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The density of localized states of a single-band diagonal-disorder Hamiltonian is calculated in 
three dimensions with proper regard to the pre-exponential factor. A novel feature of 
the theory is the imposition of an additional constraint on the class of functions minimizing 
the action functional in the one-instanton approximation. The rationale for this 
constraint is derived from the analysis of localized states for a number of realizations of the 
disordered system under study. The problems considered include (i) the limit of the 
low density of strong scatterers, and (ii) a ternary system composed of a two component 
solid solution with a weak scatterer at each site, plus a low density of deep impurity centers. In 
all cases, both general and simplified expressions are found for the pre-exponential 
factors. It is shown that in limiting cases the results agree with the exact solutions of the 
problem. The calculations agree well with the experimental data on the one-electron density of 
states in amorphous silicon. 

1. INTRODUCTION 

Modem experimental methods provide detailed infor- 
mation on the spectral density and the density of states in 
disordered systems of greatly varying physical nature.'-' 

As of today, most extensive density-of-states studies 
have been made on amorphous silicon at the peak of its 
valence band and in the band One distinguishes in 
the behavior of the density of states three major features 
which appear to be common to diverse samples of the ma- 
terial: 

1) In the region of relatively high densities (which we 
will arbitrarily call the band-edge region) there is an energy 
range where the density of states varies linearly with en- 
ergy, that is, on a linear scale, 

The parameters PBE and EBE can be found by a simple 
data-processing procedure taking the mobility edge as the 
zero of the energy E,. A specific model we consider below 
makes it possible both to illustrate the meaning and to 
show the order of magnitude of the parameters involved. 
The dependence of the type ( 1 ) is limited to the range of 
energies for which the second term in the braces is small 
compared to the first. 

2) As the energy of localization is increased, there is a 
smooth crossover to a linear Urbach exponential 
dependences-'' which, using a logarithmic scale, may be 
written as 

Here pu is the density of states at some point EU of the 
Urbach region and EU is the Urbach parameter. Note that 
Eu < EBE . 

3) Further down in energy the density of states is 
strongly influenced by the presence of impurity centers, 

whose states undergo a considerable nonuniform broaden- 
ing. Reference 4 presents a detailed study of a situation in 
which the band formed by deep-center states is fairly well 
described by the Gaussian form 

in the vicinity of the band maximum. Here cI is the density 
of the centers and y1 the half-width of the contour. The 
wings of the band show a considerable asymmetry, 
however. ' ) 

The purpose of this paper is to discuss the behavior of 
the density of localized states for a simple model of a dis- 
ordered system. We believe that only the most general fea- 
tures of the fluctuation-induced potential are essential for 
explaining the observed data, and so the system we con- 
sider is a three-dimensional two-component Anderson 
model described by a single-band hamiltonian with diago- 
nal disorder caused by the random occupation of the crys- 
tal lattice sites by both types of atoms, A and B. A con- 
tinuum version of this model will also be considered. 

As a further complication of the model, we will also 
analyze the situation in which a low density c, of deep 
impurity centers is added to the system. 

As discussed previ~usly,'~ application of the instanton 
approximation to the above model yields the Urbach be- 
havior, Eq. (2), for an energy range sufficiently wide to 
explain the experimental data for a wide variety of disor- 
dered systems. In particular, this gives a correct order of 
magnitude of the Urbach parameter EU as well as explain- 
ing its concentration dependence observed in solid solution 
experimenb6 It turns out, however, that for band-edge 
energies above the Urbach region, Ref. 15 gives the density 
of states whose behavior departs considerably from both 
experimental data4 and expression ( 1 ) . This question will 
be examined closely in the present study. 
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One further motivation for the improvement of the 
method of Ref. 15 comes from the problem of strong elec- 
tron scattering by a deep potential well in the limit of 
extremely small density of such wells (i.e., of attractive 
centers as far as the electron is concerned). The solution 
for a two-component disordered system will be applicable 
to amorphous silicon4 and other disordered systems with 
deep impurities. 

Finally, the problem of the so-called pre-exponential 
factor of the density of localized states will be considered: 
its value is crucial for the comparison of the predicted 
absolute density of states with its experimental counterpart 
usually known to within a factor of about 2.4 It is well 
known, on the other hand, that because of the presence of 
the Fermi zero mode in the fluctuation determinant the 
one-instanton contribution to the Green's function is zero, 
which makes a comparison of theory and experiment im- 
possible. As a means to overcome this problem we repre- 
sent the Green's function in terms of complete sets of the 
eigenfunction and eigenvalues of all permissible realiza- 
tions of the system under study, which allows one to em- 
ploy the exact transformation of the Green's function using 
the Parisi-Sourlas magic formula.16 To check the results, it 
proves useful to address the limiting cases for which the 
one-instanton solution is exact. These are the behavior of 
the density of states near the Lifshitz bound" and the 
above-mentioned case of the low density of extremely deep 
centers. 

We see thus that despite their apparent diversity the 
topics we have listed prove to be closely interrelated. 

A common feature of previous approximate analyses of 
three-dimensional disordered ~ ~ s t e m s ' ~ - ~ ~  is that, following 
averaging over all possible configurations of the system, the 
calculation of the density of states reduces to a variational 
procedure. The novel feature of the present approach is a 
more detailed analysis of the class of functions among 
which to seek the solution: analysis, in fact, of the relation 
between the variational solution for the averaged problem 
and those solutions which are most probably realized in 
various regions of the disordered model system. 

In previous analyses, one distinguishes three basic con- 
straints imposed on the form of the variational solution: 
(i) in a fluctuation-induced well, only the ground state is 
considered, (ii) the trial function is spherically symmetric, 
which reduces the computational effort to a minimum, and 
(iii) certain assumptions concerning the decrease of the 
solution at large distances from the fluctuation are made. 
The last constraint is related to the assumption of the 
short-range nature of the potential fluctuation and- 
adopting Anderson's model with diagonal disorder as we 
do-is also adequate for solutions obtained for specific oc- 
cupation variants. 

The main difference between the present approach and 
that of Ref. 15 is the imposition of yet another constraint 
on the variational solution p,,(R) in the region of small 
values of R. We relate this constraint to the behavior 
(compatible with our model) of the potential wells occur- 
ring most frequently in actual configurations, and we find 
as a result that the small-R behavior of p,,(R) is identical 

to that exhibited by the solutions for these wells. We will 
consider two limiting cases for which we believe that the 
additional constraint is the simplest to formulate, namely 
low density of strong attractive centers and arbitrary den- 
sity of weak scatterers. In the former case we add the 
requirement that there be at least one attractive center in a 
fluctuation producing a localized state. In the latter case 
we demand that such a fluctuation include the most likely 
critical-size cluster. The two cases will match if the single- 
site scattering intensity is taken to be equal to its critical 
value. 

The need for the additional constraint is especially ob- 
vious when applied to the case of a very low density of 
strong attractive centers (c( 1 ) leading to the familiar 
problem of the spectrum of localized states produced by a 
point perturbation. In the limit c-0, the solution to this 
problem is well known: it was first obtained in Ref. 30 (see 
also Ref. 31) and since then has been the subject of exten- 
sive analyses using various versions of the tight binding 
model (see e.g., Lannoo and ~ e n ~ l a r t ~ ~  and Bernholc and 
~ a n t e l i d e s ~ ~  as well as references therein). To linear order 
in c, the density of local states is described by a 6 function 
centered at the local energy level &=&I, given by the 
Koster-Slater-Lifshitz 

Using the approach we propose, the problem at 
hand-essentially a model one-may be solved in an in- 
stanton formulation and gives rise to a continuous spec- 
trum of localized states bounded by the limits 
0 > E , ~ ~  > E > EL and having its maximum density at the 
point &=&I,. The central portion of the line is Gaussian 
and for E = E ~ ~ ~  the equation of motion of the instanton is 
exactly the Koster-Slater-Lifshitz equation for a localized 
state in a virtual crystal. The quantity EL is precisely the 
edge of the spectrum and the density of states in its vicinity 
is described by the Lifshitz singularity while E,,, is the 
position of the local level of the A atom when placed in the 
macroscopic cluster of B atoms. The resulting solution en- 
ables one to normalize the density of states accurate to 
terms of order c2, which implies that the number of states 
equals the number of A atoms ( =cN). The solution coin- 
cides with the exact one at two points, E = &,,, and E = E L ,  
is virtually identical to the solution of Ref. 15 in the range 
E~, < E < EL,  and is quite different from it for 0 > E > El,, . 

In the weak scattering regime, the additional condition 
is conveniently taken in the form of a restriction on the 
minimum power of those potential fluctuations playing the 
dominant role in the formation of localized states; this 
power may be bounded from below by that of the most 
probable critical cluster of spherical shape. As a result the 
trial function within the critical cluster, is identical to the 
solution of the Schrodinger equation for most probable 
fluctuation wells containing such a cluster. On the other 
hand, far away from the center of the well the behavior of 
the trial function is identical to that of the exact solutions 
for short-range potentials. Note, however, that at interme- 
diate distances the trial function is no more than an inter- 
polation between these two extremes, strongly smoothed as 
compared with those solutions actually existing in specific 
realizations. As in the strong scattering case, here too the 
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maximum departure from the results of Ref. 15 occurs at 
small localization energies. We see thus that in both cases 
the additional condition provides a means for avoiding un- 
realistic solutions. 

It should be noted that the translational symmetry of 
the solution is lost at the outset as a result of the above 
additional constraint. The averaged Green's function does 
preserve this property because the summation is over all 
possible positions of the instanton center in the course of 
the calculation. 

Our method reproduces the basic features of the pre- 
vious analyses15918-29 and is essentially approximate in that 
instead of a multitude of specific realizations of disorder we 
are dealing with a variational problem resulting from an 
approximate averaging procedure. Using the simplest pos- 
sible instanton solution in the variational analysis of the 
averaged action imposes an additional limitation on the 
applicability of the method. Since three-dimensional model 
problems have not yet been treated numerically in the lit- 
erature, it turns out that, except for the two limiting cases 
we mentioned, a comparison with the exact solution is not 
yet possible. The experimental data on the one-electron 
density of states of amorphous silicon show good qualita- 
tive agreement with the theory over a wide range of ener- 
gies. 

2. HAMlLTONlAN OF THE MODEL 

We consider a solid solution of macroscopic volume V 
containing N sites occupied at random by either A or B 
atoms. The mean numbers of A and B atoms are NA=cN 
and NB= ( 1 -c)N, respectively, c being the concentration 
of the A atoms. The single-band Hamiltonian of this sys- 
tem is taken to be 

with qn assumed real. The diagonal matrix element En 
takes on the value EA (EB) if the site is an A (B) atom. In 
the limiting cases c=O and c= 1 the Hamiltonian (4)  re- 
duces to that for the pure B or pure A crystal, respectively, 
and all the En are replaced either by EA or EB.  

In the plane-wave representation the matrix element of 
the Hamiltonian is 

where a stands for A or B and the electronic dispersion is 
given by 

3. GREEN'S FUNCTION REPRESENTATION 

The Green's function of a pure A or B crystal is writ- 
ten as 

+ 
where R is the radius-vector of the site n. For a random 
occupation of both types of atom, the Green's function for 

each particular realization of the system depends on both 
the composition and the arrangement of the atoms, 

Introducing the normalizing factor, and assuming the dis- 
tribution of A and B atoms to be random but fixed, the 
diagonal matrix element of the Green's function 

where 

and 

Here S, ,  is Kronecker's symbol. 
As a point of reference for E and En we introduce a 

quantity related to the average of En in the site: 

In the virtual-crystal approximation, (E), ,  coincides with 
the band bottom of the solid solution and also fixes its 
mobility threshold, E g - q  = (E), , .  Let us introduce the 
new variables 

and represent the action as a sum of two terms, 

where 

For a random but fixed distribution of the two types of 
atom, finding the eigenfunctions and eigenvalues of the 
Hamiltonian is a linear problem solved by diagonalizing a 
matrix of rank N whose rows are of the form 

We next rewrite the functional integral (9) making use of 
the eigenfunctions ( 17) and the Grassmann variables 6 
and 36-40 in order to raise Z to the numerator: 
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xexp[-i I A [ " + w c - ~ ] ~ ( e ~ A +  fAcA)], 

(18) 

where 

and the Grassmann variables are normalized so that 

The spectrum of the disordered system is obtained 
through an averaging procedure, i.e., by summing the spec- 
tra of specific configurations weighted by their probability 
of occurrence; of interest here is the Green's function av- 
eraged over all possible atom distributions over the sites of 
the crystal. 

Before we sum over the entire ensemble of realizations 
of the system we simplify the Green's functions for each 
particular configuration using only the most general prop- 
erties of the representation ( 18). We note that the argu- 
ment of the exponential in ( 18) is supersymmetric in the z, 
c space, i.e., remains invariant under transformations con- 
serving the form 

and we may therefore employ the magic formula of Parisi 
and sourlas16 when integrating over the variables z?, zA, 
EA, and {A. 

In any Ath term in the sum in (18), it is seen that of 
the infinite number of TA integrations only one contributes 
nontrivially, 

= d r ~ l q ? ( n )  1 '  e x p { - i [ o + f l c - A l ~ ~ ~ ~ ) ,  (22) 

where 

As a result, for a fixed set of An's and a given set of quan- 
tum numbers (denoted above by A), the density of states 
takes the form 

and, summing over all A and all the A realizations with 
their respective weighting factors PA,  the total averaged 
density of states is 

If the contribution from a certain specific-say, 
spherical-symmetry is of interest, the summation over il 
may be omitted in (24). 

The meaning of the above expression is quite lucid: we 
list all possible configurations of the system, calculate the 
eigenvalues and eigenfunction for each of them, and, fi- 
nally, evaluate the integrals (23). 

The integration over TA in Eqs. (23) and (24) can be 
done in the general form and the final expression for p ( o )  
becomes 

where we have denoted by of: the eigenvalue of Eq. (17) 
for a fixed set A,. The bound-state wave functions cp? may 
always be normalized to unity. 

The expression above is a rigorous definition of the 
density of states for a disordered system described by the 
Hamiltonian (4)-that is, for a two-component solid so- 
lution A$, - ,. A very similar expression was employed, 
for examvle, in Ref. 18. - .  

Numerical methods for calculating the spectra of dis- 
ordered systems are usually reduced to the solution of the 
system (17) followed by a summation of the type (25) 
taking into account all occupation variants A and all il at 
each A. 

Our goal here is to obtain a realistic approximation for 
the density of localized states without resorting to a solu- 
tion of the system ( 17). 

3.1. Restrictions on the class of trial functions 

The exact expression (24) cannot be summed over the 
ensemble of configurations unless the eigenstates q? and 
their eigenvalues are known. The first step in the approx- 
imate calculation procedure is to replace the exact solu- 
tions by trial functions independent of the specific arrange- 
ment of atoms over the lattice sites. This permits the 
summation over all possible configurations to be per- 
formed. In the preceding section, integration in a general 
fashion over all but one rA's enabled us to avoid calculating 
the determinants inv~lved '~-~ '  and thereby markedly re- 
duced the computational effort. 

The key question concerns the choice of trial functions 
and their relation to the solutions of the system (17) for 
various configurations. The restrictions on the class of trial 
functions may be summarized as follows: 

( i )  Even though the formulation in terms of the inte- 
gral (24) makes it possible to include excited states if there 
are any, we again restrict ourselves in this paper to a single 
nodeless ground state in each fluctuation well. The prob- 
lem thus reduces to the choice of only one trial function. 
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(ii) An important question is that of the symmetry of 
the wave function of the fluctuation bound state. As before 
(see Ref. 15) the trial wave function is assumed to possess 
either total point symmetry of the lattice (lattice Hamil- 
tonian) or spherical symmetry (continuum limit). 

(iii) The model Hamiltonian (4) leading as it does to 
short-range potential wells, it is assumed that at large dis- 
tance R from the well the trial function falls off like 

where x(w) is determined by the depth of the bound state 
( a ) .  This behavior as R-+ UJ is also a feature of exact 
bound-state solutions generated by the system (17) for 
specific configurations. 

(iv) In the present work we introduce an additional 
condition which follows from the properties of exact 
bound-state solutions of the system (17) of the Hamil- 
tonian (4); the effect of the new condition is to restrict the 
magnitude of q,,(R) as R-0, i.e., to impose some limita- 
tion on the small-R behavior of the trial function. The idea 
is that the small-R behavior of the solution q,, be consis- 
tent with equations (17); we wish, in other words, that q,, 
be optimal not only from the point of view of its contribu- 
tion to p(w) but, as well, from the point of view of its 
relation to exact eigenfunctions for specific configurations. 
We take for the trial function qtr an eigenfunction of the 
equation 

where U,,(n) is a spherically symmetric trial fluctuation 
well whose shape is usually determined from the extremum 
of the action functional of the problem. Trying the (nor- 
malized) lowest wave function as q,, and dropping all 
Afls terms, Eq. (24) becomes 

The important point to be made here is that q,, is not 
generally an eigenfunction of the system (17), so that in 
the course of integration over r,  it only picks up those 
configurations satisfying the integral relation 

z qt,(n> [ ( ~ - A , ) S ~ , ~ + H y , c ~ ] q t ~ ( m ) = O .  (29) 
n,m 

Because of the huge number of possible configurations 
of the system, (29) ensures that the density of localized 
states will be finite for virtually any trial function q,, . The 
difficulty we encounter is that trial functions having noth- 
ing to do with solutions realizable in specific configurations 
may lead to a prohibitively large density of localized states 
in a certain energy range. It is to exclude this possibility 
that we add the constraint (iv) on the shape of the trial 
function at R -0. 

Because the shape of the wave function for R small 
compared with the bound-state radius is determined by the 

form of the potential in this region, we will formulate the 
constraint (iv) as a condition that the trial potential as 
R -0 be bounded by a certain value to be found from the 
system ( 17) for the most probable bound states. Depend- 
ing on the parameters of the Hamiltonian (4), in the next 
sections we discuss the limiting cases of strong and weak 
scattering and present corresponding formulations of the 
above condition. 

3.2. General averaging scheme 

In this section we consider the averaging procedure in 
a general fashion, without specifying the form of the addi- 
tional constraint (iv) to be imposed on U,,(n) and q,,. 

Since q,, is independent of the particular configuration, 
it is now possible to sum over all sets A. From Eqs. ( 18), 
( 19), and (23) it is seen that the quantity to be averaged is 
the function 

The fluctuation-related term in the action U [ r ]  de- 
pends on the particular configuration of the system. In the 
case of random occupation, each site is either an A or a B 
atom with the respective probabilities c and ( 1 - c) . Rec- 
ognizing that the exponential to be averaged factorizes into 
exponentials each of which can be averaged independently, 
we obtain 

Here 

The averaged density of states then becomes 

p ( ~ ) = ~  -* d r  exp -ir z qtr (n)(o  I *  I n.m 

where 

To proceed it is convenient to change from the Fourier 
integral (32) to the Laplace transformation 
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yielding the function q,, the bound-state equations also fix 
p ( ~ ) = ~  -_ drexp -i z qtr (n)(o+Wc) J m  I n,m 

the the free parameter t of the Laplace transform. 

Xqtr(m) (?-it) + z ln[Rn(r-it)] 
n 4. STRONG SCATTERING 

where We assume that the concentration of A atoms is small 

R,(r-it) =c exp[iA(l-c)q:,(n) (7-it)] and that the perturbation by an individual atom is large 
compared to the critical value and produces a deep level in 

+ ( 1 - c)exp [ - ihcq:,(n) ( r -  it) 1. (35) the energy spectrum, i.e., 

This result is fully equivalent to (32) and the free param- 
eter t may in this case assume any positive or negative 
value. 

Separating the exponential, the above expression can 
be put into the form 

where 

and 

c < l ,  (1-CIA% l c n ( 0 )  1 - I .  (42) 

The simultaneous fulfilment of these equations implies that 
A-A separations are almost always larger than the radius 
of the bound state produced by each of these attractive 
centers, so that, to terms of order c2, the solution of the 
system ( 17) in the localization region is reduced to the 
familiar local perturbation problem.30-33 

Since there is at least one attractive center (i.e., an A 
atom) present in any bound-state-forming fluctuation, we 
stipulate that on a certain site of the lattice the trial func- 
tion U,, reproduce the exact value of the attractive poten- 
tial of an isolated A atom, 

U,,(n) = - ( 1 -c) A. (43) 

Referring q,, to this particular site as the origin and ignor- 
ing the configurations failing to satisfy the above condition, 
( 36) transforms to 

In Ref. 15 the bound state equation is discussed with- (44) 

out subjecting the trial function to the additional constraint where 
we have introduced here. This equation can be obtained 
from the extremum condition for the action, A[&] = (w+WC),$- x In Rm(-it) 

and 
i.e., it takes the form of Eq. (27), 

R,,,(T-it) 
d [ r ]  =i(w+WC)p,,r- In C [H',rn+w~nrnlqtr(m) + U,,(n)q,,(n) =0. (40) 

m 

To obtain an extremum of the action the potential U,,(n) -ir(1 -c)bq:,(n). (46) 

must in this case be taken in the form'5 Minimizing the exponent ~[q? , ]  we arrive at an equation of 
the form (40) where now 

a[ln R,(-it)] 
Ut,(n) = - 

atqfr( n > m=n 

d 
Thus, the calculation of the density of states for the - [In Rm( -it)] 

general case proceeds like follows: 1) solve a bound-stat$ 
equation, of a form determined by the additional constraint = - [In Rm(-it)]' 
(iv) on U,, , 2) calculate the argument of the exponential @tr 
(in this case, ~ ~ [ q : ~ ] ) t ,  and 3) calculate the r-dependent 
contribution to the action (here dO[r])  and integrate over exp( -tp:,(m) 
to obtain the pre-exponential factor. Note that apart from c+ (l-c)exp(-tq:,(m)) 

1. (48) 
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Multiplication of the above expression on the left by the 
Green's function of the virtual crystal now gives 

We make use next of (52), with (51 ) for and t from 
(52), to transform exp{-~[q:,t]) into where Ut,(m) is given by Eqs. (47) and (48). 

4.1. Approximate formulation 

For t=O and (42) fulfilled, Eq. (49) recovers the 
Koster-Slater-Lifshitz equation for a single-site localized 
state in a virtual crystal formulation, and for w= wloc, 
qt,(m) is exactly the solution of this equation, i.e., where 

which for w =al, may be written as and Lol, is the localization index defined by 

The value of the localization index L, characterizes the 
size of the bound-state wave function with binding energy 
o. If the localization depth is large and inequality (42) 
satisfied with sufficient margin, the wave function is very 
nearly localized on one site of the lattice, and SLmlm 4 1. 

Before evaluating the pre-exponential factor, let us 
consider &[TI in its simplified form obtainable from (46) 
by keeping only the first three terms in the Taylor expan- 
sions of the functions Rm(7-it): 

For deep states, qlo,(m) is virtually zero everywhere 
except one site, 

For wzwl,, noting that (49) is solvable only for 
small values of t, the quantity U,,(m#n) in (47) may be 
expanded in powers of t and, keeping only the first non- 
vanishing term, (49) takes the form 

where 

Now taking 

as the zeroth-order approximation and representing 
qn ( w ) around wloc as 

Substitution of (59) for &[TI into the integral over 7 in 
(44) yields a Gaussian integral giving 

where 

it is found that Eq. (52) will be satisfied if 

Thus, instead of the 6-functional e ~ ~ r e s s i o n ~ & ~ ~  we have 
obtained a Gaussian contour normalized to the probability 
of a given site being A. Integration over T, retaining the 
quadratic term in the &'[TI expansion, has decreased the The quantity ~[q?,t], in turn, is found to be given by 
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density of states at w zwl, because of the statistical scatter 
in localization energies. The amount of the scatter is char- 
acterized by the energy parameter 

which vanishes as wl,+ m .  We note that in this limit the 
problem affords an exact solution against which to check 
the validity of the method. 

Since (60) represents a contribution from only one 
lattice site-of which there are N in the volume under 
study-it follows that summing over all possible positions 
of the A atom yields the total of NA=cN terms, each cor- 
responding to a localized state at ozwl,. 

4.2. Exact formulation 

It will be recognized that the Gaussian behavior is 
actually limited to the vicinity of the band maximum. Re- 
sults obtained from Eq. (49) are finite everywhere in the 
range - m  < t < m .  At the extremes t- tm and t+-CQ, 
the effective potential energy represents, respectively, a 
cluster of pure A atoms and a cluster of pure B atoms with 
a single A atom at the center. The energy limit determining 
the maximum depth of the level at t-. m is just the Lifshitz 
limit EL= (1 -CIA. 

Close to the Lifshitz limit, 

(44) yields a characteristic singular behavior, whereas in 
the intermediate range 

we return to the Urbach behavior.15 A markedly modified 
situation obtains, however, in the range 

Equation (49) with potential (47) leads to the appearance 
of the minimum binding energy, which is attained at 
t+ - m and is given by the equation 

[ 1 +~~:~(urnin)  lq,,(n) =o, (61) 

Gfn(w) denoting the Green's function of the B crystal. To 
terms of order c2, wmi, may be considered as the upper edge 
of the spectrum of localized states. The density of states 
decreases in the range 

Omin < a < W ~ o c  

and singularly vanishes for 

W -+ Wmin. 

In the range 

wmin<w< (1-c)A (62) 

the density of states takes the form (44), where 
transforms into 

by using (49), and d [ ~ ]  may be written as 

Here q,, and t are calculated from (49) using (47) and 
(48). As before, we may approximate the pre-exponential 
factor by Taylor expansion of d [ r ] ,  and thereby reduce 
the integral (44) to a Gaussian form. As a result, the 
density of states takes the form 

where A[q:,t] is given by (63) and q,, is normalized to 
unity. The present solution shares all properties of the in- 
stanton solution with the only exception of translational 
symmetry which, as far as the density of states and the 
Green's function are concerned, can be restored only by 
summing the contributions from all possible ways of sep- 
arating a factor in (44) or, in other words, by summing 
over all possible positions of the given A atom. The ob- 
tained solution agrees closely with that for isolated attrac- 
tive centers with deep states in their spectra. The existing 
differences arise, first, from systematically accounting for 
the lowering of the band edge by (E),, , and, second, from 
the broadening of the level due to the interaction with 
other attractive centers that happen, by some chance, to be 
around. The solution is readily extended to a ternary sys- 
tem containing Nc A atoms, ( 1 - c - cI) N B atoms, and 
c1N deep attractive centers, provided that cI(c, ( 1 -c) 
and the A-atom potential well is much shallower than its 
deep-center counterpart. We will address this case after 
first examining the continuous limit. 

5. CONTINUOUS LIMIT, WEAK SCAlTERlNG 

We assume that the concentration c of A atoms is 
arbitrary and that the perturbation potential associated 
with one atom is much less than its critical value. This 
problem is conveniently treated in the continuous limit. 

5.1. Denslty of states in the continuum approximation 

To change to the continuum model we adopt the 
effective-mass approximation in the electron band, Eq. (6), 
and replace the lattice summation by an integration, 

where the integral extends over the entire crystal and uo is 
the atomic volume. It is also convenient to employ nondi- 
mensional length and energy units [de Broglie wavelength 
(#/2iUw) I" and w, respectively] and to change to the new 
variables ( TA ) /w -+ T and ( tA ) /o - t. 

By analogy with ( 36)-and postponing the imposition 
of our new constraint on the functions being varied-the 
density of states may be written as 
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The quantity 

the use of nondimensional variables giving rise to factors 
that are absent in (36). 

The continuum analog of the action (37) is 

where E~ =#/~MV;/~ and also Eo = (6/1r4) 2'3~c,, Ecr be- 
ing the critical depth of the potential well of volume vo; M 
is the electron effective mass as defined by the dispersion 
law (6). 

The function &TI may be written as 

and the combination B(T-it) is defined by 

The analog of Eq. (40) is 

where 

(1-c)A exp{ - tq?:,(x) 1 
utr(x> = - w 11- e+ ( 1  -~)exp{-rq:~(x)>]' 

(70) 

The solution of this equation is given in Ref. 15. 

5.2. Critical Cluster Separation 

It is now of interest to analyze conditions for bound- 
state formation from the viewpoint of the system ( 17). For 
a bound state to exist in the case we consider it is necessary 
that attracting centers (i.e., A atoms) form a cluster whose 
strength equals or exceeds the critical value of the attrac- 
tive potential. Noting that the potential depth is bounded 
by ( 1 - c) A in the present model, Eq. ( 17) yields the fol- 
lowing criterion for the existence of a zero-energy bound 
state in a spherical A cluster: 

(71) 

The probability of occurrence of such a cluster is 

( ln(io'c) JoRcr d 3 R ] .  exp -- 

with 

is the Green's function of the virtual crystal in the contin- 
uous limit. For RGR,,, the radial wave function behaves 
like 

The requirement for a bound state to exist is obtained from 
(7 1 ) by integrating over R at R =O to give 

and the probability of a minimum-size critical cluster in 
the case of random occupation is 

Compact clusters of radius R,, will occur with the highest 
probability. Larger critical clusters are less probable be- 
cause of the B atoms they incorporate: these acting as re- 
pulsive centers, the integral in (71) is reduced in magni- 
tude, and a larger domain of integration is required to 
achieve the critical situation. 

There is an important point to note about the fluctua- 
tions producing localized states with finite localization en- 
ergy as different configurations are counted: these must 
necessarily be stronger than the critical cluster and so are 
bound to include one version of a critical cluster as their 
part. All other things being equal, the most probable fluc- 
tuations incorporate the most probable critical cluster, that 
is, a compact A cluster. We will take this condition to play 
the role of constraint (iv) in the weak scattering case. 

5.3. Exponentially accurate solution for fluctuations with a 
critical cluster 

An important question is how the solution will change 
if only fluctuations with a compact critical cluster are in- 
cluded. Obviously, the potential depth in a volume of ra- 
dius Xc, will become ( 1 -c)A because of the volume being 
filled by A atoms. When only those configurations satisfy- 
ing this condition are considered, then the action (67) is 
replaced by 
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where 

Minimizing this action yields the equation 

with the potential energy 

The potential energy transforms to 

The solution to Eq. (78) with potential (83) will be ap- 
proximated with the solution of the equation 

Equation (78) has spherically symmetric solutions 
over the entire energy range 0 < w < ( 1 -c)  A. On substi- 
tuting the solution into (77),  the density of states follows 
(apart from the pre-exponential factor) as with the potential energy 

where 

x (477-/3)~:, in l /c  [ln 9 (  -it)]> (,, I tr 

Note that as X,,+O, Eqs. (77)-(80) go over to the corre- 
sponding formulas of Ref. 15. In the limit w -. ( 1 -c)  A, 
Eq. (80) yields the Lifshitz singularity 

in which 

For lower energies o < ( 1 -c)  A we retrieve the Urbach 
decrease with parameter EU accurately representable by 

P=( (1 -c)A 

Substitution of (83)  and p,(x) into (84) now yields 
As o -0, we can again simplify Eq. (80) by noting that the 
potential wells produced by the fluctuations are in this Xm 3 

limit mainly determined by the critical-size spherical clus- 0SXc! *q:(x) 
t= 

ter we have defined. Equation (78) then turns out to be C (  I - C ) A S ~ ~ $ ~ X [ ~ : ( X )  l 2  ' (87)  

solvable at small values of t, so that the exponentials in 
(77) and (79) can be expanded in powers of t to obtain We find, after some manipulation, that in this limit 
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where 

m exp ( -4XcrY) 
dY. 

For small values of w, the last expressions yield the depen- 
dence 

with the quantity 

slowly varying with w on account of the integral c. For 
mgEBE, we may expand the exponential-neglecting the 
slow variation of e- to  obtain p(w) with the same linear 
dependence as given in ( 1 ) . 

5.4. Numerical calculation 

Figure 1 presents the results of the numerical solution 
of Eq. (76) for the exponential part of p(w). For compar- 
ison, we also show the results which were obtained from 
Eq. (69) without invoking the critical-size cluster concept 
and are in fact identical to the results of Ref. 15. 

The quantity In [p(w)] is measured in units of 
[Ecr/( 1 -c)h1312, the common multiplier to all the terms 
involved. 

With increasing energy, p(w) plotted on a linear scale 
is seen to first vary almost linearly in the range O<w 
<0.07A. Following this it goes over to the Urbach falloff 
behavior which gradually gives way to the characteristic 
Lifshitz singularity. 

Starting from w 0.1 A, our results are virtually iden- 
tical to those of Ref. 15. 

5.5. Exponentially accurate solution for a three-component 
system 

In a frequent experimental situation a disordered sys- 
tem contains some relatively small number of deep centers 
which produce a characteristic tail in the density of states. 
We model such a three-component system by a disordered 
solid solution with addition of a small number 
cI<c, (1 -c) of deep substitutional centers of type I. The 
composition of such a solution may be written as 
AJ,,B, We ignore the formation of deep-center clus- 
ters as well as the effect of the deep centers on the average 
potential (E),, and we assume, as before, that the depth of 
binding fluctuation-induced potential wells is 

FIG. 1. Exponential part of p (o ) .  Curve I:  solution of Eq. (78) in 
accordance with (80); Curve 2: Urbach approximation; Curve 3: solution 
of Eq. (69) and calculation of expression (67) (agrees with the results of 
Ref. 15 ); Curve 4: curve I in a linear scale; Curve 5: linear approximation 
for the band-edge region, the calculations were made for the concentra- 
tion c=0.1 using the common multiplier v,,= [E,,/(l -C)A]"~ as the unit 
for ln[p(w)] (this holds also for curve 5). Inset: experimental data4 on 
the one-electron density of states near the band edge and in the band gap 
of amorphous silicon ( Eo= 5 1 MeV). 

( 1 -c) A < E,, . We visualize a deep center as a spherical 
potential well of volume vo, whose depth is much greater 
than its critical value, A,, Ec,. In this situation, two types 
of localized states can occur: first, states having an critical 
A cluster at their center and, second, deep centers sur- 
rounded by the potential fluctuation of the solid solution 
A$l-,. (The probability of finding a deep center within a 
critical cluster is assumed to be negligibly small). The ac- 
tion describing the first type of states is given by Eq. (77), 
whereas the additional terms in the Green's function and in 
the density of states are characterized by a deep-center- 
related action representable as 

where 
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2Mw 3v0 ' I 3  

x 0 = ( 7 )  (F) 
In the approximation considered, Eqs. (77) - (82)  remain 
unchanged and minimization of the action ( 9 2 )  leads to 
the equation with a potential energy of the form 

For t=O the problem reduces to that of solving the Schro- 
dinger equation for a spherical potential well with a deep 
level at w = w l .  For small departures from w, we let 
ptr (x )  s p I ( x ) ,  the solution of the Schrodinger equation 
for a spherical potential well of radius Xo and of depth A,. 

The behavior of the density of states in this vicinity is 
analogous to that in the strong scattering case. Under the 
Gaussian assumption it is found that, to exponential accu- 
racy, 

where 

with the normalization condition 

Since the shape of the deep-center band also depends on 
the fluctuation-induced potential in the binary solution, it 
contains some information about this potential, to be use- 
fully added to that obtainable from the Urbach parameter 
E,  and from the slope of the linear dependence near the 
band edge EBE. However, in the practical use of this addi- 
tional information one cannot avoid encountering the in- 
tegral I:, which is unfortunate because 1: is determined by 
the shape of the deep-center wave function and is not al- 
ways describable well enough by that of a spherical poten- 
tial well. 

5.6. Pre-exponential factors and an estimate of the range 
of validity of the theory 

Everywhere in the range 

the density of states may now be written as a sum of two 
terms, 

p ( w )  + P I ( @ ) .  

Taking account of the pre-exponential factor we have 

where, using ( 7 8 )  and ( 7 9 ) ,  S[p:,t] is transformed into 

x [In 9 ( - i t ) l ' t q ; )  

+  do) 3 ' 2 ( 4 ~ / 3 )  xir In l/c, ( 9 8 )  

and  TI takes the form 

Here 

The deep-centers contribution is 
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where ~ ~ [ q f ~ ]  is generally 

x [In 9 (  -it)]' 2)+ln l/cI, 
*%I 

( 101) 

and where 

Expanding 2 [ 7 ]  and g I [ r ]  in powers of r ,  retaining only 
second-order terms, we obtain after calculating the Gauss- 
ian integrals 

(103) 

where 

a2 
[ln 9?(-it)]:T=-7 [In 9 ( r - - i t ) I  lT=o. a 

The integral 

Jir d3x[ln I( -it) I:, 

can be evaluated, using the approximate solution for q,(x) 
[Eq. (86)] as w+O. This gives the energy indicative of the 
statistical scatter of the localization energies. 

The last expression may also be written as 

Similarly, we may estimate the deep-center contribution: 

y1= 4-, (106) 

where the quantity 6LOI is defined by Eq. (96). An order- 
of-magnitude estimate for 6LmI may be obtained using the 
wave function of a spherical well of volume vo, with depth 
given by the deep center perturbation potential AI . 

Letting w -+ 0 in ( 105 ) we see that y, becomes equal to 
and exceeds the localization energy when w =aME,  where 

States with u<uME cannot be regarded as localized, so that 
the quantity WME actually gives an estimate of the position 
of the mobility edge as well as defines the range of appli- 
cability of the instanton approximation. 

6. DISCUSSION AND COMPARISON WITH EXPERIMENT 

The total density of states per lattice site for energies 
below Eg is estimated by using Eqs. (88) and ( 104) for 
small localization energies in the approximate calculation 
of the first term in ( 103). We find 

where 

These states are due to compositional fluctuations in the 
system and their number is naturally limited by the num- 
ber of compact-i.e., most probable-critical clusters. Sim- 
ilarly, using (95) and ( 106) in the second terms in ( 103) 
we obtain cI as the number of deep centers per lattice site. 

Expression ( 108) also provides a rough estimate of the 
number of localized states in the system, which in a more 
rigorous treatment is estimated by numerically evaluating 
the integral 

Both these estimates may be compared with the experi- 
mentally measured number of states below the mobility 
edge. Experimental data show (see Winer et ale4 and ref- 
erences therein) that the number of (localized) gap states 
is much smaller than the total number of band states. This 
is easy to understand if we note that expression (108) 
turns out to be greater than unity in the weak scattering 
case, when the maximum depth of a potential well is less 
than the critical value Ecr of the potential. 

Two other quantities which give a ready comparison 
with experiment are the slope of the linear dependence 
near the band edge EBE(91) and the Urbach parameter 
E"(81). The ratio of these has the advantage of being free 
of the most sensitive part of the dependence on Ecr. 

The above three characteristics of the energy spectrum 
can yield three major parameters of the theory: the con- 
centration (c), the amplitude of the random potential (A), 
and the critical depth of the site perturbation potential 
(E,,) .  If one of these can be determined independently, the 
above experimental data are quite sufficient for the quan- 
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titative verification of the theory. The parameter Ec, seems 
to be the easiest to determine independently because to 
estimate it all we must know is the effective mass of the 
carrier and vo. Estimates of this kind seem to be possible 
both for amorphous silicon and for glass. In isoelectronic 
solid solutions usually the amplitude of the random poten- 
tial and the concentrations are known with good accuracy, 
which makes these materials excellent candidates for the 
study of the (one-electron) density of localized states. 

The study of the shape of the deep center band also 
yields valuable insights. In amorphous silicon, the amount 
of broadening of the band can already be predicted if only 
the first three quantities characterizing the density-of-states 
tail are taken as fitting parameters; in a more accurate 
calculation, the whole of the band shape can be recon- 
structed. 

In Fig. 1 our results are compared, in a qualitative 
manner, with experimental data on the one-electron den- 
sity of states in amorphous ~ i l icon .~  The calculations are 
limited to the exponential part of p(w) and neglect the 
presence of the deep center band. According to Ref. 4, the 
mobility edge of the material is at 5.7 eV, which means that 
the linear region we have near the band edge lies almost 
entirely above the mobility edge. The estimate ( 107) also 
suggests that the mobility edge is above the Urbach region 
while at the same time remaining in the lower part of the 
linear portion of the spectrum (1). As a whole, there is a 
undeniable resemblance between the theoretical and exper- 
imental spectra. 

Accounting for the pre-exponential factor in the range 
w)wME cannot worsen the qualitative agreement with ex- 
periment. In the range O < W < W ~ ~  the localization index in 
the pre-exponential factor clearly prevents the use of the 
latter energy dependence in the form we have obtained. 
However, noting that the density of states has no singular- 
ities at the mobility edge, it may be justifiable to consider 
the exponential factor (90) alone when interpolating to 
these energies. 

  here exists e~idencell-'~ for a more complex behavior of the density of 
states in deep-impurity bands. The complicating factors include the de- 
generacy lifting by fluctuations in the closest en~ironment;"~'~ the for- 
mation of complex clusters of impurity centers;l3.l4 and uniform broad- 
ening. These questions will not be pursued in the present paper. 
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