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A new representation for the one-dimensional Schrodinger equation is derived employing the 
Abel transformation for the square of the wave function. This representation is naturally 
called classical since the probability density of a classical state with energy E in potential V(x) 
serves as the kernel of the respective integral operator. In meaning the representation is 
most closely associated with the Wigner distribution method, but differs from the latter in 
formal structure. 

The relationship between classical mechanics and 
quantum mechanics is one of the central problems of phys- 
ics. Actually, we always connect the understanding of 
quantum mechanical results with the possibility of inter- 
preting them in classical terms, with the interpretation 
based on the WKB approximation. This approximation, 
however, does not make it possible to completely reduce 
the problem to the classical one. For instance, the behavior 
of a particle near a turning point is quantum mechanical in 
principle, and a complete solution in this approximation is 
obtained by matching solutions in the regions of quantum 
and classical motion. The impossibility of a purely classical 
approximate solution is usually related to the existence of 
the tunneling effect, which in its very essence is incompat- 
ible with the classical approach. For instance, if we con- 
sider the problem of a particle scattered by a parabolic 
barrier, we find that, on the one hand, there is the effect of 
subbarrier transition (tunneling) of the particle and, on 
the other, the time-dependent Green's function, which car- 
ries the full information about the behavior of the quantum 
system, can be exactly expressed in terms of the action 
along classically allowed trajectories. Thus, all the features 
of the behavior of the particle, including the tunneling ef- 
fect, can be reduced to analyzing classical trajectories. This 
analysis shows that with a quantum state with a negative 
energy (below the top of the barrier) there is associated an 
ensemble of classical trajectories with any energy values 
and that the tunnel effect is related to the presence in this 
ensemble of classical states with positive energies. Here the 
contribution of these states is exponentially small in com- 
parison to the Planck constant li, which reflects the fact 
that the barrier penetrability is exponentially small. This 
suggests an approach that is an alternative to the WKB 
approximation and uses classical trajectories with any en- 
ergy values. A variant of such an approach is considered 
below. In its meaning the approach most closely resembles 
the Wigner distribution method,' but differs from the latter 
in the formal structure. 

From general considerations it is clear that to reconcile 
quantum and classical descriptions more completely we 
must start by seeking the relation between probability den- 
sities. A linear equation for the quantum mechanical prob- 
ability density pn(x)  =\V;(X), which we will need in our 

future discussions, can be obtained from the Schrodinger 
equation 

in the following manner. Substituting $,(x) in the form 

into Eq. ( 1 ) leads to the following nonlinear equation for 
the probability density 

To reduce this equation to the linear form, we must mul- 
tiply both sides by p i / 2 ( ~ )  and differentiate the product 
with respect to x. The result is the desired equation 

which is a third-order equation and has three linearly in- 
dependent equations. As shown in Ref. 2, two of these are 
related to the solutions of the Schrodinger equation and the 
third to the solution of the Milne equation having the 
meaning of the quantum wavelength. The orthogonality 
condition for bound states is obtained from Eq. (2) in the 
standard way and has the form 

This condition was obtained for the first time by Jost and 
~ o h n , ~  who constructed a family of potentials all having 
the same spectrum. 

From now on for the sake of simplicity we consider the 
problem of a particle in a symmetric potential V(x) 
= V( -x), where V(0) = O  and V(x) increases monotoni- 
cally to infinity on the semiaxis x > 0. 

In accordance with the above reasoning, we must rep- 
resent the quantum state In) as an ensemble of~classical 
states in the potential V(x), states distributed in the energy 
E with a certain probability density f , ( ~ ) .  The probability 
of discovering a classical particle with energy E in an in- 
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terval dx is proportional to the time that the particle 
spends in this interval. Hence, the probability density in x 
normalized by the condition 

where 

is the oscillation period, and x, and x2 the turning points. 
The probability density at point x for the entire ensemble is 
obtained by averaging W(E, X) over the distribution f , ( ~ )  
in the classically allowed energy region E )  V(x): 

where 

The function $ , ( E )  has the meaning of the mathematical 
expectation of the frequency o(&) =2a/T(&) and is actu- 
ally the renormalized energy distribution. We will use it 
instead of f ,(E) when convenient. 

A remarkable property of the representation (6) is its 
reciprocity, owing to which for each solution of Eq. (2) 
one can build a classical ensemble with the same probabil- 
ity density. This becomes especially evident if instead of x 
we take the potential V as the independent variable, which 
corresponds in a one-to-one manner to x on the semiaxis 
x7O. Such a change of variable is standard in classical 
mechanics4 and in the given case reduces the problem of 
finding # , ( E )  from the integral equation (6) to the well- 
known Abel problem,5 whence 

where x( V) is the inverse of function V(x). Integrating by 
parts and differentiating with respect to E transforms this 
expression into 

The Abel transformations given by Eqs. (6) and (8) are 
exact and reversible and fix a certain new representation in 
quantum mechanics, which is naturally called classical 
since the probability density (4) of a classical state with 
energy E in potential V(x) is the kernel of the correspond- 
ing integral operator. However, in the new representation a 
literal interpretation of a quantum state as an ensemble of 
classical trajectories is impossible since the quantity f,,(&) 

calculated by Eq. (8) can assume negative values. From 
the formal viewpoint the Abel transformation plays the 
same role and possesses the same properties as the Fourier 
transformation in the momentum representation. The basic 
difference is that it is used for the probability density rather 
than for the amplitude. 

The general properties of the distribution f , ( ~ )  are 
listed below, and the respective derivation is given in Ap- 
pendix A. The function f,(&) obeys the normalization 
condition 

which, generally speaking, was obvious from the very be- 
ginning from the meaning of the transformations. In view 
of the nonunitarity of transformations (6) and (a) ,  the 
orthogonality condition (3) in the classical representation 
assumes the form 

where yk(&) is the image of $ , ( E )  in the adjoint function 
space. In addition to the orthonormalization conditions, 
the condition 

which is not trivial from a physical standpoint and means 
that the average energy of the corresponding ensemble of 
classical states corresponds to the bound-state energy En,  
is generally also met. 

Now let us derive the Schrodinger equation in the clas- 
sical representation for the function $ , ( E ) ,  which is related 
to the distribution f , ( ~ )  through the simple relation (7). 
The linear equation (2) for the square of the wave function 
was introduced for this very reason. Since the equation 
contains a third derivative and the kernel of transformation 
(6) has a root singularity at one of the ends of the inte- 
gration interval, we rewrite (6), using integration by parts, 
in a form suitable for further differentiation, 

and substitute it into the first term of Eq. (2) and (6) into 
the other terms. After multiplying Eq. (2) by 
(V(X) -p)-'I2 and integrating with respect to x from 
~ ( p )  to infinity, we arrive at an integral equation for 
#?I(&), 

with the kernel 
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where the limits of integration are defined by the condi- 
tions V(x,) =p and V(x2) =E. The boundary conditions 
for bound states in the classical representation consist of 
the convergence condition for integral (6), 

and the condition related to the g- and u-symmetries, 

Another form of Eq. (13) can be obtained if the first 
term in Eq. (2) is reduced to a simpler form. To this end 
we represent (2) in the form 

d3Pn dpn --=2(V-En) -+p,. 
4m d Vdx dV 

This form, in which the variables x and V are mixed, will 
be used to simplify calculations. Integrating Eq. ( 17) with 
respect to V and substituting p, in the form (6) into the 
right-hand side of the result of integration, we get 

Integrating with respect to x once more, we arrive at the 
equation 

which after multiplication by ( V-p) -I" and integration 
with respect to x from x(p)  to infinity assumes the form 

where 

m 112 x dx' 

t(p9 = (I.) Jx(p) ( V[X') -p)1/2 . 
The quantity t(p,V) can be interpreted as the absolute 
value of the time that it takes a particle to move in the 
subbarrier region with an energy p < V from the turning 
point x (p  ) to the point x( V) . 

In accordance with the general reasoning given at the 
beginning of the paper, we will attempt to write Eq. ( 19) in 
terms of the ensemble of classical states. Changing the or- 
der of integration and going from #,(&) to f ,(&), we can 
write this equation as 

where p,(x) is the probability density, and 

is the average energy of the classical ensemble at point x. 
The left-hand side of Eq. (20) is proportional to the rate of 
collisions of particles having an energy of p with the wall of 
the potential well and has the overall appearance of a bal- 
ance equation in the classical ensemble in terms of "virtual 
transitions" into states that at the given energy p are in the 
classically forbidden region. Using the definition (2 1 ) , we 
can write the initial equation ( 18) as 

There may be different and simpler forms of the Schri5- 
dinger equation in the classical representation that make it 
possible to give it a clear physical interpretation. The most 
meaningful approach would seem to be one in which the 
initial representation [Eqs. (6) and (8)] and the adjoint 
representation [Eqs. (Al )  and (A2)] are both used sym- 
metrically. This idea is suggested by the form of the kernel 
in Eq. (19), in which the function t(p, x )  is the "time of 
motion" of the particle in the subbarrier region, which is a 
characteristic feature of the adjoint representation, since in 
this representation all transformations relate to the classi- 
cally forbidden region (see Appendix A). 

Let us take the harmonic-oscillator problem as an ex- 
ample in which the classical representation is employed. In 
this case we have 

and, going from x to V in ( 14), we can calculate the kernel 
explicitly: 

Substituting this into (13) yields an equation for the har- 
monic oscillator in the classical representation, 

which formally coincides with the radial equation for the 
Sturm basis functions of the hydrogen atom with the or- 
bital quantum number I= - 1/2. As E-0, one of the two 
linearly independent solutions of the equation diverges log- 
arithmically. Hence (and this can easily be verified), here 
the boundary condition ( 16) transforms into the condition 
for the regularity of function #,(E) at zero. Combining this 
with ( 15), we get 

where L,(x) is a Laguerre polynomial. 
Another simple example is the problem of a particle in 

the vee-shaped potential V(x) = F 1 x 1 . In this case the cal- 
culation of the kernel ( 14) is trivial, 

and Eq. ( 13 ) transforms into the Airy equation 
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As a practical application of the suggested approach 
we point to the interesting possibilities that emerge, for 
instance, when in the theory of atomic collisions inelastic 
transitions are calculated along classical trajectories using 
the Monte Carlo method (the CTMC method; see Refs. 6 
and 7). In this method the initial state of the electron is 
specified as a microcanonical ensemble of classical states 
with an energy equal to the energy En of the respective 
atomic state, after which the evolution of this ensemble is 
calculated according to the classical equations of motion. 
Such a description of the initial state is approximate, like 
the solution of the dynamical problem, and is based on the 
WKB method. The main difficulties in this approach ap- 
pear when one attempts to isolate in the final ensemble, as 
t+ CO,  the contribution of different quantum states, since as 
a result of collisions the energy of classical trajectories as- 
sumes continuous values as a function of the initial phase, 
values that do not coincide with the atomic spectrum. On 
the other hand, in the classical approximation, Eqs. (6) 
and (8) constitute an exact relation between the standard 
quantum mechanical description of a bound state and the 
language of ensembles of classical trajectories. This fact 
can be used to modify the CMTC method in the treatment 
of the initial and final states. Here the solution of the dy- 
namical problem remains classical, that is, approximate. 

By way of illustration we examine inelastic transitions 
in the problem of a particle in the potential 

where a ( t )  is the strength of a homogeneous external field 
that is time-dependent and tends to zero as I t 1 + co . In this 
approach, the initial state with the quantum number n is 
assigned an ensemble of trajectories with the energy distri- 
bution fn(&) given by (23). In accordance with the 
CTMC method, the subsequent evolution of the trajecto- 
ries is described by the classical equation of motion 

The general solution of this equation with the initial energy 
E can be obtained in this case explicitly and has the form 

with r the initial phase. The external field vanishes as t+ co 
and the solution (24) describes harmonic oscillations 

with a phase y, unimportant to us, and an energy 

, U = E + V + ~ ( V E ) ~ / ~  cos 7, (25) 

with 

Equation (25) shows that, depending on the value of 7, the 
energy of the final state assumes continuous values in the 
interval pI (E) <p<p2(&) with the edges 

Since the values of phase 7 in the initial ensemble are 
equally probable, the energy distribution in the final state 
at a given E has the form 

This expression, as one can easily check, is symmetric in p 
and E. 

The total energy distribution in the final-state ensemble 
can be obtained by averaging r ( p , ~ )  over the initial distri- 
bution (23). If we allow for the symmetry of r(p,e), the 
distribution can be written as 

Due to the orthogonality of the eigenfunctions (23), the 
probability of an inelastic transition to a state with the 
quantum number k is calculated as the projection of F(p) 
on f d p ) :  

As shown in Appendix B, this expression reduces to the 
form 

where ~ , k ( z )  is a generalized Laguerre polynomial. Note 
that although in the given approach the dynamical prob- 
lem was solved within the framework of classical mechan- 
ics, that is, approximately from the standpoint of quantum 
mechanics and without allowing for interference effects, 
(28) coincides with the quantum mechanical expression.8 

In conclusion let us examine the possibility of general- 
izing this approach. Above we discussed a one-dimensional 
Schrijdinger equation with a purely discrete spectrum and 
a potential monotonic on a semiaxis. These restrictions are 
not important and were imposed for reasons of simplicity. 
Strictly speaking, only bound states have physical meaning 
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in a time-independent problem, and for such states the 
presence of a continuous spectrum only changes the inte- 
gration range in the transformation (6), which always lies 
in the region of finite motion of a classical particle, while 
the upper limit of integration must coincide with the edge 
of the continuous spectrum. For instance, for the hydrogen 
atom the only difference is that the energy values E are 
negative and the upper limit of integration is zero. When a 
problem is studied in which the behavior of the potential is 
nonmonotonic, one specifies the regions of monotonicity 
and carries out all calculations as in the case of the respec- 
tive inverse problem of classical mechanics. As for multi- 
dimensional problems with nonseparable variables, there is 
a way, at least in principle, to generalize the method by 
introducing, as the kernel of the integral equation (4), the 
respective classical probability density. But the transition 
to such formalism is, apparently, not very constructive be- 
cause it is impossible to obtain an explicit expression for 
the classical probability density. 

APPENDIX A 

If we substitute the function T(E)  in the form (5)  into 
(8b) and employ the unit step-function 0(0(z) = 1 if z<0 
and 0(z) = 0 if z < O), we can reduce (8b) to a form with 
fixed integration limits that is more convenient for calcu- 
lations ( p n ( V 1 ) ~ p n ( x ( V ' ) ) ) :  

We can now change the order of integration when we cal- 
culate the normalization condition 

and, bearing in mind that the integral with respect to E is 
exactly r e (  V' - V(x) ), we arrive at the following normal- 
ization condition 

Similarly, to prove the validity of ( 1  1) we write the initial 
expression in the form 

Here the integral with respect to E is equal to 
T( V'+ V(X) )0( V'- V(X) )/2, and the right-hand side is 
reduced to 

The integral of the first term in the brackets is zero and, 
using the Schrodinger equation in the form ( 17), we get 

To obtain the orthogonality condition, we must intro- 
duce, in view of the nonunitarity of the Abel transforma- 
tion, a transformation symmetric to this transformation, 

which specifies the adjoint representation. If we now sub- 
stitute (6) and (Al l  into ( 3 ) ,  we get the following chain 
of transformations: 

which leads to the orthogonality condition ( 10). 

APPENDIX B 

To prove the validity of Eq. (28) let us consider the 
generating function of the transition probability, 
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Substituting Wnk(v) in the form (27) into (B l )  and em- 
ploying the expression for the generating function of the 
Laguerre polynomials,9 

we get 

This double integral can easily be calculated: 

On the other hand, if we employ Wnk(v) in the form (28) 
in (Bl )  and combine it with (B2) and the relation9 

we arrive at the same result (B3), which proves the equiv- 
alence of the right-hand sides of Eqs. (27) and (28). 
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