
Structure and evolution of the nucleus of a new phase in first-order phase transitions 
Yu. E. Kuzovlev, T. K. Soboleva, and A. E. Philippov 

Physico-Technical Institute, Ukrainian Academy of Sciences, 340114 Donetsk, Ukraine 
(Submitted 27 October 1992; resubmitted 6 January 1993) 
Zh. Eksp. Teor. Fiz. 103, 1742-1761 (May 1993) 

We use a generalized Ginzburg-Landau equation which describes the evolution of the order- 
parameter field to study the nucleus-forming process in first-order phase transitions in 
two- and three-dimensional systems. We establish that even in a system with isotropic 
symmetry the critical nucleus is in the general case not spherical and that the size of 
a typical nucleus is determined by the scale on which the interaction which is responsible for 
the formation of the ordered phase decreases. We study the relaxation of an arbitrary 
fluctuation field and show that spherical nuclei with a size which is much larger than the wall 
thickness (which are assumed to be the critical ones in a simple phenomenological 
theory) are appreciably supercritical and are formed only at a relatively late stage of the 
evolution. 

INTRODUCTION 

It is well known that the transition of a metastable 
phase into a stable one proceeds via a fluctuating onset and 
subsequent growth of a nucleus of a new phase in a homo- 
geneous medium. One of the key problems in the kinetics 
of first-order phase transitions (PTI ) is the problem of the 
appearance and the structure of a critical nucleus-a large- 
scale fluctuation of the order parameter initiating the tran- 
sition of the whole of the distributed system from a meta- 
stable into an absolutely stable state.'-3 

We consider in the present paper the evolution of ar- 
bitrary fluctuations of the order-parameter field in an iso- 
tropic d-dimensional space and the nucleus formation in a 
metastable medium, essentially leaving aside the kinetics of 
coalescence processes. The latter may be decisive only in 
the concluding stages of the evolution of a system under- 
going a phase transformation when the metastability of the 
"matrix" in which the nucleus grows becomes very 
weak.495 

In the framework of a phenomenological theory, the 
evolution of the order parameter in nonequilibrium sys- 
tems is usually described by a generalized Ginzburg- 
Landau equation.6 This is a nonlinear diffusion-type equa- 
tion which in the general case has the form 

where 9 is the Ginzburg-Landau functional of the system 
considered, y is a positive kinetic coefficient, p(x,t) is the 
order-parameter field, and q, is its time derivative. In the 
linear approximation this equation describes the relaxation 
of the order parameter to the equilibrium position, and it 
first appeared in a well known paper by Landau and 
~halatnikov.' Later on it was used to describe the motion 
of the boundary between a solid and a liquid phase in the 
theory of crystal growth,8 and as the soliton aspects of the 
theory of nonlinear equations were developed it was very 
successfully exploited in one-dimensional models for study- 

ing localized excitations near a phase-transition point and 
the dynamics of a plane phase-transformation front (see, 
e.g., Refs. 9 to 15). 

Following the above-mentioned papers, we assume 
that the evolution of the order parameter is completely 
determined by Eq. ( I ) ,  i.e., the framework of the model 
( 1 ) will be a natural constraint on the applicability of the 
results. The true physical picture of the processes in PTl 
may be much more elaborate because in actual systems a 
PT is accompanied as a rule by the appearance of inhomo- 
geneous long-range fields. It is well known that the latter 
determine to a considerable extent even the very possibility 
of decay of a system into coexisting 

We use the model ( 1 ) to consider in the present paper 
the kinetics of nucleus formation and the subsequent 
growth of domains of the new phase in two- and three- 
dimensional systems with a polynomial Ginzburg-Landau 
functional. The basic numerical and theoretical calcula- 
tions are carried out for two kinds of expansion of the free 
energy density which allow us to describe PT1: 

a )  a q4 model including a third-order term; 
b) a free-energy expansion containing even powers of 

the order parameter up to q6. 
In the first sections of the paper we concentrate mainly 

on the structure and the stability of an isolated critical 
nucleus of the energetically favourable phase inside the 
metastable one. We consider the growth of an isolated do- 
main of the new phase and find the characteristic velocities 
of the domain wall motion. 

In subsequent sections we use numerical experiments 
to study the evolution of arbitrary mesoscopic inhomoge- 
neities in the order parameter field. Such inhomogeneities 
arise as the result of the normal thermal fluctuations in the 
disordered phase in the vicinity of the transition point. 
They are just the ones which determine the structure of the 
critical configuration of the order parameter field which 
initiates the phase transition and which as a rule is not 
spherical. We discuss the interesting aspects of the problem 
connected with the change in the effective dimensionality 
of the inhomogeneous order parameter distribution in the 
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various stages of the evolution of the system. We demon- 
strate the important role of stationary states which mani- 
fest themselves as metastable attractors in the process of 
proceeding to an absolutely stable state. 

1. STRUCTURE OF THE ISOTROPIC CRITICAL NUCLEUS. 
STATICS 

We first discuss the problem, traditional in the kinetics 
of phase transformations, of the shape and the structure of 
the critical nucleus of the new phase.'8 In the static case 
the critical distribution of the order parameter density 
q ( r )  must correspond to an extremum (saddle-point) of 
the nonequilibrium Ginzburg-Landau functional in the 
form:'" 

(2) 

where d is the dimensionality of the space. In other words, 
the required distribution q ( r )  must be a static unstable 
solution of Eq. ( 1). 

The local energy density F ( q )  is in the general case an 
arbitrary function of the order parameter and is invariant 
under the paraphase symmetry group of the system stud- 
ied. For simplicity we restrict ourselves in what follows to 
a scalar order parameter and to two types of expansion of 
the free energy, respectively: 

b) F (q)  =imp2 -4aq4+ibq6. (4) 

These simple expansions have in fact a very wide ap- 
plicability since for various physical systems one can con- 
struct near the critical point a scalar combination of the 
components of the order parameter (which are properly 
ordered in the transition) and reduce the problem to a 
study of the standard catastrophes described by the expan- 
sions (3) and (4).19 Moreover, the expansions (3) and (4) 
describe rather well the localized excitations in the vicinity 
of phase transitions in actual physical systems, for in- 
stance, in binary mixtures, uniaxial magnetics, martensites, 
and so on (see, for instance, Ref. 20 and also Ref. 21 and 
the literature cited in those references). 

The function F ( q )  must have a metastable minimum 
at q =O and be energetically favorable for q =qo#O, if all 
constants in Eqs. (3) and (4) are positive and a2>rb,  
where 

and it is thus suitable to describe the behavior of a system 
between binodal and spinodal supercooling. 

One usually assumes that in isotropic space the critical 
nucleus is spherical. In the last section we shall discuss in 
detail the legitimacy of this assumption. But for the present 
we follow the conventional approach and give a number of 
results corresponding to an isotropic static distribution of 

the order parameter. The structure of the critical nucleus 
with its center at a point ro is in that case determined by 
the solution of the equation 

with the boundary conditions 

q,=0 as r-ro and q-0 as r + ~ .  ( 6 )  

We note that the static problem (5), (6) with boundary 
conditions at infinity can in fact describe the shape of the 
critical nucleus only in the initial stages of the evolution of 
the system when the nucleus of the energetically favorable 
phase is rather small. 

Taking into account the e ~ ~ e r i e n c e ~ ' ~ - ' ~  gained by 
studying Eq. ( 5 ) in the one-dimensional case (d= 1 ), we 
can expect that for arbitrary d the required localized solu- 
tion must also be a special integral ("separatrix") separat- 
ing two different kinds of solution. The presence of the 
term [(d- l)/r]qr in Eq. (5) makes it impossible to use 
the analytically convenient phase portrait method since the 
phase trajectories may intersect in it. However, bearing in 
mind condition ( 6 )  this can be done formally to find a 
solution which is the separatrix for a special class of equi- 
librium distributions q ( r )  which satisfy the restriction (6). 

The results of a numerical solution of Eq. (5) for d=3  
and a detailed discussion of them are given in a previous 
paper by the present authors22 where we also give the ac- 
tual values of the parameters on the right-hand side of (5) 
which are used in the calculations and which determine the 
position of the fixed points in the phase portrait. 

We note that qualitatively the form of @(r) for d=3  
resembles the known analytical solutions for d =  1. How- 
ever, there is also an essential difference. For d =  l Eq. (5) 
reduces to the form ( ~ p r ) ~ = 2 ~ ( q )  +const and the quan- 
tity @(O) is exactly the same as the value of q for which 
F ( q )  vanishes, which has physically no special meaning. 
For d = 3  the value @(O) lies considerably higher than for 
d= 1. The numerical solution gives @(O) practically the 
same as the equilibrium qo for uniform ordering which one 
would intuitively expect for an actual nucleus. One should, 
however, bear in mind that here we are dealing only with a 
natural physical interpretation of a spherically symmetric 
localized excitation as the critical nucleus of a new phase 
with an equilibrium value q = qO. ') We shall show in what 
follows that in kinetics the noted fact that @(O) is close to 
qo is not decisive, and a spherical distribution of the order 
parameter is practically never realized as a critical nucleus. 

We have shown earlier that the @(r) profiles simulate 
rather closely "plane walls" which are described by func- 
tions of the form qO{l- tanh[(r- ~ ) / a ] ) / 2 . ~ ~  The quan- 
tities R and a which determine the effective radius of the 
nucleus and the effective width of its wall, being chosen 
from the best approximation to the solution @ ( r ) ,  at the 
same time also give a good approximation to the saddle 
point of the function 9 ( a , R )  =F[cp(r;a,R)], which cor- 
responds to the functional (2) in the above indicated class 
of functions q(r;a,R). 
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We note again the results which in our view are the 
most important ones that follow from the simple analysis 
carried out above. The critical nucleus of the new phase is 
described by a static solution of Eq. ( 1 ). This solution is a 
saddle point for the Ginzburg-Landau functional and is 
the only one in the case of an isotropic distribution of the 
parameter p. Its structure is such that the thickness of the 
wall where the transition of the inhomogeneous q ( r )  field 
from one equilibrium value to another one takes place is 
comparable in magnitude to the effective radius of the nu- 
cleus ( a z R ) .  

2. PERTURBATION OF THE ISOTROPIC CRITICAL 
NUCLEUS AND GROWTH OF AN ISOLATED DOMAIN OF 
THE NEW PHASE 

The stability of the static solution is determined by the 
second variation of the functional Y[p] for small devia- 
tions p from @(r) (@(I-) +@(r)  +p) :  

~ ~ ~ [ q l  =i 1 ddr[ ( ~ p ) ~ + ~ , , ( + ( r )  )p21, (7)  

and the evolution of small perturbations q, on the back- 
ground of a stationary solution @(r) is described by the 
linearized Eq. ( 1  ) : 

Solving Eq. (8) by standard methods we arrive at an ei- 
genvalue problem, 

Aq,-CA+F,,[@(r)l}q,=O, (9) 

with an effective potential U(r) =F,,[@(r)] determined 
both by the structure of the function F(q,) and by the 
spatial dispersion of the actual static solution q ( r ) .  We 
study this problem for the dimensionalities d = l ,  2, 3 
which are physically of most interest. 

We note first of all that the perturbations q, in principle 
do not need to conserve the isotropy of the static solution 
even in the case where isotropy occurred for the initial 
@(r)  f~nction.~) It will, however, be shown in the last sec- 
tion that a spherical distribution of a nonequilibrium q, 
field is an attractor in isotropic space and, therefore, stable 
against anisotropic deviations. Taking this into account, 
and also for clarity, we restrict ourselves in the present 
section to the isotropic variant of Eq. (9) which is some- 
times called the Jacobi equation:23 

The standard substitution 

p=+ exp a(r)dr ,  with a ( r )  = - (d- 1)/(2r), I 
reduces1' to a quasi-one-dimensional Schrodinger equation 
with an effective potential 

(d- 1) (3-d) u,,= u- 
4rZ 

For d =  3 and d =  1 this potential is as before the same as 
the corresponding function F,,[@(r)]. Recall that if d =  1 
the maximum of the function @(r) is for r=O the same as 
the point pl where F ( p l  ) =O. For the expansions (3) and 
(4) we have, respectively: 

One can easily show by using these expressions that 
FQ,(pl) < 0 in the metastability region. On the other hand, 
it is clear that as 9-0 the quantity F,,(q,) becomes pos- 
itive. On the whole Uef ( r )  has the form shown in Fig. la. 
For d=3  the solution ij5 ( r )  starts from the vicinity of the 
minimum at q,=q0 where F,,(q,) >O. Later on as the 
quantity q, decreases the sign of F,,(p) is reversed, the 
effective potential goes through a minimum and again be- 
comes positive as q, approaches the stable value p=O. We 
show in Fig. Ib a distribution of Ueff(r) for the case d = 3  
which is typical of such a structure of the nucleus. 

The qualitative difference of the potentials Ueff for 
d =  1 and d =  3 is clear. A calculation of the spectrum gives 
for each discrete eigenvalue ( -A) < 0 (i.e., A > 0 which 
corresponds to the required instability) lying inside the 
potential well. However, the nature of the localization of 
the corresponding eigenfunctions is different. For d =  3 the 
eigenfunction with A > 0 is zero at the center of the nucleus 
and mainly localized in a spherical zone of finite width. 
This dictates the character of the evolution of the distribu- 
tion shown in Fig. 2, which agrees splendidly with the 
character expected in the simple phenomenological ap- 
proach. For d =  1 the analogous eigenfunction is mainly 
localized in the neighborhood of zero and the evolution of 
the q, distribution has the form shown in Fig. 3. Its distin- 
guishing feature is that initially the q, density increases in 
amplitude near r=O, followed already by expansion of the 
domain of the new phase as a whole.3) It will become clear 
in what follows that this peculiarity in the growth of low- 
dimensional nuclei plays a very important role in the ki- 
netics of phase transformations. 

For I <  d < 3 the effective potential contains a correc- 
tion cc 1/12 and already even qualitatively it does not re- 
peat the behavior of the function F,,[@(r)]. We show in 
Fig. lc the function Uer(r), found numerically, for the 
d=2 case. In the same figure we indicate the position of the 
--A < 0  level in this potential. It is clear that the dimen- 
sionality d=2 corresponds to an "intermediate localiza- 
tion" of the corresponding eigenfunction. As a result there 
occurs a simultaneous increase in the amplitude of q, and 
an expansion of the nucleus. 

In later stages of the evolution the radius of the nu- 
cleus becomes rather large and, as we noted already, its 
boundary can be considered as being practically a planar 
formation. Using this, it is useful for what follows to re- 
produce a few results obtained analytically for d =  1. Bear- 
ing in mind that qualitatively they are similar for both 
models considered, we give in what follows for the sake of 
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FIG. 1 .  The U,, potential and the @ ( r )  profile corresponding to it: 
a) for d=l; b) for d=3; c )  for d=2. 

I I I 

4 S 6 .5 

brevity the results only of the analysis of the q6 model. For In the binodal point T=TO the zeroes 
d=  1 and a suitable choice of the time normalization we q:,2 = [a (a2 - 4rb/3)  ' I 2 ]  / b  of the functon F ( q ) ,  degen- 
can write Eq. ( 1 ) in the form: erate into a single point q1:,~=3a/2b which in this case is 

the same as q: so that F ( q )  takes the form 
qt=-qrr+rqI l -  ( q / ~ + ) ~ l [ l -  ( ~ / q - ) ~ l ,  ( 12 )  

where q+ and q- determine the positions of the zeroes of 
the derivative F,  together with q = 0 :  ~ ( q ) = ; r q ~ [ l - ( q / q + ) ~ l ~ .  

cp; = [a* (a2-rb)1 '2] /b .  ( 1 3 )  In this case Eq. ( 12 )  has a static solution (a wall separat- 
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FIG. 2. Evolution of small perturbations of the p, distribution for d=3 .  The heavy line identifies the @ ( r )  profile. 

ing the enqrgetically equivalent phases with q = O  and The derivative q,cc q[ l  - (q/cp+ )2] vanishes as r- .t co in- 
I q 1 = q+ ) so that q5 = 2 P  and correspondingly side each of the phases. It is essential that the factor 

2 1 q[l-  ( q ~ / q + ) ~ ]  also remains in Eq. (14) which describes ( z ; )  =l+exp(kr) ' with k= 27;". (15) q(r,t) in the region between the binodal and the spinodal 

FIG. 3. The same as in Fig. 2 for the d= 1 case. 
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supercooling. This formal fact enables us to look for a 
stationary solution of Eq. (12) in the form ( 15) which 
automatically satisfies the condition q, cc q[ l  - (q/q+ ) 2], 

with the substitution r+ r- vt, where 

As 7- we have (q+/q- ) - 3, k2+47 and, hence, v-0. 
For d# 1 Eq. ( 1 ) has the form 

We now use the fact that as R -., 03 the front of the domain 
becomes practically plane. Its velocity should then tend to 
a constant value equal to the one-dimensional velocity 
( 16) of the plane front. The relative increase of R per unit 
time decreases and for an estimate we can use the approx- 
imation d -  1 (d- 1 R .  We find v , ~ =  v- ( d  
- 1)/R, which agrees with the assumption we used that v 
tends to a constant as R -, oo . The numerical solution of 
Eq. ( 17) for d = 3 confirms that the velocity of the bound- 
ary is "attracted" to the velocity of the plane front follow- 
ing a 1/R law. This makes the analytical results for one- 
dimensional excitations applicable to the subsequent stage 
of the evolution. We demonstrate in what follows that such 
excitations are attractors for the evolution of arbitrary fluc- 
tuations. 

3. EVOLUTION OF ARBITRARY LARGE-SCALE 
FLUCTUATIONS AND EMERGENCE OF A NUCLEUS 

So far we have bypassed the problem of the onset of 
(spherical) critical nuclei. Yet it is rather obvious that 
even in an isotropic medium an arbitrary field of order- 
parameter fluctuations is isotropic only in the mean. There 
arise a number of obvious problems in this connection. 
First of all, how can an isolated spherical excitation with 
an amplitude q close to the equilibrium value qo, which is 
separated from other such excitations by a "vacuum of 
fluctuations" in which qzO,  arise through fluctuations? 
Could a critical nucleus have a different shape (and what 
shape)? What happens if expanding (spherical) domains 
of the new phase (amongst them domains of opposite sign) 
collide? We attempt to give in the present section an an- 
swer to these problems. 

First of all we forgo the assumption of a necessarily 
spherical shape of the critical nucleus. We turn again to 
Figs. 2 and 3 describing the perturbation of a nucleus for 
d=3  and d =  1 and consider the standard scenario of a 
phase transition. Let there be some "noise" of the fluctu- 
ations in the ordered phase q ( r )  in a three-dimensional 
system and let the temperature of this system be lowered 
from the paraphase in the metastability region. 

At some temperature the amplitude of the separate 
excitations q ( r )  becomes sufficient that they turn out to be 
critical nuclei. We note that in the most general case the 
maximum q ( r )  density decreases differently in different 
directions of r. Moreover, one can always find amongst the 
maxima such for which the velocity along one (or two) 

directions is considerably smaller than along other direc- 
tions. Such density splashes can be interpreted as quasi- 
low-dimensional structures evolving in accordance with 
the one- or two-dimensional Eq. ( 1 ) . This is most obvious 
when the expected radius of the critical nucleus is small 
and the shape fluctuations appreciable. To study the prob- 
lem in this case we must turn to a more general form of the 
equation for q(r,t) : 

where F ( q )  is defined by Eq. (4). 
However, for one and the same amplitude q (which 

may be much smaller than qo!) and one and the same 
temperature (the latter determines the parameters of the 
potential F )  the scenarios for the evolution of three- 
dimensional and low-dimensional nuclei (see Figs. 2 and 
3) may be radically different. In fact, whereas for q4qo a 
spherical nucleus practically always collapses, a low- 
dimensional nucleus may, in contrast, start to grow. It is 
important here that this growth is primarily due to the 
growth of the amplitude q ( r )  on the background is the 
average one. As a result, when the temperature is lowered 
from the paraphase the spherical structures are in reality 
by far not the first to become critical. 

We now turn to Eq. (17) from which it is clear that 
the velocity of the front of the excitation is the higher the 
larger its radius of curvature. One can clearly also use the 
concept of a local curvature for an anisotropic excitation 
described by Eq. ( 18). It is then rather obvious that con- 
vex parts of the surface will have a somewhat lower veloc- 
ity than other parts. As a result the expanding surface of a 
low-dimensional nucleus must so to speak "overtake", its 
parts which are most convex in front. The nucleus must 
then gradually become isotropic. This process occurs in- 
deed. We show in Fig. 4 a number of stages through which 
a supercritical low-dimensional nucleus passes. After being 
made isotropic, the nucleus becomes three-dimensional. 
However, the density g, inside it is at that moment already 
close to qo and it is also already supercritical. 

So far we have used the idea of an isolated critical 
nucleus. Apparently in a uniform medium it would be 
more realistic to consider the problem of an arbitrary crit- 
ical fluctuation density q ( r ) .  At present it is impossible to 
solve this problem analytically. A numerical experiment, 
however, gives the following results. 

We show in Fig. 5 the relaxation of a typical q ( r )  
distribution. One sees easily that the short-wavelength fluc- 
tuations which fill the space between the growing domains 
of the new phase are rapidly damped, whereas the remain- 
ing domains become isotropic. In the growth process the 
domains described here become universal. Figure 6 illus- 
trates the process of the attraction of the q ( r )  distribution 
to the attractor structure in one-dimensional space. A sim- 
ilar process also occurs for d#l. The attracting surface is 
then obtained by rotating the curve shown in Fig. 6 around 
the horizontal axis. One can check immediately that this 
curve is the same as function (15) (or, 
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FIG. 4. Stages passed through by a supercritical low-dimensional nucleus 
during the evolution process: a)  bare relief of the q (r )  density; b) growth 
of the amplitude of the maximum of q ( r )  up to its equilibrium value; c) 
isotropization of a domain of the new phase. 

q,cc q[ l  - ( q / q ~ + ) ~ ] )  for r -r -  ut, which describes the 
motion of the wall between the two phases with q = O  and 
q = qo,  respectively. 

The attractor nature of this solution has a deep phys- 
ical meaning. Indeed, in correspondence with the general 
principles of nonequilibrium t h e r m ~ d ~ n a m i c s ~ ~ - ~ '  dissipa- 
tion reaches a minimum in the stationary solution. In the 
present case the flow of energy from the system has the 
form: 

and its change with time is correspondingly: 

For a localized stationary solution of the form q = q ( x  
- ut) we have aq/at = - uaq/dx and Eq. (20) gives 

In other words the minimum dissipation is reached on the 
stationary trajectory with the asymptotes q =O and q = qO. 
We note in passing that in the general case one can in turn 
use the lowering of the dissipation on the stationary tra- 
jectories for a numerical search for all such solutions. In- 
deed, in the phase portrait the stationary solutions are fixed 
and thanks to the lowering of the dissipation they are at- 
tractors. Using a rather large random initial bulk q ( r )  one 
can observe all such attractors which are admitted by the 
system studied. 

Figure 5 illustrates also collision processes and adhe- 
sion of separate (spherical) expanding nuclei4omains of 
the new phase. Additionally we show in Fig. 7 the emer- 
gence of a domain wall when domains with a different sign 
collide. 

This is just as typical for the q6 model as a collision of 
the same kind of domains of the new phase since the for- 
mation of nuclei of either sign is equally probable. The 
idealized situation shown in Fig. 7 illustrates this process 
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(consistently observed during the numerical simulation) 
only "in its pure form." 

Formally the system leaves in this process the meta- 
stable stationary (but not static!) d-dimensional attractor 
and is attracted to a topologically nonremovable static at- 
tractor of lower dimensionality. Physically this means that 
the dissipation reduces the phase volume occupied by the 
system, including a reduction it through a constant lower- 
ing of its dimensionality (down to d=O for uniform order- 
ing or d=  1 for static domain walls). 

In this connection it is interesting to note that the 
frequently used simple analytical expressions which are ob- 
tained here and in the above-mentioned papers not only 
turn out to be applicable to quasi-one-dimensional systems, 
which are in reality extremely rare, but also describe the 
regular stages of the evolution of normal three-dimensional 
systems. 

The described relaxation process is slowed down by at 
least two factors. First of all there is the nonremovable 
noise of the fluctuations in the p(r,t) field at non-zero 
temperatures. A corresponding term was added in Eq. ( 1 ) 

FIG. 5. Relaxation of a typical p(r) distribution: a) bare structure of the 
p(r) fluctuations; b) growth of the amplitude of the maxima of p(r) and 
smoothing of the short-wavelength fluctuations; c )  fusion of nuclei with 
subsequent isotropization of large domains of the new phase. 

and led, on the one hand, to automatic appearance of a 
nucleus without any specification of the p(r,O) distribution 
and, on the other hand, to a "blurring" of the idealized 
picture of the relaxation given above. Secondly there are 
the dynamic oscillations of the density p. This last factor 
was also taken into account by a modification of Eq. ( 1) 

where c is a characteristic velocity of the sound excitations 
in the system. The presence of the ptt term affects espe- 
cially the behavior of the high-frequency (short- 
wavelength) modes. Whereas before they were damped 
faster than the other modes, now such oscillations are pre- 
served for rather a long time, just as the noise, somewhat 
blurring the idealized relaxation picture. The shape of the 
stationary attractor is also slightly deformed. 

Notwithstanding the fact that the pictures given in the 
present paper correspond to the p6 model, the correspond- 
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FIG. 6. Attraction of the q ( r )  distribution to an attractor. The solid arrows show typical directions in which the phase points of the initial distribution 
develop; the dashes show the motion of the phase points in the concluding stage of the evolution when domain boundaries are formed. 
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FIG. 7. Formation of a domain wall when 
nuclei with different signs collide (the 
heavy straight line identifies its intersection 
with the q = O  plane). 
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ing calculations were also carried out for the model de- 
scribed by Eq. ( 3 )  and all conclusions reached above apply 
to it to the same degree. 

Finally, a situation is possible when the change in the 
magnitude of q in a first-order phase transition is so large 
that it is no longer possible to restrict oneself to one of the 
standard catastrophes ( 3 )  or ( 4 ) .  The simplest generaliza- 
tion is the case when the function F ( q )  is an arbitrary 
polynomial which has a,minimum at two or more points. 
The derivative of the function F ( q )  can in that case be 
written in the form 

where q+ determines the position of the F ( 9 )  minimum 
closest to zero; @ ( q + )  and @ ( 0 )  are constants. Using 
(23 ) ,  Eq. ( 14) takes the form 

or for a stationary solution 

Equation (25)  has a solution such that 
~ ~ ( 0 )  =qr(q+) =0: 

where the function A ( q )  is the solution of the equation 

It is clear that as a solution of Eq. (27)  the function A ( q )  
must satisfy the conditions 

A ( q + ) [ A ( q + ) + v l  + @ ( q + ) = O .  

One of these conditions fixes the velocity v  of the boundary 
and the second one guarantees the uniqueness of the re- 
quired solution. For the potentials considered by us above 
the function A ( q )  is equal to const. ( l + q / q +  ) for the q6 
model and a constant for the q4 model. 

The numerical experiments carried out for various, in- 
cluding nonpolynomial, functions F ( q )  corroborate the 
fact that there exists a stationary attractor qr=qr(q) 
which corresponds in the phase plane to a curve connect- 
ing the points (0,O) and (q+ ,O). 

One of the authors (T.K.S.)  thanks S .  Leble for fruit- 
ful discussions. 

')strictly speaking the exact equality @(O) =q0 is inadmissible since qo is 
a fixed point of Eq. (5).  However, the numerical difference is 

I@(0)-qol <lO-'qo for d = 3  and is hardly changed for d >  3. In any 
case this difference is very small and unimportant for the physical pic- 
ture. 

2'~raditionally the stability of the critical nucleus is analyzed only in the 
class of isotropic solutions, i.e., a stability necessarily with respect to the 
expansion or collapse of its wall as a whole. Strictly speaking, however, 
the deviation of the nucleus from sphericity requires an independent 
analysis, especially in the context of the problem of the possibility of a 
spontaneous appearance of a static isotropic distribution of the q field. 

3 ) ~ e  emphasize again that Fig. 3 demonstrates the evolution of a single 
nonstationary solution. The outwardly similar Fig. 3 of Ref. 24 shows 
separate stationary solutions of a purely dynamic equation (so that each 
curve corresponds to a fixed value of the velocity u in the variable x -  or) 
which is known to describe satisfactorily the martensitic transforma- 
tions studied in Ref. 24. 
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