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It is shown that the scattering of high-energy electrons in a nonequilibrium dense plasma can be 
used effectively for generating hard polarized radiation. Calculations performed for a dense 
lithium plasma showed that the yield of polarized photons with energy O.68E, where E = 150 
GeV, is lo6-10's - ' per electron. 

1. INTRODUCTION 

Theoretists and experimentalists alike are becoming in- 
creasingly interested in the physics of y-y reactions. In this 
connection, the development of experimental methods for 
producing intense fluxes of high-energy ( > 100 GeV pho- 
tons would greatly expand the range of research on 
electroweak and strong interactions, supersymmetry, etc. 
For this reason, the solution of the problem of a source of 
high-energy phonons is crucial for further progress in this 
field of research. 

Existing methods, based on bremsstrahlung from rela- 
tivistic particles in heavy targets, do not produce intense 
photon fluxes in the very hard region in the tail of the spec- 
tral distribution. In spite of the many advantages of the 
method of inverse Compton scattering, there are two prob- 
lems with it: first, the momenta of the accelerated particles 
must be matched with the momenta of the laser photons and, 
second, high laser power ( > 1000 MW) is needed in order to 
transform efficiently the particle beam into scattered pho- 
tons. 

In the analysis of hard radiation processes accompany- 
ing the passage of a relativistic particle through condensed 
media, the medium is usually treated as a source of an exter- 
nal stationary field in which the particle, being scattered and 
using momentum, emits bremsstrahlung photons. Strictly 
speaking, in order to give a complete description of radiation 
phenomena accompanying the interaction of a fast particle 
with a many-body quantum system it is necessary to take 
into account the exchange with the system not only of mo- 
mentum but also energy, the energy exchange process being 
accompanied by quantum transitions between the states of 
the system itself. The case when a high density of coherently 
excited states is created in the system is of special interest. A 
relativistic particle transversing such a system is scattered in 
the electromagnetic field generated by both the charges and 
transitions currents in the medium. For this reason, in addi- 
tion to the usual bremsstrahlung caused by Coulomb colli- 
sions, Compton scattering of the electromagnetic field of the 
medium by the relativistic particle also makes a contribu- 
tion. 

The emission of coherent radiation accompanying the 
uniform motion of a charged particle in excited matter was 
first investigated in Ref. 1. The coherent emission processes 
is studied in Ref. 1 are unrelated to the acceleration of the 
charged particle and are an extension of Cherenkov radi- 
ation to the case of excited matter. Nonetheless, in many 

cases, when, for example, the excited states of the particles of 
the system are not degenerate or are specially prepared, the 
value of the transverse acceleration of a relativistic particle 
(averaged over the positions of the particles in the system ) 
is found to be nonzero, and there arises a coherent contribu- 
tion to the radiation (coherent conversions of excita- 
t ion~' .~ ), and the spectral density of the contribution has a 
maximum in the hard part of the spectrum and is propor- 
tional to the squared density of particles in the system. Due 
to the latter feature the yield of polarized radiation in the 
hard part of the spectrum is significant and under some con- 
ditions can be comparable to the incoherent bremsstrahlung 
background. 

It can be shown that the value of the electric field inten- 
sity in a medium consisting of single-electron atoms aver- 
aged over the ensemble and over the positions of the particles 
in the system is [see also the derivation of Eq. (4.8) below] : 

where N is the number of atoms per unit volume, 
(nip's' ( t )  lm)  are the elements of the single-atom density 
matrix in the Schrodinger representation, and e ( m  lrln) is a 
matrix element of the dipole moment between the states n  
and m. 

It is obvious that the field ( ( 8 ) )  is determined by the 
evolution of the off-diagonal elements of the density matrix, 
since the diagonal matrix elements of the dipole moment are 
zero. Under the usual conditions, when the atomic system is 
an incoherent mixture, the off-diagonal elements of the den- 
sity matrix are zero and, therefore, the average field ( ( %' ) ) 
is also zero. On the other hand, under nonequilibrium condi- 
tions the off-diagonal elements of the density matrix decay 
rapidly due to relaxation mechanisms with characteristic 
times on the order of the lifetime of the excited states. For 
this reason, the field ( ( 65')) should vanish quite rapidly after 
the source responsible for the departure from equilibrium no 
longer acts on the system. 

It should also be noted that when the states n are degen- 
erate the average field ( ( 8 ) )  can be zero because the dipole 
moment vectors corresponding to transitions between de- 
generate states are oppositely oriented. If, however, a state of 
the system is specially prepared with nonzero average dipole 
moment and there exists a mechanism for "replenishing" the 
off-diagonal elements of the density matrix, then the average 
field ( ( %' ) ) will be nonzero and the motion of a relativistic 
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particle in such a field is similar to the motion in an electric 
undulator with "optical" frequency equal to the frequency 
of the corresponding transition n - m. 

These conditions can be realized if, first, the nonequilib- 
rium system is placed in an external magnetic or electric field 
(which lifts the degeneracy) and, second, such a system is 
subjected to steady resonant pumping by an external alter- 
nating field (for example, laser radiation) whose frequency 
is close to that of some transition n +m. Whether the exter- 
nal source of excitation is a beam of charged particles inject- 
ed into the medium or external electromagnetic irradiation 
is essentially irrelevant to the basic questions concerning 
electronic relaxation and the theoretical analysis of the re- 
quired properties of nonequilibrium plasma steadily main- 
tained in this manner. In any case, since this is accompanied 
by excitation of quantum states, in order to solve the prob- 
lem posed it is first necessary to calculate the parameters of 
nonequilibrium and to analyze the population kinetics of the 
excited states. 

In this paper we study the possibility of generation of 
hard photons by an ultrarelativistic electron beam in the 
process of scattering in a nonequilibrium medium, in which 
a high density of nondegenerate coherent quantum states is 
created. A model of a steady source of hard photons is pro- 
posed and analyzed on the basis of coherent conversion of 
atomic excitations. The system of units with 6 = c = 1 is 
employed throughout. 

2. RELAXATION EQUATIONS FOR THE DENSITY MATRIX 

Below we write out the system of equations describing 
the relaxation of a homogeneous atomic plasma with a sim- 
ple chemical composition. We assume that a Maxwellian 
distribution with temperatures T, = T, = T is established 
beforehand over the translational degrees of freedom of the 
electrons and heavy particles. In addition, we assume that 
the system is subjected to an alternating field V(t), whose 
frequency f l  is close to the frequency of some atomic transi- 
tion 2 - 1. We represent the interaction of the atoms with the 
applied field as follows: 

For electrical dipole transitions, for example, the interaction 
operator is 

where E( t )  = E cos(flt) is the intensity of the external elec- 
tric field. 

The complete equation for the elements of the density 
matrix in the Schrodinger representation, taking into ac- 
count the interaction with the field (2.1 ) and the relaxa- 
tional processes accompanying the interaction of the atoms 
with free electrons and with one another, has the form 

where Ekm = Ek - E m ,  Em is a bound-state energy, and 
R,,,, is a relaxational matrix, whose elements depend on the 
character of the relaxational processes which are taken into 
account. The most general expression for the relaxational 

matrix is given, for example, in Ref. 4. 
It is convenient to analyze Eqs. (2.3) for the off-diag- 

onal elements of the density matrix ( k  #m)  in the interac- 
tion representation. Taking into account the explicit form of 
the interaction operator (2.1 ) and the properties of the re- 
laxational matrix (see Ref. 4),  it can be shown that the off- 
diagonal elements of the density matrix satisfy the equations 

The coefficients ykm in Eq. (2.4) are, generally speaking, 
complex: 

and they have the following physical meaning: TI;:, charac- 
terize the magnitude of the shift of the line on the transition 
k - m due to relaxational mechanisms and y;, is the relaxa- 
tional broadening of the corresponding line. 

Taking into account the fact that the frequency R is 
close to the frequency of the atomic transition 2 - 1 substan- 
tially simplifies Eqs. (2.4). In this case the nonzero off-diag- 
onal elements of the density matrix will be p12 and pZ1,  
which satisfy the equation 

In the resonance region S1 z E ,, and the low-frequency 
term exp [ i ( n  - E ,, ) t ]  makes the main contribution to the 
right-hand side of Eq. (2.5). For this reason, in a first ap- 
proximation the rapidly oscillating terms exp[i(fl 
+ E,,)t] zexp(i2flt) can be neglected (the so-called "ro- 

tating wave approximation"). Then, instead of Eq. (2.5), we 
have the equation 

The general solution of Eq. (2.6) corresponding to the 
stationary case p,, = p,, = 0 is 

dt exp [y21 t + i(E2, - Q)t ]  + const (2.7) 

If, initially, at time to- - CO, before the interaction 
V(t) is switched on, the atomic system is an incoherent mix- 
ture, i.e., p,, = 0 at t = to, then the constant is zero. Thus it 
follows from Eq. (2.7) that 

In the Schrodinger representation the solutions (2.8), are, 
correspondingly, 
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The equations (2.4) [or (2.6) ] must be supplemented 
by a system of equations for the diagonal elements of the 
density matrix, which are the relative populations of the 
atomic states N, (p,, = N, /N). Such a system includes 
the equations of population balance together with the addi- 
tional condition of particle number conservation: 

(for a quasineutral plasma, we have N + = N, , where N + 

and N, are the ion and electron densities, respectively). 
The population balance equations can be written in the 

form 

In what follows we consider the case of steady recombi- 
nation, i.e., the right-hand side of Eq. (2.1 1) is identically 
zero. The solutions of Eqs. (2.4), as already mentioned 
above, must be found from the condition that the diagonal 
elements of the density matrix are stationary b.,, = 0. 

The elements of the truncated relaxation matrix K,, 
(in contrast to the full matrix R,,,, ) give the average num- 
ber of transitions of an atom per unit time from the state m 
into the state n. The diagonal element K,, determines the 
total flow of particles out of the state n per unit time. The 
quantity D, characterizes inflow from the continuum. 

When the degree of ionization is high the relaxation 
processes are determined completely by collisions with elec- 
trons and by radiative transitions. According to Refs. 5 and 
6, for N,/N=: 10 - "quenching" by electrons and by atoms 
become equally efficient. Thus for Ne /N > 10 - electronic 
collisions dominate, and heavy particles can influence the 
population only in the presence of resonant processes7 
(charge exchange, resonant transfer of excitation, or the 
Penning effect). 

Thus we write, taking into account only radiative tran- 
sitions and collisions with electrons, 

whered,, is the probability of a spontaneous radiative tran- 
sition, V,, is the rate of inelastic collisions with excitation of 
an atom, and vm, is the rate of superelastic collisions with 
deexcitation of an atom. The two collisional transition rates 
are related by the principle of detailed balance: 

where g, is the statistical weight of the state n. 
The elements of the relaxation matrix (2.12) must also 

be supplemented by terms which describe transitions in- 
duced between atomic states by the external field (2.1 ). The 
corresponding probabilities per unit time for nondegenerate 
states have the form 

On the basis of the physical meaning of the elements of 
the matrices y,, and K,, considered above we can write the 
useful relation 

In a dense low-temperature plasma radiative recombi- 
nation can be neglected compared with three-particle re- 
combination, and it can be assumed that 

where Vem is the rate of three-body recombination in the 
state m. A diagonal element of the relaxation matrix can 
then be written as 

where V,, is the rate of ionization of the level n by free elec- 
trons. This rate is related to the inverse process, three-body 
recombination, by the principle of detailed balance: 

where ge and g + are the statistical weights of the electron 
and ion, respectively. 

Semiempirical formulas, which agree well with existing 
experimental data, are usually employed to calculate the 
collisional transition rates V,, and V,, . Detailed reviews 
and monographs on this topic, which give more complete 
information about the character of collisional transitions in 
different atoms, are available (see, for example, Refs. 7 and 
8). In the next section more useful formulas are presented 
and the relaxation matrix is calculated for a dense lithium 
plasma. 

The formulas (2.8) and (2.9), derived above, together 
with the numerical solution of the stationary system of equa- 
tions (2.1 l )  make it possible to estimate the average field 
( ( g ) ) in accordance with Eq. ( 1.1 ) . If, in particular, it is 
assumed that I V,, I =: 10 - l9 ergs, which corresponds to an 
external excitation field of approximately 10 V/cm, then the 
average field generated in the medium, according to Eq. 
(2.9) withN> loz0 cmP3 and (21r/ 1) -- l o p 8  cmwillbe, in 
order of magnitude, > lo6 V/cm. This high value of the 
average field ( ( 8) ) is due to the resonant character of the 
interaction V(t) of the external source with the plasma. 

As pointed out in the Introduction, if the states are de- 
generate, then the field ( ( 8 ) )  can vanish completely be- 
cause the dipole moment vectors between states with the 
same energy are oppositely oriented. This situation can be 
eliminated, for example, by applying a magnetic field that 
lifts the degeneracy. 

Consider a two-level system in which the state 2 is dou- 
bly degenerate. Let the state vectors be (2') and 12"), respec- 
tively. According to Eq. ( 1.1 ), the average field ( ( 8 )  ) is 
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If the degenerate states correspond to different projec- 
tions of the orbital angular momentum (for example, P- 
state, I  = + 1 ), then 

(1 1r12') = -(11r12") 

and the field (2.19) is identically zero. Now let the degener- 
acy be lifted by an external magnetic field with intensity H 
and frequency such that 

where A is the shift of the eigenvalue E2 due to the external 
magnetic field: 

A = * # ,  

,uB is the Bohr magneton and g is the gyromagnetic ratio. It  
is easy to see from Eqs. (2.19) and (2.9) that the ratio of the 
two terms of different sign in Eq. (2.19) in this case is 
1 + A/l K , , + K ,, I in order of magnitude. Consider as an 
example the 2Pand 2Satomic states of the lithium atom. The 
energy of the degenerate transition 2P-2s is 1.844 eV 
( A  = 6707.8 A). In an external magnetic field of intensity 
H = 1.54- lo5 Oe the energy of one of the 2P-2s transitions 
which are split apart (I = - 1) is equal to the energy of 
argon laser photons9 (a = 1.838 eV, A = 6730 A),  and the 
shift is A = 6.345- eV. It is easy to show that 

1 + AlIK,, + K2,1 = lo3 

and the contribution of states to Eq. (2.19) which do not 
satisfy the resonance condition (in this case the 2Pstate with 
projection of the orbital angular momentum I  = 1 ) can be 
neglected. Thus the above estimates show that it is indeed 
possible to obtain a polarized ensemble of atoms by applying 
an external magnetic field and a resonant alternating elec- 
tromagnetic field. 

3. RELAXATION MATRIX OF A LITHIUM PLASMA 

In order to determine the transition rates and to calcu- 
late the elements of the relaxation matrix we employ the 
empirical data presented in Ref. 10. The rate of a collisional 
transition from a level characterized by the quantum 
numbers n,, I ,  to the level n,, I, is determined by the formula 

where 

F,,, is the energy of the state n, I  (measured from the continu- 
um), A E  is the energy of the corresponding transition, 
x = JAE J /T , ,  and Ry is the Rydberg constant. The values of 
the parameters A and x depend on the transition and are 
tabulated in Ref. 10. 

The collisional ionization rates V,, can be approximat- 
ed quite accurately by the Beigman-Vainshtein formula" 

where the function G , ( x )  is tabulated for a wide range of 
values of the parameter x. For values ofx outside the interval 
given in the tables of Ref. 11 the following approximations 
can be used: 

For further calculations we consider the example of a 
dense ideal plasma with atomic density N = lo2, cm- at a 
temperature of 0.23 eV (or 2668 K) .  This choice of values is 
dictated by the fact that the vaporization temperature of 
lithium is 0.14 eV (or 1590 K )  and the density of the solid 
phase is N = 4.6. cmP3.  A dense gas with this density 
and temperature exerts a pressure of 2.6. lo5 Pa (or 2.6 atm) 
on the vessel walls. Obviously, there is no difficulty in pro- 
ducing and maintaining a medium without such parameters. 

The equilibrium free-electron density is determined 
from the well-known Saha distribution (see, for example, 
Ref. 12): 

where I is the ionization potential and a = N, / N  is the de- 
gree of ionization, which even for T <  I is quite high and 
becomes greater than l o p 6  at temperatures T >  0.2 eV. In 
the latter case, as indicated above, the main mechanism of 
electronic relaxation is collisions with free electrons and the 
relaxation kinetics is determined by the equations presented 
in Sec. 2. 

The values of the elements of the relaxation matrix and 
the collisional transition rates for a low-temperature 
( T <  1.0 eV) dense lithium plasma are given in Table I. 

4. EQUATIONS OF MOTION AND RETARDED POTENTIALS 

The classical equations of motion of a relativistic parti- 
cle in an electromagnetic field produced by the medium have 
the form 

where p is the momentum of the relativistic particle and (A) 
and (p ) are the ensemble-averaged potentials of the field 
generated by the particles of a nonrelativistic quantum sys- 
tem. 

In order to solve this problem we employ a modified 
semiclassical method. A rigorous justification of this meth- 
od is given, for example, in Ref. 13. The incident electron is 
considered to be a classical spinless particle, and the retard- 
ed potentials of the external field are replaced by the matrix 
elements of Heisenberg operators, determined by the transi- 
tion currents between states of a nonrelativistic quantum 
system, for example, an ensemble of single-electron atoms 
which scatter the incident electrons: 
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TABLE I. Relaxational matrix and collisional transition rates in a lithium plasma with N = loz2 
cm - ' and T = 0.23 eV. 

where 

We write the statistical ensemble-averaged potentials of the 
field as follows: 

Vm. cm3/s 
0 

7.9.10-'O 
2.6.10-" 

9.5.10-Is 
4,9.10-l6 
3.1 .lo-" 
2,7.10-l7 

0 

3.8. lo-'' 
2.0.10-" 

7.5.10-'~ 
4.0. lo-13 
4,4. 10-1' 

0 

2.0.10~~ 
1,6.lO-~ 
3,7.10-~ 

2,7.10-' 
0 

1,3.10-4 
l,l.lO-' 
7,8.10-9 

0 

3,6.10-' 
1.9.10-' 

0 

1,4.10-~ 
0 

n-m 

1-1 

2- 1 

3-1 
4- 1 

5-1 
6- 1 

7-1 
2-2 

3-2 
4-2 

5-2 

6-2 
7-2 

3-3 
4-3 

5-3 
6-3 
7-3 

4-4 
5-4 
6-4 
7-4 
5-5 
6-5 

7-5 
6-6 

7-6 
7-7 

wherepk",' are the elements of the reduced single-atom den- 
sity matrix in the Heisenberg representation, which are cal- 
culated in the basis of functions $, ( r ) .  

If the system under consideration consists of an ensem- 
ble of single-electron atoms, then the potential of the nuclei 
or ionic cores @, which are assumed to be stationary, must 
also be added to the average potential (q, ) in Eq. (4.1 ). In 
this case the basis functions $, (r) are the single-electron 
wave functions of an isolated atom. 

In order to investigate the electromagnetic radiation 
arising with scattering by a many-body quantum system the 

spectral density must be averaged over the coordinates of the 
particles of the system. In so doing, the coherent and inco- 
herent contributions to the spectral density can be separated. 
The coherent radiation in the dipole approximation is deter- 
mined by the average (over the positions of the particles of 
the system) value of the transverse acceleration of the rela- 
tivistic particle. The incoherent radiation is determined by 
fluctuations of the transverse acceleration caused by uncor- 
related collisions of the relativisitic particle with atoms of 
the system. 

In order to analyze the coherent radiation the equation 
(4.1 ) averaged over the coordinates of the particles in the 
system must be solved. As a result of such averaging we ob- 
tain 

K,,,,,, l /s  

-1.8.10~ 
1,9.10'0 
1,4.109 
1.2.10~ 
4,8.107 
1,1.108 

7.6.107 
-3.8. 101° 
2.0.10"' 
2.5. 109 

7.8.10' 
1.5.10~ 
1,2.10a 
-9,2.1010 
1,1.10" 

6,5.109 
5.8, 109 
3,0.109 

-3,3.1012 
2.3.10'~ 
7,1.1010 

3.7.10~ 
-4.5. loi2 
3,2.101° 

1.3.10'~ 
-6,2 lo'' 
2.3.10" 
-2.4.10" 

where the double brackets indicate averaging over the co- 
ordinates of the particles and statistical averaging over the 
ensemble. It is easy to show that 

The intensity of the electric field, averaged in this man- 
ner, is [see also Eq. ( 1.1 ) ] 

Km.. 1/s 

-1.8.10~ 

l,8.107 
5.9.102 
2.2.102 
1.1 .lo' 

7.0.10-' 
6,3.10-' 
-3.8.10'~ 
8,6.106 
4,b. ld 
1.7.Id 
9.1.10' 

1.o.10' 
-9.2.10~~ 
4.5.10'~ 

3.7.109 
8.6.10' 

6,1 .lo7 
-3.3.10'~ 
3.0.10'~ 
2.5.10~ 
1.8.10' 
-4,5.1012 

8.2.10' 
4.4-10' 
-6,2.101' 
3.2.10" 
-2.4. lot3 
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v,, cm3/s 
0 

8,3.10-~ 
6.3.10-' 
5,4.10-' 
2,1 .lo-9 
5.0. lo-9 
3,3-10-~ 

0 

8.7.10-~ 
l,l.~O-~ 

3.1 .lo-' 
6,3.10-' 
5.1 .lop9 

0 

4.7.10-~ 
2,8.10-~ 
2.5.10-~ 

1.3-10-~ 
0 

9.9.10~~ 

3,1 
1,6.lO-~ 

0 

1.4.10~~ 

5,5.10-~ 
0 

I.O~IO-~ 
0 



Thus Eq. (4.6) together with the relation (4.8) will 
make it possible to determine the average value of the trans- 
verse acceleration and to calculate the coherent contribution 
to the electromagnetic radiation of the relativistic particle. 

An equation describing the fluctuations of the trans- 
verse acceleration can easily be derived from Eqs. (4.1 ) and 
(4.6): 

where 6p = p - (p), and we have used the fact that averag- 
ing the last two terms on the right-hand side of Eq. (4.1) 
over the positions of the particles in the system gives zero. If 
only the Coulomb interaction of the relativistic electron with 
the atoms of the system is taken into account in Eq. (4.9), 
then 

where @(r  - r, ) is the potential of the nuclei or ion cores. 
The derivation of Eq. (4.10) took into account the fact that 
the off-diagonal matrix elements (4.3) are zero. 

The solution of the equations of motion (4.1), (4.6), 
and (4.10) can be represented as a power series in the small 
parameter 1/E, where E is the energy of the incident parti- 
cle.14 Then we write the transverse component of the accel- 
eration of the particle as follows: 

where 

The value of the radius vector of the unperturbed rectilinear 
motion r = r, + v,t, where r, and v, are the initial coordi- 
nate and velocity of the particle, must be substituted on the 
right-hand side of the relation (4.13). 

5. SPECTRAL DENSITY OFTHE RADIATION 

If over the coherence length the scattering angle of the 
particle is small compared with the characteristic emission 
angle m/E, then the formula for the spectral density of the 
radiation in the frequency interval ( a ,  w + dm), taking re- 

coil into account in the quasiclassical approximation, can be 
written in the form15 

d~ e2 E~ + El2 --  - - 
d o  4n EE' 

where E ' = E - w,pl = m2w/2EE ', and W (p) are the Four- 
ier components of the transverse acceleration: 

It is easily shown from Eq. (4.12) that the maximum 
angle of deflection in the case of motion in the field (4.8) is 
approximately em, =:4.~e~Na,A,, /E, where a, is the Bohr 
radius and A,, = l/Emn. From the condition for the appli- 
cability of the formula (5.1 ) Omax 4 m/E it follows that the 
dipole approximation is valid if 

where A, is the Compton wavelength of the electron. It is 
easy to see that for Em, =: 1 eV the last condition always 
holds with a large margin. In accordance with Eq. (4.1 1 ) we 
can write 

Since averaging of 6W (p) over the positions of the par- 
ticles gives zero, it is easy to show that after averaging the 
spectral density (5.1) will have the form of a sum of two 
terms: 

where the first term on the right-hand side of Eq. (5.4) de- 
scribes coherent radiation and is determined by the Fourier 
components I (W (p) ) l 2  and the second term describes inco- 
herent radiation and is determined by the Fourier compo- 
nents (ISW(p) 12). The theory of incoherent radiation in a 
medium is quite well developed (see, for example, Refs. 13- 
15), and for this reason in what follows we consider in detail 
only the coherent radiation. 

Using the previously obtained solution of Eq. (2.4) for 
a two-level system (2.9) in the formulas (4.8), (4.12), and 
(5.2) we can find the average value of the Fourier compo- 
nents of the transverse acceleration of a relativistic electron 
moving in the field (4.8 ) : 

The spectral density of coherent radiation per unit time, 
according to Eqs. (5.1 ) and (5.5), is 
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e 6 ~ ~ 1 ~ ~ ~ ( ~  E~ + E' w -- 
m2Ezl EE' E w' 

F(w> * (5.6) 

where w' = 2EE1E2, /m2, A ,, = 2e2~: ,  I(1 Jr, 12) l 2  is the 
probability of a spontaneous radiative transition, 

and B ( x )  is the Heaviside unit function. The coefficient 
I B ,, I is defined as follows: 

The upper limit of the spectrum, according to Eq. 
(5.6), is determined by the relation 

and the maximum value of the spectral density (5.6) is 
reached at w = a,,, . The dependence of I B ,, 1 on the prob- 
ability W of resonant pumping, calculated in an eight-level 
model with the previously chosen parameters of the plasma 
(N=  ~ m - ~  and T =  0.23 eV) is presented in Fig. 1. 
For W = 0 the states 2 and 1 are incoherent and the off- 
diagonal matrix elements are identically zero. Therefore 
IB,, 1' and together with it the spectral density of the coher- 
ent radiation (5.6) are zero. As W- oo the populations of 
the states 2 and 1 become equal to one another (see Fig. 1 ) 
and, according to Eqs. (2.9) and (5.7), IB,, 1' approaches 
zero. The maximum value of I B,, 1 is reached for W = lo9 

FIG. 1. Some elements of the density matrix of a dense nonequilibrium 
lithium plasma as a function of the probability of excitation of the 2P-2s 
transition by external resonance radiation (N = cm-', T = 0.23 
eV). 

dl ldo ,  1 07/s 

I (150 GeV 

TeV 

FIG. 2. Spectral density of coherent radiation together with the incoher- 
ent bremsstrahlung background with conversion of the 2P-2s transition 
in a dense lithium plasma. 

s - I ,  which corresponds to an external pump field of intensi- 
ty - lo2 V/cm (we note that the intensity of the field in 
state-of-the-art high-power lasers reaches values of - lo8 
V/cm ) . 

The spectral density of the coherent radiation is pre- 
sented in Fig. 2 together with the incoherent bremsstrahlung 
background. The integral photon yield in a narrow frequen- 
cy interval near the maximum (w,,, ~ 0 . 6 3 E )  is 

For comparison we note that a somewhat lower photon yield 
(lo4-10' s - '  ) was obtained in experiments on Compton 
backscattering16 using a lo3 MW argon laser. 

6. POLARIZATION OF THE COHERENT RADIATION 

We now estimate the polarization properties of this co- 
herent radiation using the classical formula for the intensity 
of the electromagnetic field of radiation neglecting recoil:" 

where q = p( 1 - B ui-i), u is the direction of propagation of 
the electromagnetic wave, i is the direction of motion of the 
relativistic particle, 0 is the relative velocity of the particle, 
and k is the wave vector of the emitted electromagnetic 
wave. 

We choose the polarization vectors in the following 
form: 

Next we write the intensity of the electric field in the form 

It is obvious that in the case ulli the coherent radiation under 
consideration in the direction of motion of the particle is 
linearly polarized and the polarization vector lies in the 
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FIG. 3. Degree of linear polarization as a function of the azimuthal angle. 

plane of the vectors (r, ) and i (recall that the photons are 
emitted in a narrow cone of angles - l/y around the direc- 
tion of motion of the particle). 

It is convenient to characterize the degree of linear po- 
larization in the plane of the vectors (r, ) and i by the follow- 
ing formula 

The dependence of P on the azimuthal angle q, can be calcu- 
lated using the expression for Ei (p) (see Fig. 3). Thus lin- 
early polarized radiation with degree of polarization PZ 1 
can be obtained by collimating in the measurements the pho- 
ton flux in the direction (r, ) (or a direction orthogonal to 
this direction); it should be kept in mind, however, that the 
formula employed (in which recoil is neglected) could 
somewhat overestimate the degree of linear polarization of 
the radiation. 

7. CONCLUSIONS 

The analysis performed above shows that scattering of 
high-energy electrons in a nonequilibrium dense plasma can 
be effectively used to generate hard polarized radiation. Cal- 
culations performed for lithium plasma with density 
cm-3 at a temperature of 0.23 eV and subjected to steady 
resonant pumping with external laser radiation with field 
intensity lo2 V/cm and frequency 1.838 eV reveal that the 
yield of polarized photons with energy 0.68E where E = 150 
GeV, is lo6-lo7 l/sec per electron. Further elaboration of 

FIG. 4. Schematic diagram-of a source of high-energy photons: I )  flux of 
laser photons (A = 6730 A, E = lo2 V/cm); 2) high-energy electron 
beam ( 150 GeV); 3) rotating magnet; 4) magnetic field ( H  = 1.56. lo5 
Oe); 5) dense lithium plasma ( N  = 10LZ cm- 3 ,  T = 0.23 eV); 6) flux of 
high-energy photons ( w  = 0.68 E, NV = 4.6.106 l/sec). 

the theory of bremsstrahlung of ultrarelativistic particles in 
nonequilibrium plasma and development of methods of opti- 
mal pumping of the plasma should make it possible to devel- 
op a new source of high-energy photons for investigating the 
structure of matter. A possible schematic diagram of such a 
source is presented in Fig. 4. 
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