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A density-functional method for describing soft solids is developed. The method is based on 
the introduction of the Edwards-Anderson order parameter for these amorphous 
substances. A thermodynamic description of irregular polymer networks, formed both near 
and far from the gel-formation threshold by cross-linking of linear chains, is obtained 
with the help of the method. It is shown that in the abbreviated description of soft bodies on 
the basis of the theory of elasticity Landau's free-energy functional must be regarded as 
a random quantity. The distribution functions of the parameters of this functional were 
calculated with the help of the density functional method. A theory of relaxation 
processes in strongly deformed polymer networks is constructed and it is shown that it agrees 
with the experimentally observed dynamics of the butterfly effect. 

1. INTRODUCTION 

Interest in so-called "soft" solids-materials which can 
deform significantly without rupturing-has increased sig- 
nificantly in the last few years. Rubbers, gels, and polymer 
melts (studied over finite times) are examples of such ma- 
terials. Soft solids are interesting not only because of their 
important practical applications but also because of the 
unusual results obtained in experiments on low-angle neu- 
tron scattering by them. The isointensity scattering curves 
reflect in an extremely illustrative form the elastic proper- 
ties of these amorphous materials. 

~ lass ica l l~ , ' -~  the isointensity curves for materials sub- 
jected to uniaxial tension should be ellipses. Such curves 
have indeed been observed at short times (or, equivalently, 
at low temperatures) after instantaneous stretching of 
polymer networks and At longer times (or at high 
temperatures), however, the isointensity curves became 
butterfly-shaped, peaking in the direction of stretching of 
the network (so-called anomalous butterfly effect; see Fig. 
1 ) .%' 

The spectrum of theoretical explanations of these un- 
usual results is extremely wide. It has been shown8-" that 
butterfly figures are obtained even when thermodynamic 
fluctuations of the density are taken into account, but in 
this case the peaking occurs in a direction perpendicular to 
the direction of stretching of the material (normal butterfly 
effect). To explain the experimentally observed patterns 
for the anomalous butterfly effect it was hypothesized that 
statistical fluctuations of the moduli of elasticity are due to 
networks of point defects which become frozen-in during 
the preparation process.'2 Such networks of point defects 
evidently do not occur in polymer melts, so that this hy- 
pothesis is obviously insufficient to explain the effects un- 
der discussion. In Ref. 11 it was suggested for this purpose 
that thermodynamic fluctutations of the density be taken 
into account as strain-tensor-independent variables. 

Thus the basic question of the theory of soft solids- 
the relation between their microstructure and the macro- 
scopic elastic characteristics which determine the scatter- 

ing intensity-remains open. In the present paper, in order 
to clarify the physical situation, we study a clearly defined 
model of a network that is prepared under conditions of 
equilibrium with respect to the formation and breaking of 
chemical cross-links between chains in the network. Un- 
fortunately, the method of replicas,13,14 which permits a 
rigorous analysis of such a model, is itself a "black box." 
By means of simple analytical calculations it makes it pos- 
sible to obtain the experimentally observed butterfly-type 
isointensity but it says nothing about the 
physical meaning of these patterns. Another significant 
shortcoming of this method is that it cannot describe dy- 
namical processes. For this reason, we first translate the 
results obtained by the replica method into the standard 
language of the theory of elasticity, which we then employ 
to describe relaxation processes in polymer materials. 

One of the most important and often discussed ques- 
tions in the theory of soft solids is the spatial size of 
frozen-in nonuniformities. According to most modern the- 
ories of high elasticity, spatial correlations over scales 
larger than the unit-cell size of the network (or quasinet- 
work in melts) do not exist. At the same time, 

indicate that gels exhibit significant hetero- 
geneity over significantly larger scales. 

We show below that there exist two types of spatial 
nonuniformities in gels. The first type corresponds to non- 
uniformities of finite size, formed at the time the network is 
prepared and deformed in an affine manner together with 
the network. These are the nonuniformities that in Ref. 12 
are modeled by point defects and which, according to a 
valid remark made in Ref. 11, do not occur in the case of 
a melt consisting of finite-size molecules. It is significant 
that when networks are formed, it is not the density of 
their monomeric units that is fixed but rather the chemical 
(topological) structure of the networks, which is uniquely 
determined by their density. Nonuniformities of the second 
type are related with this ambiguity. In amorphous solids 
such nonuniformities, being the static analog of the stan- 
dard Brownian thermal motion, do not have a maximum 
characteristic scale and they are virtually independent of 
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the conditions under which the network is prepared. It is 
this type of statistical fluctuation that remains in deformed 
melts of polymer molecules and is responsible for the scat- 
tering anisotropy observed in such melts. 

From the standpoint of the standard Landau 
approach1' nonuniformities of the first type are described 
by a single-component density of monomeric links, while 
the multicomponent nature of the order parameter-the 
strain tensor 

is important for the existence of long-range correlations of 
the second type. A characteristic feature of the theoretical 
description of amorphous bodies is the ambiguity of the 
displacement vector u,(x), where p=x,  y, z. This ambi- 
guity is associated with the impossibility of introducing an 
undeformed spatially uniform state. Such an undeformed 
state in amorphous materials is characterized by a spatially 
nonuniform density distribution {n(x)). This ambiguity 
does not occur when the system is described in terms of the 
density distribution {p(x)), connected with the strain ten- 
sor ( 1 ) by the relation 

p(x) =n(x) -p  2 u,,(x), (2)  
P 

where p is the volume-averaged density. The condition 
I u,, I .< 1, which is not significant for ordinary solids, is not 

FIG. 1. Experimentally observed dynamics of the 
butterfly effect in statistically cross-linked polymer 
 network^:^.' a) before the sample is stretched; b) im- 
mediately after the sample is stretched uniaxially; c )  
appearance of butterfly wings at small wave vectors q 
(the characteristic time and temperature are t=10 
min and T =  140 'C);  d) stabilized butterfly effect at 
long times (high temperatures). 

suitable for describing soft solids, which in the experiments 
of Refs. 3-7 undergo a strong anisotropic deformation, 
with respect to the conditions under which they are pre- 
pared, by a factor A, > 1 along the corresponding coordi- 
nate axes p=x,  y, Z. This limitation strongly restricts the 
applicability of Landau's classical approach to the descrip- 
tion of such substances. 

In the present paper we take as the undisturbed state 
the strongly nonuniform state of an affinely stretched net- 
work. The density n(x) in such a state is related to the 
density p(0)(x) by the following obvious relation under the 
condition that the network is ready at the moment its 
chemical structure is fixed: 

Here and below the notation A-' - x  is employed for the 
vector with the components Ai'x,, (tensor contraction). 
Since on large scales the stretching of a network is always 
affine, with the choice of (3) the long-wavelength compo- 
nents of the strain tensor ( 1 ) are small and can be cor- 
rectly described even in the Gaussian approximation. 

The Ginzburg-Landau microscopic approach, a brief 
exposition of which is given in Ref. 15, is developed in Sec. 
2 for describing polymer networks. In Sec. 3 it is shown 
that a polymer network is described by the solution of the 
Ginsburg-Landau equations with spontaneously broken 
translational symmetry and the free energy of the undis- 
turbed state of the network synthesized both near and far 
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from the gel-formation threshold is found. In Sec. 4 it is 
shown that the elastic properties of networks are described 
by the Goldstone modes and the coefficients A and 5 in the 
expansion of the Landau free energy in powers of the strain 
tensor ( 1 ) are found: 

where T is the temperature. 
From the standpoint of Landau's expansion (4)  the 

random stress tensor 5 is the source of the spatial nonuni- 
formities. In accordance with the results of the general 
theory of disordered medial8 the fluctuations of the elastic 
moduli A, as studied in Ref. 12, are negligibly small com- 
pared with the effect of fluctuations of 5. In Refs. 9-12 an 
alternative choice of displacement vectors u was employed: 
They were chosen from the condition that there be no 
linear terms in the expansion (3). In so doing the frozen-in 
nonuniformities are taken into account by finding the den- 
sity distribution n(x) in the undisturbed state. Unfortu- 
nately, this problem was not considered at all in Refs. 
9-12, which, with n(x) =const, are restricted to much 
weaker fluctuations of the modulus of elastic A. 

Detailed information about the microscopic structure 
of networks can be obtained by introducing into the net- 
works quite short polymer chains. In the experiments of 
Refs. 4 and 5, the dynamics of the intensity of scattering by 
such deuterated chains after the network is stretched in- 
stantaneously was studied. The theory of the correspond- 
ing relaxation processes is constructed in Sec. 5. 

2. DENSITY-FUNCTIONAL METHOD FOR DESCRIBING 
POLYMER NETWORKS 

Collective variables 

The basic concepts of a rigorous thermodynamic de- 
scription of a system of linear chains were developed in 
Refs. 19 and 20 with the help of the path-integration 
method. In this approach the state of a polymer system is 
characterized by a set of microscopic coordinates xi(s) of 
the sth monomeric unit (0  < s < I) in the ith chain. Signif- 
icant progress in the theory of polymer liquids was 
achieved by transferring from the coordinates {xi(s)) to 
the densities of the monomeric units as collective macro- 
scopic variables 

NS 

pS(x)= i J1ds(6(x-x~(s))). o (5) 

Here the summation extends over all Ns chains in the sys- 
tem and the angle brackets indicate a thermodynamic av- 
erage. In addition to solutions consisting of linear chains, 
the transformation (5) to the collective variables also 
makes it possible to describe a sol-a system of finite-size 
branching macromolecules. 

In this section we show how the method of collective 
variables can be extended so as to describe gigantic branch- 
ing macromolecules-polymer networks, which are ob- 
tained by random cross-linking of linear chains with one 

another during the process of formation of cross-links. The 
topological structure of the network obtained in this man- 
ner is characterized by the collection of numbers s = { ~  j), 
which determine the number s j of the monomeric unit of 
the j th cross-link on the ith The coordinates of 
such a linkage of chains i and j are 

We confine ourselves below to the case of instantaneous 
(irradiation) cross-linkage of chains under equilibrium 
conditions, when the probability distribution of s is deter- 
mined by the expression21 

where z(O) is the partition function of the initial system in 
which the network was formed. In such a system macro- 
molecules of a sol are synthesized together with a gel. For 
this reason their contribution must also be included in 
z'O' (s) . 

Our aim is to describe a network with a fixed chemical 
structure s in a finite system, where the network can be 
subjected to swelling or stretching. We denote the partition 
function of the network in this system by Z(s) .  In the 
experiments the sol is first flushed out of the polymer net- 
work. For this reason Z(s) ,  in contrast to z(O)(s), is de- 
termined only by the contribution of the gel. The main 
problem here is the mathematical description of the proce- 
dure of eliminating the sol from a finite system. In the case 
of the networks studied by ~ d w a r d s , ' ~ ' ~ '  which were ob- 
tained far from the gel-formation threshold, there is no sol 
and such problems do not arise at all. Similarly to Ed- 
wards' derivation,'l the free energy of the network which 
we studied 

can be expressed in terms of the free energy 

of a replica system, in which the sol occupies three- 
dimensional space and the gel occupies a space of dimen- 
sion 3 ( 1 +m). The coordinates (x(O),x('), ..., x ( ~ ) )  of the 
point X in such a replica space comprise a collection of 
coordinates x ( ~ )  of the replicas k=O, 1, ..., m, each of which 
is determined in the usual three-dimensional space. 

By analogy with the formula (5), we introduce as the 
collective variables the density of monomeric units of the 
gel in replica space 
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where the summation extends only over N g  chains of the am 
gel. In accordance with the second equality in Eq. ( lo) ,  eXP(-T) 
the density pg(X) is the generalized Edwards-Anderson 
order parameter, which is well known in the theory of cBCps1 
disordered systems.22 It describes the overlapping of the = I D p s ( x ) [ D p B ( ~ ) e x p [ - -  
replica k=O of the initial system, in which the network was 
prepared, and the replicas k =  1, ..., m of the final system 

- fi",~CPg) 1 under the conditions of an experiment. According to the -- 2 I dxdx'W(X-x')pb'k' 
definition ( lo) ,  the density of monomeric units of the gel 2 k = 1  

in the kth replica is connected with the order parameter by 
the relation 

In the case of uniform networks the densities pg(k' do not 
depend on x. For this reason, pg(X) can depend on the 
coordinates of the replicas only through their linear com- 
binations 

A glassy state is described by an order parameter with 
broken symmetry between replicas.23 In what follows, we 
confine our attention to temperatures T above the glass- 
transition temperature of the polymer, when the order pa- 
rameter is symmetric with respect to permutations of its 
arguments ( 12). 

Density functional 

As in ordinary thermodynamics, the succeeding anal- 
ysis is most conveniently done within the grand canonical 
ensemble, whose potential is related to the free energy 
(9) of the replica system by the standard relation 

Here za and p are the activities of the monomeric units and 
cross-links, and Nc is the number of cross-links. Substitut- 
ing the relation (13) into Eq. (8) and using the conditions 
( 14) we express the free energy of the network in terms of 
the potential f l  as follows: 

Here the functions w(O) and w describe the interaction of 
monomeric units in the initial and final systems, and the 
fact that the total density of the monomeric units in the 
initial system is pS+@(0) has been taken into account. The 
thermodynamic potential of the so-called system of chem- 
ical bonds,25 whose monomeric units do not interact with 
one another and occupy the 3 ( 1 + m ) -dimensional replica 
space, is denoted by a, cB. Since in this system different 
macromolecules do not interact with one another, the ther- 
modynamic potential of the system splits into the separate 
contributions of the gel ( g )  and the sol (s): 

The integration in Eq. (17) extends over the densities pg 
and p" p- pg of monomeric units in the gel and sol, re- 
spectively. 

The sol thermodynamic potential differs from 
R, cB only by an infinitely small negative correction to the 
activity za-za-0, which in the thermodynamic limit 
Ng- co eliminates the contribution of the gel macromole- 
cules. The equation (17) can be regarded as an equation 
for the thermodynamic potential cB of the gel. Below 
the gel formation point it has only the trivial solution 

which corresponds to no gel (@=O). Networks obtained 
far from the gel point are another trivial particular case. 
For these networks 

in accordance with the absence of a sol (p"0) in such a 
TO obtain an explicit expression for a, we note that system. 

the collective macrovariables introduced above can fluctu- For our model the functional a, cb can be represented 
ate around their average values. For this reason, the par- in the form 
tition function of the grand canonical ensemble is repre- 
sented in the form of a functional integral over the 

am cs{pl= IdX[g 
fluctuating densities of the sol (5)  and gel (10) (see, for T 
example, Ref. 24): (20)  

81 1 JETP 76 (5), May 1993 S. V. Panyukov 81 1 



The quantity a in Eq. (17) determines the size of a mono- 
meric unit. The gradient term was first obtained by 
~ i f s h i t z ; ~ ~  it originates from the Jacobian of the transfor- 
mation from integration over the microvariables {xi(s)) to 
functional integration over the collective macrovariables 
p(X). The logarithmic term in Eq. (19) is equal to the 
translational entropy of chains of the network (the replica 
system is a liquid), and the term -pp2/2, which can be 
rewritten in the form2' 

determines the contribution of chemical cross-linkages (6) 
to the Ginzburg-Landau functional (20). 

Thus we have developed in this section a density- 
functional method for describing polymer networks, ob- 
tained with the help of chemical cross-linkages of polymer 
chains. In melts their role is played by "physical" cross- 
linkages-topological linkages of chains and the ratio 
Nl/N,zN,= 100-300.~~ In this case, the state of the net- 
work before instantaneous stretching should be taken as 
the initial system, and the density functional describes the 
elastic properties of a quasinetwork of cross-linkages over 
times that are much shorter compared than the maximum 
relaxation time 7, cc 

3. SPONTANEOUS BREAKING OF TRANSLATIONAL 
SYMMETRY 

Neglecting density fluctuations, the functional inte- 
grals ( 16) and ( 17) over pS and pg can be calculated by the 
saddle-point method. We consider first the initial system, 
setting in the saddle-point equations m =O. Expressing 
with the help of the relations ( 14) the activities z, and p in 
terms of the density of monomeric units p(O) = NI/v(') and 
the density of cross-linkages ~ : O ) = N J V ( ' )  of such a sys- 
tem with volume flO), we find 

where p=p:O)/p(0) is the conversion ratio of the initial 
system. Here and below w, designates the Fourier compo- 
nents of the corresponding function w(x). The nontrivial 
solution pg(0) = p(O)@ > 0 of the saddle-point equations 

exists only for p >pc= 1/21. 
We now return to the general case m+, when it is 

convenient to introduce instead of the densities p and p" 
the order parameters for linear chains:26 

The functions pb and pd are the densities of monomeric 
units in the backbone of the network and the density of 

dangling ends of the network, which are connected to the 
backbone at only a single point. These quantities play an 
important role in the modern theory of nonideal 
 network^.^' 

The multidimensional equations, determining the 
saddle-point trajectory, can be solved only because such a 
solution has extremely high symmetry, which also enables 
explicit analytical continuation to m = 0. The Ginzburg- 
Landau functional (20) is isotropic in replica space. In the 
solid phase this symmetry is broken spontaneously, since 
the condition ( 12) separates three directions along the unit 
vectors 

Our solution (12) can depend only on the components 

RI =x- C E,(xE,) (24) 
P 

of the vector X which are perpendicular to the vectors EP 
(23). Moreover, owing to the rotational symmetry of the 
functional R, (20) the solution depends only on the 
quantity 15'16 

For p >pc the desired solution has the form 

where the function qC1 is determined in the limit m -0 by 
the equation 

with the boundary conditions 

Substituting this solution into the relations ( 15)-( 17) 
we find with logarithmic accuracy the following expression 
for the free energy of the network: 

The cyclic rank r of the network and its conversion ratio 9 
are, respectively, 

According to Eq. (26) the quantity r determines the num- 
ber of elastically effective chains which are constituents of 
the backbone of the network. The logarithmic term in Eq. 
(26) describes the decrease in the entropy of these chains 
due to their localization on a scale ~=.a(p--p~)-' in the 
network. In Flory's theory28 this effect is neglected and the 
term In V appears in the free energy. 

The form of the expression (26) corresponds to the 
theory of James and ~ u t h , ~ ~  which is based on the assump- 
tion that the stretching of the network is affine. The affine 
property is manifested explicitly in the symmetry of our 
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solution (25) with respect to simultaneous displacement of 
the coordinates x ( ~ )  of a11 replicas by the vectors 
u ( ~ )  =A . u(O) with the components 

Thus the widely d i s c ~ s s e d ~ ~ - * ~  affine nature of network 
stretching is the result of neglecting fluctuation effects. In 
what follows Landau's approach will be employed to study 
fluctuation effects theoretically. 

4. THEORY OF ELASTICITY OF STRUCTURALLY 
DISORDERED NETWORKS 

In the classical theory of elasticity1' an abbreviated 
description, in which the displacement vectors u ( f )  re- 
ferred to the coordinates Z of the undeformed body are 
chosen as the order parameter, is employed. As shown 
above, for disordered solids the order parameter is the den- 
sity pg(X) of monomeric units in replica space. These two 
order parameters are related by the collective coordinates 
u ( ~ ) ( x )  of the Goldstone modes, which appear in the 
density-functional method as a result of spontaneous 
breaking of translational symmetry in replica system. 

The central concept in the derivation of Landau's func- 
tional (4) is transforming in the formula (16) from inte- 
gration over pg(X) to an integral over the collective coor- 
dinates u ( ~ ) ( x ) .  We show below that in these variables the 
partition function of the replica system can be represented 
in the form 

( f'{u(:n,a) 
xexp - 

Substituting the formula (29) into Eq. (15) for the free 
energy of the system we find the expression 

which makes it possible to regard the functionals 

as probability distributions of the density n(x) of the un- 
disturbed state (2) and the stress tensor 5 as well as to 
identify F with the desired Landau free-energy functional 
(4). Thus the transformation to collective variables u ( ~ )  
makes it possible to find not only Landau's functional but 
also the distribution function of the random parameters 
appearing in it. 

Goldstone modes, together with thermal excitations 
(acoustic phonons), also describe static nonuniformities 
which are present in networks and which cause network 
stretching to lose its affine nature (28). These soft modes 
correspond to a displacement of the replica coordinates 

by independent displacement vectors dk)( j i ) .  By analogy 
to the classical theory of elasticity, we assume that the 
coordinates FP=APxr) of the vector Z=A x are equal to 
the coordinates of the undisturbed state (3), obtained by 
affine stretching of the initial system. We emphasize that 
our choice of the undisturbed state not only is not unique 
(see the Introduction), but also differs from the standard 
definition of the collective  coordinate^^^ for the soliton so- 
lution ?, (2) (25). According to Ref. 30, one should set 
%=APRrR]! (where R? =EPX are the longitudinal coordi- 
nates (24) ), which differs from our choice by terms which 
are linear in the coordinates x ( ~ )  of the replicas k= 1, ..., m 
of the final system. Our choice was based on considerations 
of physical clarity, which is not always synonymous with 
mathematical simplicity. 

Together with the Goldstone modes, it is also neces- 
sary to take into consideration excitations which do not 
reduce to elastic shear deformations (30). These are the 
excitations that describe density fluctuations in the initial 
system (which is a liquid) and fluctuations of the density 
of monomeric units of dangling ends in the final system. 
Let v ( ~ ) ( x ( ~ ) )  designate fields which induce such density 
fluctuations in the kth replica. In the long-wavelength limit 
such fields give the corresponding correction to the chem- 
ical potential of the monomeric units of the replica system: 

With Eqs. ( 30) and (3 1 ) the expressions for the order 
parameters I,!? and $ assume the following form to first 
order in the functions u and v: 

We substitute the expansions (32) into the argument of the 
exponential function in Eq. (16), in which only the terms 
quadratic in 6$ (32) should be retained. Switching in Eq. 
(16) to integration over the collective variables u ( ~ )  and 
dk) and calculating the Gaussian integrals over the fields 
dk) by the saddle-point method, we find 
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where, for subsequent identification of the denqities @ ( k ) ,  
(k=  1, ..., m ) ,  we introduced the fields h ( k ) ( x ( k ) )  associated 
with them. The functional fi diagonal in the replicas is 

The first term in brackets in Eq. ( 3 4 )  corresponds to the 
elastic contribution ( a r )  to the free energy ( 2 6 )  of the 
network; the second term corresponds to the contribution 
of interactions ( a w o )  in Eq. ( 2 6 ) ;  the term proportional 
to h  gives the energy of the external field. 

We now consider terms in the expression ( 3 3 )  which 
are off-diagonal with respect to the replicas: 

where p8 is the dimensionless structure factor of the net- 
work. The function 89(O) is the Fourier component of the 
fluctuations of the density of monomeric units of the gel in 
the initial 

The tensor function 

depends only on the topological characteristics of the net- 
work. 

In order to represent the expression ( 3 3 )  in the form 
( 2 9 )  we introduce with the help of the Hubbard- 
Strattonovich transformation the Gaussian fields 

adjoint to the variables <, and sPq in Eq. ( 3 3 ) .  In the 
coordinate representation the first equality in Eq. ( 3 8 )  has 
the form ( 3 )  with the obvious substitution p  -+ pg, and the 
second term is the usual relation between the force f1 ( x )  

and the random stress tensor 8 ( x )  generating it. The cor- 
relation function of the density field pg(0)  is defined in Eq. 
( 3 6 ) ,  and the correlation function of the average force f1 
has the form 

f ; q f t - q = f P v , i . q .  ( 3 9 )  

We note that the dependence of the correlation function 
( 3 9 )  and ( 3 7 )  on the wave vector q corresponds to the fact 
that the spatial fluctuations of the tensor 8 ( x )  ( 3 8 )  at 
different points x'#x are independent of each other; this is 
a consequence of the long-wavelength approximation. 

The following expression is obtained from Eq. ( 3 3 )  for 
the Landau free-energy functional: 

where the coefficient in front of the external field h - ,  is the 
density p: of gel monomeric units. In the coordinate rep- 
resentation the expression for @ ( x )  assumes the form ( 2 )  
with pg replacing p. The Fourier components of the ran- 
dom force f are 

I1 f' f P q = f  Pq + Pq r f !q= - iA:qP@nq/gg. ( 4 1  

As discussed in the Introduction, the components fll and 

f1 of the force f have different origins: fii is the gradient of 
the field v(x) =@($) - l p g ( 0 ) ( x )  of density nonuniformi- 
ties stretched affinely with the network, while f1 is gener- 
ated by the statistical fluctuations of the topological struc- 
ture of the networks. 

In accordance with the form of the correlation func- 
tion of the random force ( 3 7 )  f1 can be expanded into a 
sum 

f:,=f;,-jA:9&> 

of statistically independent contributions of the network 
backbone f b  whose correlation function 

is proportional to the number r  ( 2 7 )  of elastically effective 
chains of the backbone and the contribution ( cc, fS' )  of 
frozen-in fluctuations of the density of dangling ends [cor- 
responding to the definition in Eq. ( 2 2 ) l .  

The term linear in u and proportional to f can be re- 
moved from the Landau functional ( 4 0 )  by making an 
appropriate choice of the undisturbed state: 

Here the functions uli and u1 , generated by the corre- 
sponding components of the random force ( 4 1  ), do not 
depend on the degree A, of the stretching of the network; 
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ull describes finite-size spatial nonuniformities of the net- 
work and u1 is the static analog of Brownian motion, in 
particular, 

The expressions ( 35)- (4  1 ) obtained above determine 
completely the elastic properties of significantly irregular 
phantom polymer networks, obtained both near and far 
from the gel-formation threshold. 

5. RELAXATION PROCESSES IN DEFORMED NETWORKS 

General theory 

The dynamics of relaxation processes in solids is de- 
scribed by the Langevin equations:33"7'20 

According to Ref. 17, the dissipative stress tensor has the 
same tensor structure as the stress tensor a,, ( 4 3 ) :  

where 17 and 5 are the effective coefficients of viscosity. The 
Fourier components of the correlation functions of the ran- 
dom Gaussian force ( have the same form as the dissipative 
tensor (44): 

q,q,) +2Cq,qv16(t-t'). 

( 4 5 )  

Operating with the operator d /dx ,  on both sides of Eq. 
( 4 3 )  and summing over p, we find an equation for only the 
density of monomeric units of the network: 

In order to find the initial conditions to this equation we 
consider a network which is swelled by a factor of A  with 
respect to the conditions under which it was synthesized. 
In typical relaxation experiments, at the moment t=O such 
a network is subjected to instantaneous stretching by a 
factor of a, = A,/A along the corresponding axes ,u =x,y,z. 
Owing to the affine nature of this stretching and our choice 
of the affinely deformed undisturbed state ( 3 )  we have 

This initial condition can be rewritten directly in terms of 
the density of monomeric units. Neglecting the change in 
the total volume of the network (a#,,a,=l) under 
stretching, we obtain from Eqs. ( 4 0 )  and ( 4 7 )  

The solution of the Langevin equation ( 4 6 )  for t >  0  
has the form 

where 

Here n; is the Fourier component, introduced in Refs. 15 
and 34, of the density n ' ( x )  of monomeric units in the 
undisturbed state ( 4 2 ) ,  i.e., the density maximizing the 
entropy functional of the network. The first two terms in 
the formula ( 4 9 )  describe density relaxation over times T ,  

from the value pi(  + 0 )  for an affinely stretched network 
to its equilibrium value, minimizing the free-energy 
f ~ n c t i o n a l ' ~ ' ~ ~  

The last term in Eq. ( 4 9 )  describes the contribution of 
thermal fluctuations. For the quantity pi( + 0 )  appearing 
in Eq. ( 4 9 ) ,  we obtain from Eq. ( 4 6 ) ,  with the help of the 
condition ( 4 8 ) ,  the expression 

xn; I o 
p;( + O )  =-- 

x+Wa.q ( a . 0 2 ( C + 4 7 , / 3 )  I-, d7 

Averaging over random Gaussian forces and f with 
the correlation functions ( 4 5 )  and ( 3 6 ) - ( 4 1 ) ,  we repre- 
sent the correlation function of the fluctuations of the den- 
sity of monomeric units in the network 

for t  > 0  as a sum of contributions of thermodynamic fluc- 
tuations 

exp ( - 2 t / r q )  1 - exp ( - 2 t / ~ ~ )  
G q ( t )  = 

X + W , . ~  
+ 

2, f wq 
9 ( 5 1 )  

and statistical fluctuations 
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where we have set 

For networks obtained far from the gel-formation thresh- 
old ( p >  1/1), the expressions (50)-(52) in the limit t -  co 

were obtained previously on the basis of the thermody- 
namic theory. '5"4 

Comparison with experiment 

Relaxation processes in a polymer network have been 
in greatest detail in experiments on neutron scattering by a 
polymer solvent, consisting of quite short chains, inserted 
in the network. The entropy contribution of such chains to 
the free energy of the system is 

where N is the number of monomeric units in a single 
chain and c is the average density of monomeric units of 
the solvent. The local density c(x) in the melt is related to 
the density p (x)  of monomeric units in the network by the 
incompressibility condition c, = - p, . For this reason, in 
accordance with the formula (53), a two-component sys- 
tem consisting of a network and a polymer solvent can be 
viewed as a single-component system with an effective in- 
teraction parameter w, = S; ' (53). Fifty-percent solutions 
of chains can also be described with the help of the above- 
obtained results, if the lengths and density of monomeric 
units of a chain are expressed in units of de Gennes blobs.26 
Thus the intensity of neutron scattering, which is propor- 
tional to the correlation function of the density fluctuations 
of the solvent, 

is determined completely by the expressions (5 1 ) and ( 52) 
with w, = s;' (53). 

In practice, it is more convenient to vary the temper- 
ature T instead of the time. In accordance with the expres- 
sion (50), at low temperatures (in the limit t+O) the 
isointensity scattering curves are ellipses whose major axes 
are perpendicular to the direction of stretching of the net- 
work. ~ x ~ e r i m e n t a l l ~ , ~  at short times t 5 T, and small wave 
vectors q there also appear, against the background of the 
classical ellipses, butterfly wings which are oriented along 
the direction of stretching of the network. As the temper- 
ature and time increase further, this picture of the anom- 
alous butterfly effect extends to increasingly higher values 
of q and at long times it assumes the form shown in Fig. Id. 
We do not consider here the stabilized butterfly effect, 
since it was studied in detail in Ref. 34. 

In the experiments of Ref. 5 the characteristic relax- 
ation times T, were of the order of the corresponding re- 

laxation times of a mixture consisting of the same unlinked 
chains. For this reason, the effective coefficients of viscosity 
7 and f in Eq. (59) are of the order of the coefficient of 
viscosity of the monomeric units of these chains. 

6. BASIC RESULTS 

In this paper a new theoretical approach was proposed 
for describing soft solids. The most important class of sub- 
stances of this type are polymer networks. The density- 
functional method, which is well known in the theory of 
liquids, was extended, on the basis of Edwards generalized 
approach,I4 to the description of solids of this type. The 
topological structure of polymer networks is very irregular. 
For this reason, within the density-functional method their 
properties are described by the Edwards-Anderson order 
parameter ( lo) ,  well-known from the theory of spin 
glasses. 

The solid state corresponds to an order parameter with 
spontaneously broken translational symmetry. Goldstone 
modes corresponding to such symmetry breaking describe 
elastic deformations in solids. The obtained effective 
Hamiltonian (33), which depends on the collective coor- 
dinates of the Goldstone modes, made it possible to find 
Landau's free-energy functional (40). In contrast to the 
standard theory of elasticity, this functional is itself a ran- 
dom quantity, characterized by the distribution functions 
of the parameters of the functional. 

It should be especially noted that in order to describe 
soft solids it is necessary to give, together with the field of 
the displacement vectors {u,(jZ)) (or the strain tensor 
( I ) ) ,  also the density distribution {n(x)) (2), which is 
related uniquely to the choice of the argument jZ of the 
function up(JZ). Unfortunately, the existence of this gauge 
field n (x), which compensates the indefiniteness of the 
variable up (see Introduction), was ignored in attempts to 
adapt the classical theory of elasticity to the description of 
the amorphous substances ~ tud ied .~ - '~  The physical vari- 
ables, such as the density p(x) of monomeric units (2), do 
not depend on the specific choice of gauge. In the present 
work we employed the simplest "affine" gauge ~ , = i l , x ~ ' ,  
to which the function n(x) in Eq. (3) corresponds. 

We note that the existence of the above-considered 
gauge freedom falls outside the scope of the models studied 
here and is a specific feature of systems with frozen-in 
disorder, in which the variable n(x) must be treated as an 
independent random field. Together with the random dis- 
tribution {n (x)} the most important stochastic parameter 
of the Landau functional is the random stress tensor 
{Zp,,(x)}, which describes irregular internal stresses in 
amorphous solids. Such stresses lead to the appearance of 
strong nonuniformities, distributed randomly in space, in 
the solids. 

The effect of such static nonuniformities is most strik- 
ingly manifested in the appearance of the butterfly effect in 
deformed soft solids. We studied the dynamics of this effect 
and showed that our theory describes the basic experimen- 
tally observed features of the relaxation of density fluctu- 
ations. 
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