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A new thermoelectric mechanism, which, like the well-known buoyancy and thermocapillary 
mechanisms, can lead to instability of a heated liquid and to cellular convective motion, 
is analyzed for liquid semiconductors (semimetals). It is shown that electric-field structures 
arise together with convection cells. Possible mechanisms for thermal convection are 
compared and it is shown that the thermoelectric mechanism is more important in thin layers. 
A hierarchy of scales is established. The thermoelectric mechanism makes possible 
convection with heating from above or from the free-surface side, which is impossible with 
the other excitation mechanisms. The amplitudes of the velocity and electric field 
which arise in the process are calculated. The effect of different types of boundary conditions 
as well as rotation on the excitation conditions is taken into account. Comparison is 
made with existing experiments and new experiments are suggested. 

1. Thermal convection in a liquid semiconductor the coefficient of kinematic viscosity and the thermal dif- 
(semimetal) differs from the case of an ordinary liquid in fusivity, respectively), make it necessary to introduce the 
that in the semiconductor case the difference of the tem- new dimensionless number 
peratures T, and T, of the hot and cold surfaces, respec- 
tively, results in the appearance of an electric field E. More 1 / 2 ~ ~ ~ d ~  

$ = ------ , 
precisely, the temperature gradient Pxv (1) 

where d is the distance between the experimental surfaces, 
generates a stationary thermoelectric field Eo= yVTo de- 
termined by the thermoelectric power y, which is signifi- 
cant for semiconductors (semimetals) . 

A fluctuation-induced deviation of the temperature by 
T1 from the equilibrium value To results in the appearance 
of an electric field E1=yAT1 and an associated space 
charge with density enl =&yAT1 (n is the density of carri- 
ers with charge e), determined by the dielectric permittiv- 
ity E of the semiconductor. The presence of this charge in 
the "external" field yA results in the appearance of heat- 
induced electric-force density E ~ A V  T~ . 

It is this latter force that competes with the conven- 
tional buoyancy force, which is generated by thermal ex- 
pansion (coefficient p) and under such conditions can be 
written as p&gTl ( p  is the density of the liquid and g is 
the acceleration of and with the thermocapil- 
lary force uAT, ,~  arising due to the temperature depen- 
dence of the surface tension a. 

The structures arising due to thermoelectric instability 
are a variety of electric convection  structure^.^ For this 
reason, the thermoelectric mechanism, in contrast to non- 
electric mechanisms of excitation of thermal convection, 
also operates with heating from above or from a free sur- 
face, when the buoyancy (Rayleigh) or thermocapillary 
(Pearson) forces do not operate. In the case of excitation 
from a free surface, surface waves can appear in addition to 
the motion excited by the thermoelectric effe~t."~ 

The excitation conditions, i.e., the conditions under 
which the thermoelectric force predominates over the vis- 
cosity and heat-conduction dissipation forces (v and x are 

which has the value $*=40 at the moment cellular con- 
vective motion appears with longitudinal and transverse 
cell dimension ratio -- 3. 

The number tY has the same meaning as the Rayleigh 
and Marangoni numbers: 

P g ~ d "  R=- 
aAd2 

M=-  
xv ' pxv ' 

which must reach values of approximately 1000 and 80 
with cell dimension ratios of about 4 and 4.5 in order for 
instability to be induced by the buoyancy force2 or ther- 
mocapillary force,3 respectively. 

According to Eqs. ( 1 ) and (2) the numbers R and M 
are directly proportional to A, so that they depend on the 
direction of heating. Excitation by the mechanisms deter- 
mining these numbers is impossible in the case of heating 
from above or from a free surface. The number 69 does not 
depend on the direction of heating. Thus in order for ther- 
moelectric excitation of cellular convective motion in ex- 
periments to be distinct from excitation by buoyancy or 
thermocapillary forces the heating must be done from 
above."1° It is found that for long pulses ( -- 1 msec) and 
irradiation energy not much greater than the energy re- 
quired for melting, the ratio of the dimensions of the al- 
loying zone, i.e., the zone where motion occurred, is of the 
order of 3. Surface waves, which compete with this mech- 
anism with respect to energy absorption, in principle can- 
not give such a ratio. 

This paper is organized as follows. In Sec. 2 the prob- 
lem of excitation of thermal convection in an infinite flat 
layer is formulated, taking into account the thermoelectric 
effect. In Sec. 3 this problem is solved and the excitation 
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conditions and the coordinate dependence of the velocity 
and electric field which are excited in the process are found 
for free and isothermal boundaries. In this case exact an- 
alytical solutions can be obtained and the qualitative effects 
can be analyzed. It is also shown how thermoelectric con- 
vection interacts with Rayleigh convection. In Sec. 4 it is 
shown that the same results are obtained with more real- 
istic boundary conditions-a solid lower boundary. It is 
also shown how the thermocapillary effect affects thermo- 
electric convection. In Sec. 5 the amplitudes of the motion 
and electric field arising with the instability are calculated 
and the nonlinear problem is solved. In Sec. 6 the effect of 
rotation of the liquid on the excitation effect is examined. 
Finally, in Sec. 7 experimental data are analyzed and it is 
proved that thermoelectric convection must be taken into 
account in order to explain the phenomena observed in 
thin films and in the case of heating from above. 

2. The linearized system of equations describing the 
effect of the instability consists of the equation of motion1 

where v and p are, as usual, the velocity and pressure, 
respectively, and enlEdpo is the Coulomb force, and the 
usual equations-the equation of continuity for an incom- 
pressible liquid div v=O, the equation of continuity for the 
current div(El - yVT1) =O in the presence of only a ther- 
moelectric field, the equation of electrostatics 
divEl = enl/&, and the heat-conduction equation (assum- 
ing Joule heating is small) %AT1 - ( v  V) To=O. 

Stationary excitation of convection is studied in the 
Boussinesq approximation.2 

Oscillatory convection is not excited for the same rea- 
sons as in an ordinary liquid (see also Sec. 6). 

In the flat-layer model we orient the z-axis perpendic- 
ular to the surface of the layer, so that the acceleration of 
gravity g will be directed in the opposite direction. 

The variables p l ,  T1, nl , and El are eliminated by the 
standard m e t h ~ d . ~ , ~  The result, obtained from Eq. (3), is 
an equation for u,, where the following units are intro- 
duced in order to make the variables dimensionless (retain- 
ing the notation): length-layer thickness d; velocity-v/ 
d; time-d2/v; pressure-v2p/d; temperature-Adv/x 
=AdP; intensity-YAP; and, electric charge density- 
~yA/d. This gives the equation 

which is of the same degree (sixth) as the equation for 
conventional Rayleigh convection. The upper and lower 
signs corresponds to heating from below and above, respec- 
tively. 

In the model of an infinite flat layer, the translational 
symmetry along the layer makes it possible to seek a solu- 
tion in the form 

where k,,y=2~d/A,,y. This definition of the wave vector 
6 = k:+ k; corresponds to an arrangement of the coordi- 

nate system such that the cell boundaries are 
x,y= +A,,J2, where A,, are the cell dimensions in the 
longitudinal directions. The equations then become ordi- 
nary differential equations with constai~t coefficients, and 
the solution of these equations has the form exp(ikg), 
where k, is, generally speaking, a complex variable. 

In order to solve the problem completely it is also 
necessary to have six boundary conditions in order to de- 
termine u,, T1, El, and nl ,  and two additional conditions 
at the boundary in order to determine u,, v,, El,, and El,. 
We now formulate these conditions. 

Besides the natural "noneflux" boundary condition 
v,=O, there can be two types of boundary conditions:273 1) 
isothermal conditions on a solid surface TI  =0 and attach- 
ment conditions v,= v, = 0, whence follows auJdz = 0, and 
2) conditions on a free boundary, when the components of 
the stress tensor are determined by the thermocapillary 
effect av,,Jaz= -MaTl/dx,y. Estimates show (see Sec. 
7 )  that the effect of thermoelectricity can be neglected in 
the boundary conditions. Hence there follows the condi- 
tion 

The thermocapillary effect does not operate at an isother- 
mal boundary. Without analyzing the conditions of heat 
transfer at a free boundary,3 we assume that in the pres- 
ence of the thermocapillary effect the boundaries are ther- 
mally insulated, aT1/dz=O. The boundary conditions for 
the electric field do not depend on the type of boundary 
and consist of the fact4 that the tangential components of 
the electric field vanish at the boundary El,=El,=O. 

Thus the problem of excitation of thermoelectric con- 
vection is a dual eigenvalue problem. Homogeneous 
boundary conditions correspond, however, to a homoge- 
neous system of equations. The condition for the existence 
of a nontrivial solution is the excitation condition. This 
condition can be written as an equation relating 8 and 
k( k, , k, , k,) . The temperature difference Th - T,  required 
in order for an instability to be excited with some ratio 
w=k: /k;, showing the ratio of the dimensions of the con- 
vection cell at the start of the motion, is determined by 
minimizing this relation. 

3. In order to determine the qualitative effects, we give 
the solution of the above-formulated problem in the case of 
free and isothermal boundaries. In this case, just as in Ref. 
2, systematic analysis of the equations at the boundaries 
gives the condition a2"v,/d~"=0 for any integer n. The 
only function that satisfies this condition is v(z) 
= Vsin(.rrz), so that there is no need to solve an eigenvalue 
problem. 

The equation (4) then becomes the excitation condi- 
tion 

whence follow all the well-known1 conditions for excitation 
of Rayleigh convection: R = R* =27.rr4/4= 658 with 
il =il,zA,--4d only in the case of heating from below. 

When only the thermoelectric mechanism operates 
8 = g* =4~?=40 with A =A,--il,z 2 C d ,  irrespective of 
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the direction of heating. Under these conditions the ther- 
mocapillary effect does not influence excitation. It is easy 
to find the range of values of the parameters where the new 
effect predominates: 

The indices show that the force characterized by the sec- 
ond index predominates in the thinner layer and the force 
characterized by the first index predominates in the thicker 
layer. In this region A% = ~ ~ d ~ / d ~ ~ ~  5 AR (the indices cor- 
respond to the excitation mechanisms), i.e., convection 
arises under conditions when Rayleigh convection is still 
impossible. The cell appearing in this case is somewhat 
smaller (by a factor @) in the longitudinal direction." 

The formula (6) makes it possible to analyze the effect 
of the interplay of Rayleigh and thermoelectric convection 
on the excitation condition. 

The effect of Rayleigh convection on the excitation of 
thermoelectric convection in the case of heating from 
above can be significant for analysis of experimental data. 
Using the fact that 8 = 4 ~ ~ ( d 6 , ~ / ( 2 v d ) ~ )  we find that the 
number ,,@ is given by 

which must be minimized. Analysis of this formula shows 
that in the case of heating from above Rayleigh convection 
decreases the ratio of the longitudinal and transverse cell 
dimensions, namely, we) 1 (as opposed to w* = 1 when 
only the thermoelectric effect operates). The ratio 
8 / 8 * =  g / ( 2 ~ ) ~ >  1 at the point of excitation, i.e., as ex- 
pected, the buoyancy force has a stabilizing effect. 

In the case of heating from below, when both effects 
augment one another, R can be easily found as a function 
of 8 with the help of Eq. (6). From this function it is 
possible to determine the values of R (  < 700) and $? 
( < 6.5) at the moment of excitation with a given thickness 
of the layer. In reality, however, in the case of heating from 
below the thermoelectric effect is weak and the thermocap- 
illary effect appears first. The thermoelectric effect is im- 
portant only in layers of thickness such that the thermo- 
capillary effect is stronger than the buoyancy effect (see 
Sec. 4 below ) . 

Using Eq. (5) it is easy to find the convective quanti- 
ties as a functions of the coordinates (in dimensionless 
form) in the case when the Rayleigh and thermoelectric 
mechanisms operate simultaneously: 

u, = - Vk$' os(kg) sin ( k p  + kp);  k,-C 
(7) 

kz 
El,= * Vgcos(kg)cos(k.p+kp); 

Thus electric structures arise together with the usual 
values of the velocity and temperature.2 

It is evident that the boundaries of the electric-field 
structures are also the boundaries of the convection cells 
(velocity structures) and the electric charge depends on 
the coordinates as v,. 

The thermoelectric field generates on the surface of the 
liquid an electric charge with surface density (in dimen- 
sional form) 

which depends only on the amplitude and cell shape at the 
moment of excitation. 

4. For other boundary conditions the excitation prob- 
lem must be solved numerically. The solution in the case 
when the lower boundary is solid and the upper boundary 
is free and isothermal and in the case when both bound- 
aries are solid shows that the critical value of the number 
8 with excitation of purely thermoelectric convection in- 
creases insignificantly ( = 42 and = 45, respectively). The 
ratio of the cell dimensions at the moment of excitation, 
however, remains virtually unchanged and, as before, 
iZ1.3d. 

This result is very similar to the well-known that 
when the boundary conditions change, the critical values 
of R and M change only slightly and the cell-dimension 
ratio at the moment of excitation does not change at all. 

As already mentioned above, the thermocapillary ef- 
fect can be manifested at a free nonisothermal boundary. 
The thermocapillary effect predominates in thin layers, i.e., 
layers thinner than dRM= (cr/(Bpg) ) heated from be- 
low. 

In even thinner layers, whose thickness is less than 

the thermoelectric excitation mechanism predominates 
over the thermocapillay mechanism. 

We note, however, that when the thermoelectric is 
taken into account, structure formation in an ordinary liq- 
uid with a> 0 by the thermocapillary mechanism is, of 
course, possible for any orientation of the layer with re- 
spect to the force of gravity, but it is impossible in the case 
of external heating at a free surface. For this reason, in the 
case of heating through a free surface it is more important 
to take into account the influence of the thermocapillary 
effect on thermoelectric convection. 

Dropping in Eq. (4) the term with R and using bound- 
ary conditions such that the lower boundary is solid and 
the upper boundary is free and thermally insulated we ob- 
tain the excitation condition 

where xi =# * , @ 
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The problem under the same types of boundary condi- 
tions but different heat-transfer conditions at a free bound- 
ary was solved numerically. As in the case when only the 
thermocapillary effect operates, deviation from "thermal- 
insulation" conditions only increases the heat required for 
excitation and does not change the qualitative picture. 

In the case of heating from a free surface M < 0 and % 
can be found as a function of M and kL from Eq. (8). As 
expected, the thermocapillary effect, similarly to Rayleigh 
convection, suppresses somewhat the thermoelectric effect, 
i.e., it increases the value of 69 required for excitation, but 
thermocapillary has the reverse effect on the cell dimen- 
sions, i.e., it increases the ratio of the longitudinal and 
transverse dimensions w* < 1. 

In the case of heating from below, in the region 
dRM > d > dM9, Eq. (8), represented in the form of M as a 
function @, is once again the stability function. The crit- 
ical values M < 80 and i% < 1 1, corresponding to a definite 
layer thickness, can be determined from this function with 
the help of the relation M =  ad/y ( p x v ~ )  -I/' @. 

The ratio of the cell dimensions changes from 4.5 to 3. 
Of course, the quantity dMg is small, but the region 
d < dRM is of some interest. Thus the excitation conditions 
for thermoelectric convection remain qualitatively the 
same for boundary conditions different from free and iso- 
thermal conditions. For this reason, in Secs. 5 and 6 we 
shall once again investigate this physically most pellucid 
case. 

5. In order to calculate the amplitude of the convective 
velocities and fields that arise it is necessary to calculate V 
in accordance with Eqs. (7) .  This can be done using the 
same equations from Sec. 2 but including the nonlinear 
terms (v*V)v and enlEl/po in the pressure equation and 
(v0V) TI in the heat-conduction equation. The other equa- 
tions do not change. All quantities acquire additional 
terms, proportional to the second, third, and so on powers 
of V. Next, carrying out the calculations described in Secs. 
2 and 3 we find that T1 does and v, does not have second- 
order corrections. 

The excitation condition to second-order is 

and makes it possible to find the required amplitude of the 
quantities characterizing the state of the liquid immedi- 
ately after excitation, if R and 69 are somewhat higher than 
their values required for instability to arise. This result 
corresponds to the general assertion1 that the amplitudes V 
of the deviations arising are proportional to the square root 
of the "supercriticality." This is true in both thick layers 
(d>dRg)  heated from below, when Rayleigh convection 
predominates, and thin layers (d<dRg)  or with heating 
from above. Then V- ( tf? - $*) 'I2, and convection cells 
and field structures arise due to the thermoelectric effect. 

The motion and field which arise influence cell shape 
only in the next order of smallness. These corrections, just 
as the correction terms for the convective quantities, can be 
easily calculated by continuing the iterative solution of the 
equations of Sec. 2 taking into account nonlinear terms, 

but the formulas so obtained are complicated and are not 
required in order to analyze the experimental data. 

Thus in the case when the thermoelectric effect pre- 
dominates (the temperature of the cold surface remaining 
constant) and the temperature Th of the hot surface is 
somewhat higher than the value TX required for excitation, 
the amplitude is given in the dimensional form by 

where the amplitude index indicates which mechanism pre- 
dominates when motion with this amplitude is excited. 
Thus for the same parameters of the liquid the amplitude 
of thermoelectric excitation is 1.63 times higher than in the 
case for ordinary convection. 

Under the same conditions the ratio of convective 
quantities and the quantity before excitation of instability 
is 

Using Eq. (9)  it is easy to analyze how the thermo- 
electric effect influences ordinary convection in the case of 
heating from below, but it is more important to indicate 
how Rayleigh convection influences thermoelectric convec- 
tion in the case of heating from above. We have 

The amplitude arising in the case of such stabilizing 
action of ordinary convection decreases somewhat. 

6. For experiments designed to observe and investigate 
the thermoelectric convection conditions when the liquid 
rotates with angular velocity a ,  parallel to the z axis, may 
be more convenient. 

Under such conditions (when the problem contains a 
quantity defined by a polar vector) convection has, besides 
a stationary branch, a branch of growth oscillating with 
frequency w.' 

The effect of the new factor itself is manife~ted',~ in 
that the dimensionless Taylor number ~ a = 4 f l ~ & / d  ap- 
pears in the excitation condition. 

The analysis in the case of thermoelectric convection is 
identical to the case of Rayleigh convection in the presence 
of Only the results are presented here. The con- 
dition (6) is replaced by the formula 
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Hence we obtain for the branch with aperiodic growth 
w=O the same formula (6) but with the additional term 
( -kS~a) .  The excitation condition for the branch with 
oscillatory growth will be 

with oscillation frequency 

These formulas must still be minimized. Minimization will 
show how the cell dimension ratio depends on 111. 

Without dwelling on the case of heating from below, 
we indicate that in the case of heating from above the 
asymptotic values are 

$:t2. (2/7r) ( 2 ~ a / n - ~ )  2/3 and w* = ( 2 ~ a / ? r ~ )  'I3 - 1 

for the aperiodic branch. Since under laboratory conditions 
P e  1 (under astrophysical conditions the case v4x  is pos- 
sible), the differences between the aperiodic and oscillatory 
branches are small. 

Thermoelectric convection in a magnetic field can be 
studied similarly. 

7. The existing experimental data whose interpretation 
may require the concept of thermoelectric convection can 
be divided into two groups. These are BCnard's experi- 
ments on the observation of convection in comparatively 
thin layers of spermaceti heated from below (see the de- 
scription and analysis in Ref. 2). For spermaceti (sper- 
maceti wax) the following values can be used for the pa- 
rameters of the liquid:12.13/3= (9-6) . l ~ - ~  K-l; ~ ~ 0 . 9 - l  

2 g/cm3; ve1-5 mm2/sec; x ~ 5 .  1oP2-1 mm /sec; and, 
a- (3-7) . N/(m. K) .  

Then the thickness is found to be dRM= 1-10 mm. It is 
under these conditions that BCnard performed his experi- 
ments. Quantitative agreement between the experimental 
results and theory was achieved only after Pearson's dis- 
covery of thermocapillary excitation of cellular convective 
motion. l2 

The thermoelectric power y for spermaceti is unknown 
( I  was not able to find a value in the literature). Setting 
y=ak,/e, where kB is Boltzmann's constant and e is the 
electron charge, the value of a can range from lov2 up to 
lo2. The dMg2.2-20 pm, i.e., in experiments with even the 
thinnest layers (d ~ 0 . 1  mm) thermoelectric convection in 
the case of heating from below should be weak. 

The problem of excitation conditions in the case when 
the thermocapillary and thermoelectric effects operate si- 
multaneously with a solid isothermal lower boundary and 
a free thermally insulated upper boundary is solved using 
the relations (8). For d2: 10dMg we obtain 
M = M* ( 1 -0.42z7 ) . Since the quantity 8 itself is small 
(8 =O. 1) in this case, the correction to the critical Ma- 
rangoni number is only several percent. It is important, 
however, that M* decreases; this agrees with calculations 
based on experiments in the thinnest layers. The cell di- 
mension ratio also decreases to 4.14.3 (as compared with 

4.5 in the case of "pure" thermocapillarity). This also falls 
within the purview of thermoelectricity. We note that or- 
dinary convection is completely negligible in layers of this 
thickness. 

Numerous other e ~ ~ e r i m e n t s ~ , ~  on layers of mercury, 
liquid sodium, oils, and so on heated from below have been 
performed in layers of this thickness, for which the ther- 
moelectric effect is insignificant. 

The main types of experiments which can be inter- 
preted on the basis of a theoretical analysis of the excita- 
tion conditions for thermoelectric convection are the ex- 
periments already mentioned in Sec. 1 on laser heating 
from Unfortunately, the experiments described 
in Refs. 6-10 were designed for technological purposes and 
the conditions of these experiments are very different from 
those of the model studied in this work. Although fused 
steels transform into semimetal and have high thermoelec- 
tric power ( a=  loo), in order to check the theory devel- 
oped here it is still desirable to obtain data on laser melting 
in a much wider range. 

The phenomena observed in Refs. 6-8 are explained in 
Ref. 5 by excitation of surface waves. Of course, surface 
waves are observed, but the depth to which the alloying 
material penetrates into the steel cannot be explained with 
the help of surface waves. For the radiation flux densities 
assumed in Ref. 5, there appears a temperature gradient 
sufficientt4 for not only excitation of surface waves on the 
melt but also the appearance of thermoelectric instability. 

Indeed, the intensity of heating from above for which 
the stabilizing effect of the Rayleigh and thermocapillary 
mechanisms is overcome can be found by comparing the 
presented dimensionless numbers R and M with the num- 
ber z7. 

The necessary conditions are A > alp&d2/(y%) and 
A > a2a/(y2z7), where a l  and a2 are numerical factors of 
the order of 1-10. Both conditions are satisfied in the ex- 
periments of Refs. 6-10. 

Comparing to the degree of heating A,, found in Ref. 
5, required for excitation of surface waves the degree of 
heating A g  required for excitation of thermoelectric con- 
vection shows that 

with de0.01 mm, while for thicker layers, as observed in 
Refs. 7 and 8, thermoelectric convection predominates. 

In experiments on thermoelectric convection in rotat- 
ing samples or samples in an external magnetic field, in- 
formation can be obtained by recording the electromag- 
netic radiation emission during the oscillations. 

I thank I. V. Ioffe, who directed this work, for calling 
my attention to this problem. 
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