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We use the quasiclassical approach to calculate exactly in the Coulomb field the cross section 
of electron-positron pair production induced by a high-energy photon for the case when 
the final electron is in an arbitrary state of the discrete spectrum of the hydrogenlike atom 
being formed. We find the dependence of the cross section on the nuclear charge for 
large quantum numbers of the electron, making it possible to calculate the process cross section 
summed over all the states of the discrete spectrum. 

1. INTRODUCTION 

In late years there has been extensive research into 
QED processes occurring in a strong Coulomb field. One 
reason is related to projects for high-energy heavy-ion ac- 
celerators. Building such accelerators will make it possible, 
along with solving other problems, to verify the QED pre- 
dictions for processes in ultrahigh external fields. Special 
attention is being paid to electron-positron pair production 
in collisions of heavy ions for the case when the final elec- 
tron is captured by an ion, thus forming a bound state. 
This process has a profound effect on the lifetime of the 
beam of heavy ions in the accelerator, hence the interest. 

It has proved expedient to study the physics of this 
phenomenon in the reference frame linked with the ion 
that brings the electron into the bound state (we call this 
ion the target ion). For very high ion energies the 
equivalent-photons approximation holds true. In this ap- 
proximation the cross section of pair production by the 
incident ions can be expressed in terms of the cross section 
of pair production by a photon in the target-ion field. In 
this case the cross section of the process of interest to us is 
proportional to the square of the charge and to the loga- 
rithm of the relativistic factor of the incident ion that cre- 
ates the equivalent photons. As noted in recent papers,'.2 
when the energies are not too high, there is a mechanism 
that can prove to be important, namely, one that is not 
described by the equivalent-photons method and has a 
markedly different dependence on the charge of the inci- 
dent ion. However, the contribution of this mechanism to 
the total cross section does not increase logarithmically in 
the ultrarelativistic limit. 

Use of the equivalent photons method requires know- 
ing the cross section of the respective process involving 
photons. In heavy-ion collisions the total cross section of 
pair production with the electron in a bound state is deter- 
mined by equivalent-photon energies of the order of several 
electron masses (in this paper we use a system of units in 
which fi= 1 and c= 1). This cross section has been calcu- 
lated by many researchers for the K- and L-shells (see 
reviews in Refs. 3 and 4 and the literature cited). The 
differential (in the outgoing-positron energies) cross sec- 
tions are also of unquestionable interest. But we are inter- 

ested in the case of relativistic positrons. We must, there- 
fore, find the cross section of pair production by a high- 
energy photon in a Coulomb field (w)m, where m is the 
electron mass and w the photon energy.) This cross section 
has been studied in detail for the case of K- and L-shells in 
Refs. 5 and 6, where the reader can also find references to 
earlier literature. As noted by prattY5 for w)m the pair- 
production cross section coincides with the photoelectric- 
effect cross section and with the radiative-recombination 
cross section (to within a constant factor related to sum- 
mation or averaging over the polarizations of the particles 
participating in the process.) In Refs. 5 and 6 the result 
was obtained by directly calculating the matrix elements 
sandwiched by the wave functions taken in the 
Sommerfeld-Maue approximation.' 

The present paper is devoted to calculating exactly in 
the Coulomb field the cross section of photon-induced 
electron-positron pair production for the case when the 
final electron is in an arbitrary state of the discrete spec- 
trum. The study is based on an earlier convenient integral 
representation for the Green function of an electron in a 
Coulomb field, a representation valid in the entire complex 
energy plane,8 and on the quasiclassical Green function of 
an e l e c t r ~ n . ~ , ' ~  We have analyzed in detail the case of large 
quantum numbers of the electrons. The resulting asymp- 
totic expression has a high accuracy. This made it possible 
to calculate the cross section of the respective process 
summed over all states of the discrete spectrum. 

2. THE GREEN FUNCTION AND THE PAIR-PRODUCTION 
CROSS SECTION 

In accordance with the usual Feynman rules, the cross 
section of electron-positron pair production by a photon in 
the field of the nucleus, with the electron in one of the 
states of the discrete spectrum, is 

where a =e2= 1/137 is the fine-structure constant, summa- 
tion over positron polarizations is assumed, and the matrix 
element M is given by the following formula: 
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Here $k+)(r) is the discrete-spectrum wave function, 
( r )  the negative-frequency continuous-spectrum wave 

function corresponding to the positron, ep the photon po- 
larization vector, and q the photon wave vector. In accor- 
dance with the usual definition [see, e.g., Eq. (109.19) in 
Ref. 111, the Green function of an electron in an external 
field is 

where G+ defines the Green function G in the upper half- 
plane of the complex variable E, and G- defines it in the 
lower half-plane. Equation (2) yields 

Substituting (3 ) into ( 1 ), we amve at for the cross section 
a formula expressed solely in terms of the Green function: 

Here we have averaged over photon polarizations 
(epw+ -kp,), since the total cross section is polarization- 
independent. Note that in the case of degeneracy the ma- 
trix pn(r,r') is the sum over the degenerate states, and the 
cross section oy given by (4) is the sum of cross sections of 
electron production in states with fixed energies. 

In Ref. 8 a convenient integral representation was ob- 
tained for the Green function of an electron in a Coulomb 
field. Using Eqs. ( 19)-(22) of that paper, we arrive at the 
following expression for pn(r,rr ) : 

where n is the radial quantum number, Z the atomic num- 
ber, y = [12- (Za)2]1/2, with I= j +f and j the total angu- 
lar momentum of the state, En is the bound-state energy, 

k=[m2-~:]1/2, with m the electron mass, and the 
T-matrix is given by the formula 

r r' 2 k R  
x=nn', n=- n'=- y=-, 

r y  r' ' cos r 

with J2, a Bessel function. The integral with respect to T in 
(5) can easily be evaluated by the method of the theory of 
residues if we expand the Bessel functions in a series, go 
over to the variable v=tan r, and close the contour of 
integration with respect to v in the upper half-plane. The 
result is 

2k f i  
~~/2drexp(i[k(r+r')tgr-2~ar- "1 J2, ( c o s r )  - 

The main contribution to the cross section in (4) is 
determined by distances r and r' of the order of the Comp- 
ton wavelength of the electron, l/m, and by angles be- 
tween the vectors k, r, and r' of the order of unity. The 
contributions of small distances r, r'-a-' and of small 
angles ( -m/w) are suppressed in a power-like manner in 
the parameter m/w. The positron energy for w) m is of the 
order of w. Hence, the characteristic positron orbital an- 
gular momenta I, providing the main contribution to the 
cross section are of the order of wr> 1. In Eq. (4), there- 
fore, instead of the exact Green-function jump correspond- 
ing to positrons we can use the quasiclassical Green func- 
tion. This function was obtained in Refs. 9 and 10. Using 
formula (5) of Ref. 10, we get 
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where 

In this formula 
v= ( ~ ~ - m ~ ) " ~ ,  W= [2rrr(l +nnl)] l/'/sh S. 

a=P~-l(w) -Pl(w), b=P,(w) +Pl-l(w), 

We now substitute (8) and (5) into (4) and calculate the 2-u2-)? k Za 
trace. It is convenient at this point to make several trans- w = ~ ,  g(u) = 1 -ivup, p=-=- 
formations that simplify further calculations. Since the to- En n + ~ '  

tal cross section is independent of the direction of the and the contour of integration with respect to u passes 
incident-photon momentum. It is convenient in Eq. (4) to above the real axis. Differentiation with respect to v in (9) 
average over these directions: can be done explicitly. We have retained the differential 

notation for reasons of compactness. Note also that for all 
values of I  and n we can, via the formula 

sin (o l r - r ' l )  
exp[iq(r-r')] + 

o)r- r ' l  ' 

As a result the integrand in (4) depends only on r, r', and 
x=n*nl.  We introduce new variables r=fp( l  +t )  and 
rl=tp( 1 -t). The above reasoning implies that the main 
contribution to the cross section is provided by the region 
where p - l/m and x - 1, in which the arguments of the 
exponential functions in (4) and (8) and the argument of 
the Bessel function in (8) are large ( - d m ) .  Hence, to 
evaluate the integral with respect to t we can use the as- 
ymptotic formula for Bessel functions and employ the 
stationary-phase method, the point of stationary phase be- 
ing 

Using the value of the integral with respect to T given 
by (7),  we can evaluate the integral with respect to p, 
which can be reduced to Euler's integral of the second 
kind, the gamma function r. It has also proved expedient 
to go from x to the variable y= [cosh s-2( 1 +x) -'I'/~/ 
sinh s, shift the contour of integration with respect to s, 
namely, s-s-i?r/2, and then go over to the variable 
u = tanh s. Performing these transformations, we arrive at 
the final expression for the pair-production cross section 
with the electron in an arbitrary state of the discrete spec- 
trum: 

with F(a,b,c;x) the hypergeometric function, reduce the 
integral with respect t o y  in (9) to 

1 lo1 dy($-u2)"=I exp [ - i r A  sign (u) ] (u2)"ln 

where we have allowed for the rule of bypassing in variable 
u. At n =O the formula for the cross section simplifies con- 
siderably: 

At I= 1 (the ground state) this formula transforms into 
the one obtained in Ref. 5 if we introduce the change of 
variable u = l/x and distort the contour of integration with 
respect to x in such a way that it goes from zero to unity. 
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Formula (9) is extremely convenient for numerical calcu- 
lations and for obtaining the asymptotes, which we discuss 
in the next section. 

3. CROSS-SECTION ASYMPTOTICS 

Let us consider the behavior of the cross section as a 
function of the radial quantum number n, the angular mo- 
mentum j (recall that the parameter I in (9) is equal to 
j +f), and the value of Za. 

We start with the case when 1 )  1 and n - 1. Using the 
standard integral representation for the Legendre polyno- 
mials for values of the argument greater than unity (Ref. 
12), we easily find that for I> 1, 

This implies that the main contribution to the integral in 
(9) is provided by the variable region y - u - I- 'I2. Substi- 
tuting (12) in (9), expanding the integrand for small val- 
ues of u, and evaluating the integrals, we find that 

We see that even for Za- 1 the cross section with I> 1 is 
numerically suppressed. Comparison of ( 13) with the re- 
sults of Pratt's numerical calculations6 performed for 1=2 
and n=O (the 2p3/, state) shows that already for 1=2 
formula (13) provides an accuracy better than 5% in the 
Za(0.7 ( Z <  96) range. But if we allow for the fact (see 
Ref. 6 )  that the contribution of the 2p3,, state to the cross 
section with the capture of the electron by the L-shell, 
uL=oy(n= l,l= 1) +o,(n=O,l=2), does not exceed 
1 1 %, the use of the asymptotic formula ( 13 ) for determin- 
ing o, ensures an accuracy better than 1%. 

Now let us study the case when n> 1 and I= 1. The 
leading term in the expansion of (9) in l/n has the form 

FIG. 2. Total cross section of the process in units of a,. 

where oo=4ra  (Za)  5/mw, and 

with 
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0.8 - As Za-0, the function F(Za) tends to unity, which 
agrees with the results of calculations in the Born 
approximation.'3 Note that, as formula (13) implies, for 

0.6 .- Zag 1 the pair-production cross section with capture into 
a state with 122 contains an additional (in comparison 
with I= 1 ) suppression factor proportional to ( ~ a ) ~ ( ' -  ' ) 

0,4 - (see the discussion in Ref. 6). 
The result of summation in ( 15) can be expressed in 

0-2 - terms of the Bessel function J2y, (2Za \lu2=) and its de- 
rivative. This expression can be obtained directly from Eq. 
(4) if we note that for n > l  the small 

I 1 I I b T- k/E, =Za (n + y) - ' contribute to (5).  Following this 
0 0 2  0,4 0.6 Ot8 path in deriving the asymptotic behavior, we can easily see 

FIG. 1. The function F ( Z a )  determining the dependence of the cross that in the ( 14) the 
section u,, for n) 1 [see formula ( 15)]. quantity (k /~ . ) ,  is the expansion parameter. If we allow 



FIG. 3. The dependence on Za of the contributions u Ju,,, (curve I )  and 
uM,/utot (curve 2) to the total cross section. 

for the first correction term in this parameter, the cross 
section of the process for n)  1 has the form 

The explicit expression for f ( Z a )  is too cumbersome to be 
given here. Estimates show that for 0.1 < Za < 0.9 the 
function f (Za)  varies in the interval from 0.9 to 2, which 
enables estimating the accuracy of formula ( 14). Interest- 
ingly, if in ( 16) we put f ( Z a )  =4/3 this formula approx- 
imates at Za(0.7 the results of the numerical calculations 
for a ( l =  1 ,n = 1 ) (u2S1,2 + a2P1,2) carried out in Ref. 6, with 
an accuracy higher than 1.6%. 

The function F ( Z a )  specified by (15) is depicted in 
Fig. 1. In calculating it we first evaluate the integral with 
respect t o y  via (10) and then the integral with respect to 
u, so that the result is expressed in terms of a double sum 
containing hypergeometric functions. Note that as Za 
grows the function F ( Z a )  falls of quite rapidly at first 
owing to the factor exp ( - r Z a )  in ( 15 ) , but remains prac- 

tically constant in the interval 0.55 < Z a  < 0.95. 
The approximate expressions ( 13 ) and ( 16) obtained 

for the partial (with given values for I and n) cross sections 
uy(l,n) make it possible to find, with an accuracy higher 
than 1%, the total cross section of the process: 

For the contribution to this sum by the K-shell [Is1/, 
states; uK=ay(l,O)] and the L-shell [2s1,,, 2p1/,, and 2p3/, 
states; aL=ay(  f , I  ) +ay(2,0)] we use Pratt's resu~ts,~ and 
for the sum U M ~  =atot - OK- a,, of all other contributions, 
we use formulas ( 13) and ( 16). The result for the ratio 
atot/ao is depicted in Fig. 2 in the interval 0 < Z a  < 0.7. 
The reader can see that exact allowance for the Coulomb 
field radically changes the result in comparison to the Born 
approximation. 

Figure 3 depicts the dependence on Za of the relative 
contributions uL/utot and aM~/qOt to the total cross sec- 
tion. Clearly, for all values of Za the cross section with 
production of an electron in the ground state is predomi- 
nant, but as Za increases the relative contribution of other 
state increases. 
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