O). 

For the same mismatch function (14) we find an an- 
alytical expression for (F( Aw ) ) : 

Taking into account the relation between the parameters 
expressed by Eq. ( 15 ) we can rewrite ( 16a) : 

Equation (12) expressing one of the matching conditions 
takes a very simple form, if we use ( 16b): 

All considerations given above for a medium with an 
inhomogeneously broadened absorption contour are valid 
for the case of a non-vanishing initial mismatch. If we put 
Sr=0 it is no longer necessary to satisfy condition (10) 
and the matching condition can be expressed by a single 
formula: 

Expression (17b) shows that in contrast to the case of a 
non-vanishing mismatch the density distribution depends 
on the spectral half-width (T;) -' of the contour. In ex- 
periments using gaseous media the line broadening is de- 
scribed by a Gaussian. One can obtain the matching con- 
ditions for a function of that shape only by numerical 
means and we did not investigate this. At the same time it 
is clear from physical considerations that the various 
shapes of the broadening function give results similar to 
( 16) and ( 17) which we considered above since they are 
independent of the actual details of the spectral line profile. 

A comparison of the matching conditions for media 
with homogeneous and inhomogeneous absorption con- 
tours indicate their qualitative difference. Inhomogeneous 
broadening is the cause of a connection between the abso- 

In the previous section we found the solution for the 
field amplitude and phase in the zeroth order of perturba- 
tion theory in the diffraction parameter uo, i.e., not taking 
into account the effect of the mixing of rays in the beam. In 
the present section we shall be interested in how the form 
of the field changes if we take into account the mixing 
effect as a correction to the basic solution (5a). We con- 
sider the interaction of a light pulse with a medium with a 
homogeneously broadened absorption line. The first term 
in the square brackets in Eq. ( la)  is of second order in the 
parameter uo; this can be checked by looking at the solu- 
tion for qo(u,p). A nontrivial correction to the phase is 
realized only in first order in uo. These considerations lead 
us to the conclusion that only the single term containing 
the radial derivatives, A1 E, needs to be taken into account 
in first order in uo. 

The considerations given above are valid only in the 
case when the quantity is independent of the transverse 
coordinate p. 

The structure of the system of five ordinary linear dif- 
ferential equations which we obtain makes it possible to 
write down equations for the corrections to the field am- 
plitude and phase which are not coupled to one another: 

One easily finds the solutions of the two equations: 

here we have 
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The solution written down for the derivative of the phase is 
just the expression which can be used as the basis for de- 
termining the shift of the pulse carrier frequency. The 
quantity Cl(p) is determined from the boundary condi- 
tions cpl(u,p)E-.O for u+ + W :  

The correction El(u,p) to the field has the form 

th u sh uch u 
+ - C 2  cth U+T 

6 

2 +; C3)+211nch  udu+-th 3 u-cth u 

The integration constants C2 and C3 are determined by the 
boundary conditions El (u,p) -.O for u-. w : 

The correction El(u,p) depends on the sign of the initial 
mismatch 67 and increases in absolute magnitude when 67 
increases. If there is no initial mismatch of the carrier fre- 
quency there is no correction to the field in first order in 
uo, which agrees with the results of Ref. 11. The solution 
for the phase ql(u,p) depends on ( 6 ~ ) ~  and does not van- 
ish for &=0, independent of the sign of the mismatch. We 
shall not enter in more detail into an analysis of the solu- 
tions ( 19a) and (20a); we only use expression ( 19a) to 
determine the additional shift of the pulse carrier fre- 
quency due to diffraction. To do this we average Eq. ( 19a) 
over the whole of the spectrum,15 substituting for E(u,p) 
the value Eo(u,p): 

X U ~ T - ~ ( ~ ) .  (22) 

If we choose for T - ' ( ~ )  the Gaussian 
=7c1 exp( -P2/2) we get for the frequency shift: 

Equation (23) determines a shift in the pulse camer fre- 
quency in the near-axial region to the red which is inde- 
pendent of the sign of the initial mismatch 6. This effect 
was found in the experiments of V. S. Egorov and N. M. 
~ e u t o v a . ~  

EFFECT OF A FINITE RELAXATION TIME ON THE SOLITON 
PROPAGATION 

In an actual experimental situation a coherent light 
pulse loses energy as it propagates in a resonant medium. 
The degree of dissipation is determined by the magnitude 
of the ratios 7/T1 and T/T2 which we assume to be small. 
In Refs. 1 and 14 it is shown that if the phase of the field 
is zero when the interaction with the medium starts, it does 
not change during the further evolution. If the condition 
that the phase vanish is violated (we do not consider here 
the trivial case cp=const) the pulse carrier frequency is 
pulled closer to resonance or repelled from it, depending 
on the ratio of the times T1 and T2. A general feature of 27r 
pulses with a plane wavefront is the symmetry of their 
behavior relative to the center of the absorption contour: 
their interactions with the medium in the red and violet 
wings of the absorption contour are identical. 

It is interesting to consider two aspects of the problem: 
the energy damping rate of a 2.rr pulse in the form of a 
hyperbolic secant and the shift of the pulse carrier fre- 
quency due to finite values of the longitudinal and trans- 
verse relaxation times T1 and T2. 

We add terms P/T2 and Q/T2, to the left-hand sides of 
Eqs. ( lc) and ( Id), respectively, which take the polariza- 
tion damping into account phenomenologically. We add to 
Eq. ( le )  the term (N-No)/Tl where No is the equilib- 
rium value of the difference in populations when there is no 
field (No= - 1). 

Without bothering the reader with the procedure of 
reaching our result we refer to Refs. 1 and 14 and write 
down the required expressions: 

To first order in the parameters T/T2 and r/T1 we take 
instead of P, and N their values evaluated when there is 
no relaxation. The energy damping rate is then given by 
the equation: 
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For a homogeneously broadened line, g(Aw) =S(Aw), Eq. 
(25) can be simplified: 

If r- '(p) is chosen in the form of a function with a max- 
imum on the axis (e.g., in the form of a Gaussian) the 
energy damping rate increases when one goes away from 
the axis. 

We can similarly obtain the rule for the change of the 
pulse carrier frequency with distance: 

Equation (27) shows that when there is no initial mis- 
match (6r=0) at the entrance into the medium the pulse 
does not leave in exact resonance when it propagates. If the 
condition TF'<Tcl  is satisfied one observes that the fre- 
quency is pulled towards resonance. The rate at which it is 
pulled is determined not only by the values of the relax- 
ation times, but also by the ratios of the times Tf , r, and 
S-I. In the case of a homogeneously broadened line the 
maximum velocity of the frequency motion is reached 
when the condition ST= 1 is satisfied. 

Equations (26) and (27) are obtained, taking into ac- 
count the mixing of the rays in the beam, i.e., taking into 
consideration terms proportional to the diffraction param- 
eter uo. However, their contribution to Eqs. (26) and (27) 
was found to be zero because in the integration over the 
variable u from - co to + co the integrands proportional 
to uo are odd. 

CONCLUSION 

The main result of the present study is the conclusion 
that three-dimensional optical solitons can exist. For this it 
is necessary to ensure the matching condition of the trans- 
verse distributions of the density of the two-level atoms 
and of the intensity of the electric field of the pulse. Also 
one must satisfy all the classical inequalities which ensure 
a self-induced transparency regime (in the near-axial re- 
gion). In the experiments by V. S. Egorov and N. M. 
~ e u t o v a ~  a NeI gas was used as the absorbing medium and 
no special measures were taken to match the transverse 
distributions of the field and of the medium. It was just 
their experiments that revealed a red-shift of the pulse car- 
rier frequency which has the same physical origin as the 
three-dimensional optical soliton described above. 

We now turn to the physical meaning of the diffraction 
parameter uo which determines the extent to which rings of 
different radii interact, or, which comes to the same, how 

efficiently they mix. This physical picture corresponds to 
curvilinear propagation of rays in the beam. A problem 
may arise: how to reconcile the motion of each ray along a 
curve with the presence of a well defined radius ro of the 
beam. There is a simple explanation for this: the rays in the 
beam move like waves. At the leading front the ray is 
parallel to the axis and at the trailing front the ray is 
directed away from the axis, on average remaining at the 
same distance. This dynamic propagation of the ray is 
clearly illustrated by an analysis of the expression for the 
transverse energy flux:I6 

Substituting into this Eq. (19a) for the phase we confirm 
the dynamic model given above: for u > 0 we have J >  0, 
while for u < 0 we have J <  0. For the total transverse en- 
ergy flux we have S"dtJ=O, so that the shape of the 
beam remains unaltered. 

The presence of an initial mismatch S of the pulse 
carrier frequency does not change the qualitative form of 
the phase q(u,p) of the field, but only deepens the phase 
modulation and increases the red-shift, independent of the 
sign of S. When the mismatch is not equal to zero a cor- 
rection El(u,p) to the field amplitude appears which is 
proportional to the parameter uo. In the case of exact res- 
onance the correction to the field appeared only to second 
order in the diffraction parameter. 

The effect of finite relaxation times for the polarization 
and the inversion on the motion of the pulse frequency is 
completely symmetric for the red and violet wings of the 
absorption contour. Under the influence of relaxation pro- 
cesses the pulse carrier frequency is pulled towards reso- 
nance and the efficiency (26) of the damping is increased 
even more. 

This well known result for the plane wave case is also 
true for a three-dimensional optical soliton, with the one 
difference that at different distances from the axis the car- 
rier frequency moves with different speeds (due to the dif- 
ferences in the length r for different values of p) .  If the 
initial mismatch ST is chosen positive, the additional phase 
shift (19a) accelerates the process of attraction towards 
resonance, increasing the rate of energy absorption (26) of 
the pulse. If, on the other hand, we have ST < 0 the addi- 
tional phase shift slows down the motion towards reso- 
nance and, hence, the pulse energy is less efficiently 
damped. 

It is probable that this physical picture is the basis for 
an explanation of the experiments by Diels and ~ a h n . "  
They found that if the pulse carrier frequency is shifted 
away from resonance toward the violet its energy is ab- 
sorbed more strongly by an order of magnitude than when 
the frequency is shifted by the same amount from the line 
center toward the red. 

In conclusion we consider the possibility of realizing 
experimentally a three-dimensional optical soliton. To do 
this we must distribute resonant atoms in a transverse di- 
rection according to a law determined by the radial struc- 
ture of the field. Most experience in this field has been 
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accumulated in fiber optics where it is possible to produce 
in practice any profile of the refractive index. In the same 
way one can introduce in a waveguide additional resonant 
atoms with a density distribution in the transverse cross- 
section which is given beforehand. 

A waveguide with additions of resonant atoms may 
find applications for obtaining pulses with given character- 
istics in coupling systems. Pulses propagating in a wave- 
guide with a specially chosen transverse distribution of res- 
onant atoms will not be subject to the instability 
mechanism of Ref. 7. In such a statement of the problem 
one must take into account the nonlinearity of the interac- 
tion of the pulse field with nonresonant atoms occupying 
the waveguide. 
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