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A gas of three-level atoms is placed in a weakly modulated bichromatic field quasoresonant 
to one of the transitions and is probed by a probing wave on an adjacent transition. A 
fairly weak additional component of the external field is shown to lead, under a threshold 
condition imposed on the intensity of the external field, to parametric resonances for 
certain groups of atoms. The absorption coefficient of the additional wave acquires, beside the 
constant component, oscillating components that have a frequency D for one type of 
parametric resonances and frequencies D and 2 0  for the other, where D is the frequency 
detuning of the external-field components. The absorption-coefficient component 
irregularities associated with the parametric resonances have effective widths of the order of 
the atomic level widths and a contrast of the order of unity. The paper also discusses 
possible applications of these phenomena in sub-Doppler spectroscopy and for developing 
methods of frequency stabilization and the transfer of frequency values within a 
certain range. 

1. INTRODUCTION 

A gas of three-level atoms placed in an external field 
and probed by a probing wave constitutes one of the basics 
systems in laser spectroscopy.'~2 Such systems are widely 
used in sub-Doppler spectroscopy and to develop methods 
of frequency stabilization and frequency transfer within a 
certain range. What is important here is that the choice of 
the external-field parameters is entirely in the hands of the 
researcher. By selecting the parameters by one method or 
another we can change the absorption spectrum of the 
probing wave. Also, the external-field parameters, such as 
the amplitudes of individual harmonics and the frequency 
detuning between the harmonics, can be changed within a 
broad range, by several orders of magnitude. This leads to 
a broad spectrum of physically realizable asymptotic situ- 
ations. The requirements of the practical applications men- 
tioned above pose the problem of finding and analyzing 
situations in which the absorption spectrum of the probing 
wave acquires sharp peaks with effective widths smaller 
than the Doppler linewidth. In this paper we consider from 
this viewpoint parametric resonances obtained by a suit- 
able choice of external-field parameters. 

The onset of parametric resonances in problems re- 
lated to the dynamics of a two- or three-level atom placed 
in an external quasiresonant polychromatic field is quite 
natural. Indeed, let us consider an atom in a monochro- 
matic field (the primary wave) that is in quasiresonance 
with one of the transitions. It is well knownlp2 that in such 
a system the characteristics of the atom undergo Rabi os- 
cillations. Now suppose that an additional monochromatic 
wave that is also in quasiresonance with one of the transi- 
tions acts on the atom. Then we can select the parameters 
of this wave in such a way that even with a fairly small 
amplitude the wave, landing in resonance with the Rabi 
oscillations, considerably changes the behavior of the 
atom, namely, parametric resonance sets in. If a gas of 

atoms is irradiated, there will be a group of atoms which 
meet the conditions for parametric resonance. The large 
number of initial parameters and the possibility of realizing 
various three-level-atom solutions lead to a variety of 
emerging parametric resonances. In this paper we discuss 
how such parametric resonances affect the absorption spec- 
trum of the probing wave. We will see, among other things, 
that the following phenomenon is important for applica- 
tions. Suppose that the Rabi parameter of the additional 
wave is of the same order of magnitude as the widths of the 
atomic levels, and that the Rabi parameter of the primary 
wave is much larger than these level widths, that is, the 
primary wave is strong. The frequency detuning of the 
components of the external field is assumed of the order of 
the Rabi parameter of the primary wave. Then the addi- 
tional structures that emerge appear in the absorption 
spectrum of the probing wave in the event of a parametric 
resonance and have a contrast of the order of unity possess 
effective widths of the same order as the atomic levels. 

Most often (in our case, too) the situation studied 
pertains to an external field that is in quasiresonance with 
one of the atomic transitions (Fig. I) ,  and an approxima- 
tion linear in the probing wave (known as probing on an 
adjacent transition) is studied. Here the analysis of the 
dynamics of a three-level atom is broken down into two 
stages (details given below). The first stage studies the 
behavior of a two-level atom in an external field. On the 
basis of the results of this study one can determine the 
absorption spectrum of the probing wave. The dynamics of 
a two-level atom in an external quasiresonant bichromatic 
or polychromatic field is being intensively studied both the- 
oretically and experimentally (see, e.g., Refs. 3-16). Some 
results of such studies and of those concerning a three-level 
atom can be found in Refs. 1 and 2. The possible conse- 
quences of the presence of paramagnetic resonances in 
such systems have also been studied. For instance, 
~ h o m a n n ~ . ~  linked the behavior of an atom in a strongly 
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modulated bichromatic field with the presence of paramet- 
ric resonances. Toptygina and Fradkinl' used the example 
of a two-level atom in a polyharmonic field to discuss also 
parametric resonances, which were interpreted, appar- 
ently, as phenomena based on quasilevel crossing in the 
physical system. In this paper we consider a weakly mod- 
ulated external field and, following Refs. 17 and 18, inter- 
pret parametric resonances as resonances that emerge in 
the system of differential equations describing the dynam- 
ics of an atom as a result of a weak periodic perturbation. 
Well-known methods allow this situation to be studied 
fairly completely in analytical terms. Such parametric res- 
onances were studied in Refs. 12 and 15. For one thing, in 
Ref. 12 the dynamics of a two-level atom in a weakly mod- 
ulated biharmonic field was discussed without allowing for 
relaxation, and it was found that a parametric resonance 
splits the Rabi spectrum. The results of Ref. 12, where the 
problem was fairly simple and, hence, the results could 
easily be interpreted, show that in the event of a parametric 
resonance in the sense of Ref. 17 there occurs a phenom- 
enon that can be interpreted as quasilevel crossing in the 
physical system (more precisely, the levels asymptotically 
move closer). In Ref. 15 this problem was discussed in 
connection with a gas of two-level atoms with allowance 
for relaxation. The paper described additional structures in 
the absorption spectrum of the probing wave (correspond- 
ing to the splitting of the Rabi spectrum) that appeared in 
the event of a parametric resonance. Our present analysis 
of the stage referring to a two-level atom is similar to the 
one done in Ref. 15 with one important exception: we as- 
sume that the constants of the longitudinal relaxation of 
levels are different, while in Ref. 15 the constants were 
assumed equal. The reason is that in applications involving 
three-level atoms the most interesting situation is that in 
which the common level is much wider than the other two 
levels. 

2. STATEMENT OF THE PROBLEM 

The simplest case leading to parametric resonances 
emerges when the external field, which is in quasiresonance 
with one of the transitions, has two components, primary 
and additional, with frequencies R1 and R2, amplitudes Al 

FIG. 1. Level diagram. 

and A2, and wave numbers kl and k2, respectively. The 
subscript ''p" designates the similar parameters of the 
probing wave. We assume that the primary and additional 
waves propagate in the same direction. Here we consider 
the A configuration of levels, but the results can easily be 
generalized to the case of a V configuration or a cascaded 
scheme. We assume that the thermal velocity uT of the 
atoms, the frequency detuning D= R2- Ql,  and the effec- 
tive relaxation constant yo of an atom satisfy the relation 

1 Dl ur/c(yo, where c is the velocity of light. Then with an 
accuracy sufficient for our purpose we can assume that 
k1=k2=k (Ref. 16). Let us write the system of Bloch 
equations describing the dynamics of the density matrix 
p(v,z) in our situation (v is the velocity of an atom, and 
the one-dimensional coordinate z parametrizes the spatial 
position of an atom): 

d 
- p22 = - y2p22 + 2i{A1 cos(Rlt - kz) 
dt 
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where d/dt = a/&+ va/az, y, and y,, are the longitudinal 
and transverse relaxation constants, p,, and p,, the level 
populations and the respective dipole moments, w,, the 
frequencies of transitions between levels, with n,m= 1,2,3, 
and A,,, the parameters of pumping to the respective level. 
Similar systems of equations for an atom in a monochro- 
matic field can be found in Refs. 1 and 2. 

Note that there are other possibilities in the level dia- 
grams that can lead to parametric resonances; for instance, 
when different components of the external field are in qua- 
siresonance with different transitions of the atom. These 
variants will be examined elsewhere. 

In an approximation linear in the probing-wave ampli- 
tude the equation for p33 is decoupled from the other equa- 
tions, with the remaining system of equations in ( l ) split- 

ting into two systems, one for p,, , with n,m = 1,2, and the 
other for the other functions. The first system coincides 
with the system of equations for a two-level atom in an 
external field with parameters An and f in ,  with n = 1,2. By 
introducing new variables (here we restrict our discussion 
to an analysis of medium characteristics averaged over the 
volume), 

p21=R21 exp[-i(filt-kz)], T= Dt, R ~ ~ = G ,  

and the rotating-wave approximation we can write the first 
system as 

where 

The definition of a,  adopted here differs from the one 
adopted in Ref. 15 by a factor of a. The second system of 
equations with the same assumptions has the form 

where 

Ynm 
nm 

AP r =- a = -  
D '  p D l  

Here it is assumed that the optical frequencies ql, u2,,  
and ~ 3 2 ,  which exceed all other frequency parameters of 
the problem, are related by the formula ~ 3 1 + ~ ~ ~ = ~ 3 2 ,  
from which it follows that u3, + uzl = 032. In what follows 
we will also need the quantities 

The quantity measured in the experiment is the probing- 
wave absorption coefficient 

whose study is our main goal. The factor Co is independent 
of the external-field parameters. From the above reasoning 
it follows that the evolution of the function p33 in the given 
approximation has no effect on the final result. We assume 
that the parameters of the problem obey the following as- 
ymptotic constraints: 
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The final result (the relative values of the absorption coef- 
ficient) does not depend on the choice of the order of 
magnitude of the parameters ill,,. 

Remark 1. Actually, the constraints (5)  mean that the 
frequency difference D between the primary and additional 
waves and the Rabi parameter A,, being of the same order 
of magnitude, considerably exceed the atom relaxation 
constants and the Rabi parameter of the additional wave. 
The choice of parameters D and A, is in the hands of the 
experimenter, and such a requirement can easily be real- 
ized experimentally.15 Here one must bear in mind that, as 
practice shows, asymptotic calculations lead to a correct 
qualitative result up to values of the small parameter E 

equal to 0.3, and for ~ ( 0 . 1  asymptotic relations even lead 
to a satisfactory quantitative description. 

Remark 2. As noted earlier, from the practical view- 
point the most interesting situations occur when the values 
of I', [and, respectively, of I?,,, with m=1,3, 
rn,>~(rn+I',)] are considerably larger than those of r1 
and r3. Here the discussion is restricted to the case where 
all the relaxation constants are asymptotically of the same 
order of magnitude; within this assumption they may differ 
considerably in magnitude. 

Remark 3. This paper considers the case where the 

primary field contains only one harmonic. A similar tech- 
nique makes it possible to investigate the case where the 
primary field is polyharmonic in the sense of Refs. 11 and 
14. 

Remark 4. Here we assume that D is positive. The 
formulas with D < 0 can easily be derived from our results. 

Thus, we can write Eqs. (2) and (3) in the form 

Here the elements of matrices Qo, Ql , To, and T I  are 
quantities of the order 0( 1 ) : 

- 3  ia exp ( - i r )  

(ia exp(ir) -g3 1 

The system of equations (6) and (7) has an "up- 
triangle" form. First we must solve (6), and then (7). The 
system has periodic coefficients and the problem has a 
small parameter E, that is, we must use an appropriate 
version of perturbation theory and build the asymptotic 
expansion of solutions to the system (and of the physical 
characteristics) in the small parameter E. The construction 
and analysis of solutions of systems of type (6) and (7) 
can be done by methods discussed in Refs. 17 and 18. As 
Nayfeh's results1' suggest, for certain parameter ratios, a 
small perturbation, EQ, or &TI ,  may change the solution in 
the leading term, which causes parametric resonances to 
appear. These may be of different origin. 

1. Direct parametric resonances (DPR) . These appear 
when Eq. (6) is being solved if the additional field is in 
resonance with the system's spectrum: a two-level atom 
(levels I and 2)  plus the primary field. Their appearance is 
due to the interaction of the external field directly with the 
appropriate atomic transition. 

2. Adjacent parametric resonances (APR). These ap- 
pear when Eq. (7) is solved, with the additional field in 

resonance with the induced spectrum in the system of lev- 
els 2 and 3. Ordinary resonances are also possible in (7). 
These appear when the probing wave is in resonance with 
the induced spectrum in the system of levels 2 and 3. 

The presence of all these resonances depends on 
whether certain restrictions imposed on the coefficients of 
the system of equations (6) and (7) are valid. At fixed 
values of the parameters of the atom and the external ra- 
diation (we call these the external parameters) these coef- 
ficients depend on the velocity of the atom. The majority of 
atoms are "outside" of the parametric resonance, and the 
condition for parametric resonance is satisfied only for an 
asymptotically small fraction of the atoms. As follows from 
Eq. (4),  calculating the probing-wave absorption coeffi- 
cient requires calculating the responses of all the atoms to 
the external field. If, however, the adopted constraints (5 )  
on the external parameters are valid, the main contribution 
to the integral in (4) is provided by the atoms with veloc- 
ities lying within asymptotically small intervals around the 
values corresponding to the ordinary resonances of (7). 
These values change with the frequency of the probing 
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FIG. 2. Singularities of the svstem consistine of eas atoms - - - 
and an external field on the velocity scale. The singularities 

, depicted on the upver axis belong to a direct transition and 
those on the loweraxis to an adjacent transition. 

wave. By varying the frequency of the probing wave we 
can, therefore, probe various asymptotically small groups 
of atoms that respond to the external field differently, in- 
cluding groups of atoms in parametric resonance. 

Schematically the situation is depicted in Fig. 2, where 
on the upper atomic-velocity axis there are seen to be as- 
ymptotically small groups of atoms in DPR [this illustrates 
the behavior of solutions of (6)]. On the lower atomic- 
velocity axis there are seen to be groups of atoms in ordi- 
nary resonance or in APR [this illustrates the behavior of 
solutions of (7)]. When the external parameters (say, the 
frequency of the probing wave) vary, these pictures change 
shape slightly and shift in relation to each other. The 
probing-wave absorption coefficient experiences sharp 
changes near the values of the external parameters at 
which the "singularities" on the upper and lower axes co- 
incide. Multiple coincidences are also possible. Below we 
show that it is multiple coincidences that are realized. 

Thus, there emerges the problem of building solutions 
to Eqs. (6) and (7)  in the presence of parametric reso- 
nances. Using the solutions, we can calculate the probing- 
wave absorption coefficient on the basis of (4). In this 
paper we discuss the problem of building only the leading 
term in the solution's asymptotic expansion in the small 
parameter E .  The plan is as follows. In Sec. 3 we discuss 
DPR, that is, the features of the solution on the upper 
velocity axis in Fig. 2. Section 4 is devoted to features 
characteristic of an adjacent transition, that is, the features 
on the lower axis. In Sec. 5 we use these results to describe 
the features of the absorption coefficients related to the 
passage of the singularities through each other. 

In what follows we use the term "neighborhood of a 
point" for brevity to mean an asymptotically small, neigh- 
borhood of a given point, that is, with a width of the order 
of E. By the expression "near the point" we understand an 
asymptotically small neighborhood of the point, and the 
expression "far from the point" describes a situation when 
the distance to the given point is a quantity of the order of 

3. DIRECT PARAMETRIC RESONANCES 

Let us examine the situation in which parametric res- 
onances appear in system (6). Below we shall see that for 
all parameter ratios the solution to (6) has the following 
structure: 

where the B,, with n= 1,2,3, are independent of 7, and by 
the subscript u from now on we denote terms that become 
damped with the passage of time. The vectors B2 and B3 
are nonzero in the vicinity of a DPR and vanish far from 
such a resonance. Thus, the problem is reduced to deter- 
mining the vectors B, . 

To build the solution of system (6) we first solve the 
homogeneous system of equations, that is, seek the solution 
to the problem 

where I is the identity matrix here and below. Suppose that 
matrix U reduces Qo to diagonal form: 

Eo= U-'~,U=diag{e~ ,e2,e3,e4), el =e2=0, 

e3= -e4=iF, F= [0$,+4a~]"~, 
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Then for L (7) = exp ( - E07) u-'N(T) we have the follow- 
ing problem: 

Using the multiscale method, we introduce a slow time 
=ET and seek the solution to ( 10) in the form 

Substituting (10) into (9), we arrive at a recurrence sys- 
tem of equations for successive terms in expansion (10). 
From the first equation it follows that L O ( ~ , ~ l )  = L O ( ~ l ) .  
The following equation for L O ( ~ l )  constitutes the condi- 
tion for the absence of secular terms in the second equa- 
tion: 

Here and in what follows ( . ) denotes the averaging pro- 
cedure, that is, the procedure in which terms oscillating 
with frequencies of the order of O( 1 ) are discarded. In the 
case of "parameters in the common position" the averaging 
of matrix E1(7) is reduced to discarding all oscillating 
terms. But there may be parameter ratios at which some of 
the oscillating terms have frequencies that are asymptoti- 
cally close to zero. The elements of matrix Q,(T) contain 
exponential functions with exponents 0 and k i ~ :  

Thus, parametric resonances can appear in the follow- 
ing situations: 

From the explicit form of matrix E1(7), which in view of 
its complexity is not given here, it follows that in the sec- 
ond case there is no resonance. 

Remark 5. The absence of this resonance was noted 
earlier in Refs. 12 and 15. Thus, this fact is not related to 
the assumption adopted in Ref. 15 that the longitudinal- 
relaxation constants of a two-level atom coincide. 

The presence or absence of atoms satisfying condition 
(12) is determined by the choice of external parameters, 
and parametric resonances emerge only if the following 
threshold condition is met: 

1. Let 1-2al=q<0 and q=0(1) .  In this case at no 
atomic velocities is the condition for parametric resonance 
met. The solution to (6) can be found immediately: 

2. Let 2al= 1 + ~ 6  and 6=0(1) .  Then there is only 
one group of atoms for which condition (13) is met. The 
velocities of the atoms in this group are parametrized in the 
following way: 

Here the parameter v can take on values not less than 6. 
The number of such atoms is proportional to &'I2. Follow- 
ing Ref. 15, we call this situation a type-1 parametric res- 
onance. Resonances of this type can be interpreted as para- 
metric resonances in the initial stage. Such resonances are 
shown (see Ref. 15) to lead to singularities in the probing- 
wave absorption spectrum with widths of the order of 
O( ,&) (in the initial terms). We do not discuss this 
situation here since we are interested in singularities in the 
absorption spectrum with widths of the order of O(y). 

3. Let 1-2al=q>0 andq=O(l) .  With this choice of 
external parameters there are two groups of atoms that 
meet condition ( 13 ) . The velocities of these atoms are pa- 
rametrized as follows: 

The different signs of q1 correspond to different groups of 
atoms. The number of atoms in each group is proportional 
to E. We call this situation a type-I1 parametric resonance. 

Let us describe the solution to problem (9) for those 
atoms whose velocities obey the DPR condition ( 12). To 
this end, following the general procedure described in Ref. 
17, we replace exp[ A i ( F  - 1 )TI by exp( A i v ~ , )  in the ma- 
trix (El)  and substitute in (12): 

For the matrix M 0 ( 7 ~ )  we obtain a system of equations 
with constant coefficients: 
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4. ADJACENT PARAMETRIC RESONANCE 

p -02 -if 
Y=( i -ic iv- O3 

Let us introduce the matrix H= diag{O,O,i, - i). Then 
exp(Hr) =exp(Eor)Z(rl). In these terms we obtain 

which leads us to the following relation: 

Cdx 
R(7)=No(r)R(O) +NO(r) 

Cdx + U exp(Hr)exp(eYr) 

We denote the eigenvalues of matrix Y by @,, with 
n = 1, 2, 3,4, where @,= 0 (  1 ) . In the Appendix we show 
that Re @, <O. Hence, the term without an integral and 
the value of the integral at the lower limit can be attributed 
to R,(r). The steady-state solution R ( r )  is determined by 
the value of the integral at the upper limit. Moreover, upon 
integration, only harmonics with asymptotically low fre- 
quencies acquire a factor of the order of O(E-I). The other 
harmonics can be attributed to the next term in the asymp- 
totic expansion. Thus, we obtain the final form of the lead- 
ing term in the asymptotic expansion of the solution to (6) 
for atoms in DPR: 

From this it follows that in the neighborhood of a DPR the 
solution of (6) has the form of (8). 

Suppose that the atomic velocity varies near the reso- 
nance value v( ' )  according to ( IS), so that the parameter v 
experiences variations of the order of O(1). Then the pa- 
rameters of the matrices Q,, U, and Y vary by asymptot- 
ically small quantities (and can be assumed constant) ex- 
cept the two terms proportional to v on the diagonal of Y. 
This implies that the elements of vectors B, , with n = 1, 2, 
3, also vary by quantities of the order of O( 1) in the neigh- 
borhood of a DPR. 

Let us examine the behavior of the solutions to (7) as 
functions of the atomic velocity u, that is, determine the 
position and type of singularities on the lower velocity axis 
in Fig. 2. As demonstrated above, irrespective of the value 
of the atomic velocity, the leading term in the asymptotic 
expansion in E of the solution to (6) has the structure of 
(8). Since (7) is linear, we can analyze the contribution of 
each term on the right-hand side of (8) separately. For 
instance, R,(r) can be shown to lead to the appearance of 
a damped term in W(T) and has no effect on the steady- 
state solution to (7). Thus, we need only build the solution 
of the system 

The matrices To and TI depend only on the atomic veloc- 
ity v. When setting up the solutions to (17) we need to 
know the "special" values of velocities. These, as noted 
earlier, are related to the following situations. 

A. An eigenvector of To may vanish. This results in a 
resonance with a constant term in the inhomogeneous part 
of (17). 

B. An eigenvalue of To may become equal to *i. At 
such values of the atomic velocity there appears a reso- 
nance with an oscillating term in the inhomogeneous part 
of (17). 

C. Parametric resonances (APR) may emerge when 
the contribution of matrix T1 determines the behavior of 
the leading term in the asymptotic expansion of the solu- 
tion to (17). 

There are also situations (at certain values of external 
parameters) when two or three of the above possibilities 
are realized simultaneously. Below for the sake of brevity 
we refer to groups of atoms in the neighborhoods of such 
resonances as atomic groups A, B, and C, respectively. 

A remark is in order here. The contribution to the 
integral in (4) from the C group of atoms is asymptotically 
small, that is, it is of the next order of smallness in com- 
parison to the contribution of the atomic group A or C, 
except in cases where group C is asymptotically close to 
group A or B. The reason is that the presence of an ordi- 
nary resonance (under our assumptions concerning the re- 
laxation parameters) changes the asymptotic order of the 
solution of (7). At the same time the presence of a para- 
metric resonance in this case distorts only the leading term 
in the asymptotic expansion and not its order. Hence, 
APRs are of interest only if they are asymptotically close 
to resonances of the A or B group. 

Since it is assumed that al#O, there are no values of 
a 3 ~  and a 3 2  at which matrix To has a multiple eigenvalue. 
We can write the condition for an APR. The matrix TI (7) 
contains harmonics with frequencies 0 and * 1. Suppose 
that the matrices Us and UF1 reduce To to diagonal form: 
u;' T~U,= diag bl y2). The matrix U; ' T ~  ( T )  Us con- 
tains the same harmonics. A parametric resonance in sys- 
tem ( 17) emerges when the harmonics of matrix TI coin- 
cide with the difference of eigenfrequencies of matrix To 
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(see Refs. 17 and 18). Thus, the condition for an APR has 
the form pl-p2= f i. Here there are two possible situa- 
tions in which the presence of an APR leads to a significant 
variation of the leading term in the asymptotic expansion 
of the solution to (17). 

(a) Coincidence of an APR and an A resonance. This 
automatically meets the condition for a B resonance: 

(b) Coincidence of an APR and a B resonance: 

Here we discuss in greater detail the variant related to 
condition (18). We start with the relations between the 
parameters at which the conditions for an APR resonance 
and an A resonance are exactly the same: 

As in the case of a DPR, two different asymptotic situa- 
tions are possible: 

1. and q=0(1). Such resonances were 
called above type-I resonances. The reasons for not exam- 
ining them are the same. 

2. (4-a:) 1'2=q,= 0 (  1 ) and q, > 0. Such resonances 
were called above type-I1 resonances, and they can be in- 
terpreted as resonances in the advanced stage. The reasons 
for not examining them are the same. Having in mind the 
goals of our further exposition, we discuss this situation in 
greater detail here. 

From conditions (20) it follows that when the condi- 
tions for an APR resonance and an A resonance are ex- 
actly the same, 

From this we can find the respective values of the atomic 
velocity and the probing-wave frequency: 

Note that the expression for the resonance value of the 
atomic velocity coincides with ( 15 ) . The relations in (20) 
place some restrictions on the parameters. First, a31 and 
0 3 2  have the same sign. Second, (21) can be realized only 
if the threshold condition (13) is met. In accordance with 
different choices of signs of q and h, there can be four 
different pairs of values of the resonant atomic velocity and 
the probing-wave frequency corresponding to the situation 
where the conditions for an APR and an A resonance are 
exactly the same. 

Let us now examine the dynamics of the characteristics 
of atoms in the neighborhood of the point where the reso- 
nances coincide. To this end we build the solution to (17) 
for the velocities 

and the probing-wave frequencies 

aP=a:)+&p~, p=o( 1). 

The respective values of parameters 032 and ajl are 

In setting up the solutions to (17) for these values of 
the parameters we again use the multiscale method, but in 
a form that differs somewhat from that used above. We 
regroup the terms in matrices To and T1 in such a way that 
the terms proportional to E are only present in TI  : 

A A 

T =  To+ TI ,  

- ia exp ( - i r  ) 
F1= ( 

ia exp ( - ir ) -231 

The eigenvalues of matrix Fo are fi = 0 and fi2 = - iq. The 
matrix 

and its inverse reduce Po to diagonal form: 
U; ' f o ~ a = d i a g @ l  ,b2) EE Ha. We start by solving the ho- 
mogeneous system corresponding to ( 17): 

Substituting Na(r )  = Ua exp(Har) La( r )  transforms this 
system into 

Let us introduce the slow time r1 =ET. Substituting into the 
system 

the asymptotic expansion 
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The requirement that the right-hand side of this equation 
contains no secular term leads us to the following equation: 

we arrive at a recurrence system of equations for the func- 8 
tions Lak. From the first equation we get --Lao=yaL,, Y,=(p,), 
L,(T,T,) = L,(r1). The second equation has the form 

a71 

a a where ( . . . ) has the same meaning as before. Without go- 

- L,=P,L,-- L,. ing into the details of simple but tedious computations, we 
a7-1 a71 write 

We denote the eigenvalues of matrix Y, by Op),  with 
n = 1,2. Repeating the reasoning given in the Appendix, we 
can show that Re Of)  <0, with n= 1,2. Thus, only the 
value of the integral at the upper limit of integration par- 
ticipates in forming the solution in the steady-state mode: 

All the objects in this final formula for the solution to ( 17) 
have been defined above. 

Now let us consider the situation with (19). We write 
the values of the atomic velocity and the probing-wave 
frequency corresponding to coinciding resonances. Ac- 
cording to Viete's theorem applied to the characteristic 
polynomial of matrix To we have 

Combining this with the explicit expressions for u 3 ~  and 
u32, we get 

This situation can be realized only if the threshold condi- 
tion (13) is met. Note that the expression for v(') again 
coincides with ( 15 ) . The different choice of signs of rl and 
f give four different pairs of values of the probing-wave 
frequency at which such resonances are observed. 

5. BEHAVIOR OF THE PROBING-WAVE ABSORPTION 
COEFFtClENT 

Now we have the tools to study the position of the 
singularities of the probing-wave absorption coefficient. We 
are interested in the variations of the absorption coefficient 
with a contrast of 0( 1 ), where the variations are concen- 
trated within intervals of values with widths of the order of 
O(E) for dimensionless parameters, which in the initial 
notation means intervals with widths of the order of O ( y ) .  
These phenomena occur because of the above-described 
passage of the singularities of the solutions to (6) and (7) 
through each other due to the variations in parameters 
(the probing-wave frequency). The singularities merge 
when the respective values of the resonant velocity and 
probing-wave frequency have the same values. 

The starting relation is (4). A brief list of the main 
aspects pertaining to the behavior of atomic characteristics 
are listed below in accordance with the results of Secs. 3 
and 4. 

( I )  The order of magnitude of the vector XBI forming 
the constant component of the absorption coefficient does 
not depend on whether or not an atom is close to a direct 
resonance. But this factor influences the manner in which 
the magnitude varies: the variation is slow far from a res- 
onance and rapid near it. 

(11) The leading term in the asymptotic expansion of 
the function X R ( ~ , T )  contains no oscillating component 
(with a unit frequency in dimensionless notation) outside 
the neighborhood of a DPR. In the neighborhood the am- 
plitude of such a component changes the order of magni- 
tude of the functions and is containcd in the leading term. 

(111) The main contribution to the constant and oscil- 
lating components of the integral in (4) is provided by 
atoms that are in the neighborhood of A and B resonances. 

Let us start with the situation in which the atoms in an 
A or B resonance are far from a DPR. Then, as we will 
shortly see, they are also far from an APR. According to 
(14), the leading term in the asymptotic expansion of the 
solution R ( r )  of (6) for such atoms contains only one the 
time-independent component. Thus, the principal contri- 
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bution to the integral in (4) is provided by atoms in the 
neighborhood of an A resonance. Accordingly, the leading 
term in the asymptotic expansion of the probing-wave ab- 
sorption coefficient contains only a constant component. 
Here we arrive at the well known results for the absorption 
coefficient (see Refs. 1 and 2 and a discussion of this situ- 
ation in Ref. 15). The coefficient is represented by a 
smooth function (i.e., without singularities in the sense 
adopted here) of the parameter f lp.  

According to what was said earlier, there are two sit- 
uations in which the absorption spectrum undergoes rapid 
variations (see Fig. 2). 

(i) When the parameters (the probing-wave fre- 
quency) are varied, the group of atoms in the neighbor- 
hood of a DPR passes through an A resonance. The values 
of parameters corresponding to the coincidence of reso- 
nances are listed below. The velocity values are described 
by Eq. (15), which corresponds to a DPR. The relation 
that corresponds to an A resonance and determines the 
value of flp has the form 

Substituting = u ~ ~ + u ~ ~  and combining the result with 
(15), we get 

which yields 

This expression for flp coincides with the first formula in 
(20). At the same time the value of the atomic velocity 
given by ( 15 ) coincides with that given by (2 1 ). Thus, if a 
DPR passes through an A resonance, the condition for an 
APR is also met. 

(ii) The group of atoms in DPR passes through a B 
resonance. The values of the atom velocity are given by 
( 15 ). Let us write the equation for flp. The eigenvalue 
equation for matrix To yields 

The expression for flp (the condition for a B resonance) 
can then be written in the form pl,,=ic, with (= * 1. If 
the choice of the sign of i/2 coincides with that of the sign 
of 6, we arrive at (25), which means we are in situation 
(i). This was to be expected, for if the conditions for an 
APR and an A resonance are met, so is the condition for a 
B resonance. Selecting different signs, we arrive at the fol- 
lowing equation for flp :03~ + 032 = 3c, which coincides 
with the first formula in (23). We may conclude, therefore, 
that the fact that the conditions for a DPR and a B reso- 
nance are met implies that this is the condition for an 
APR. 

We can easily show that the probing-wave absorption 
spectrum has no other singularities than those listed above. 
Summing up, we arrive at the following conclusions. 

There are two distinct phenomena that serve as sources 
for the singularities observed in the probing-wave absorp- 
tion spectrum and related to parametric resonances. 

1. Simultaneous coincidence of DPR, APR, and A and 
B resonances. Allowing for certain liberties of speech, we 
call such situations parametric resonances A (or PRA). 
Their position on the frequency scale of the probing wave 
is described by Eqs. (21 ) . Depending on the choice of signs 
of the parameters q and h, we have four different cases. 

2. Simultaneous coincidence of DPR, APR, and B res- 
onances. We call such situations parametric resonances B 
(or PRB). The respective values of the probing-wave fre- 
quency are described by Eqs. (24). Here, too, depending 
on the choice of signs of the parameters q and f ,  we have 
four different cases. 

Both types of parametric resonance exist only if the 
threshold condition ( 13) is met. The resonance conditions 
are met for the same groups of atoms whose velocities are 
in the neighborhood of the value given by ( 15). 

Let us write the final formulas for the probing-wave 
absorption coefficient for PRA. According to (16) and 
(22), the steady-state solution of (7) has the form 

Integration of the harmonics whose frequencies are of the 
order of O(E) yields a factor O(E- l 1. Allowing for this, we 
arrive at the final expression for the leading term in the 
asymptotic expansion for the given case: 

Here matrix 6, is. defined by the relations [ha] =pl 
[6a112=~12, [GJ23=G23( and 
=G2,(l+q)/2, with all other elements of ea zero. The 
explicit expressions for Y and Y, contain parameters a and 
p, which characterize the exact tuning to a parametric res- 
onance (more precisely, these parameters enter only into 
the diagonal elements of these matrices). The matrices U, , 
&,, and U in the leading term of their expansion in E are 
independent of a and P and are determined by the values of 
their parameters in the neighborhood of the resonance 
point of a PRA. According to our definitions, R2,=P2W, 
where P2={I,0) (a row matrix). Substituting (26) into 
(4) and going from integration over v to integration over a 
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FIG. 3. Amplitudes of the constant component of function V,(B): 
g,,=2, g3,=1.5, g2,=2, g=1, h=q,  x=1.2, a,=1/3, and q=1. 
Series 1 corresponds to a= 5(.), series 2 to a=7(  +), and series 
3 to a=9(*). 

via ( 15), we amve at the final formula for the leading term 
in the asymptotic expansion of the probing-wave absorp- 
tion coefficient in the neighborhood of a PRA (recall that 
ED= yI): 

Here and in what follows the integral over a is taken from 
- oo to oo in the principal-value meaning. Note that the 
factor a, enters into matrix X and, hence, into matrix G,. 

Equation (27) implies that at P= O( 1 ), that is, in the 
neighborhood of a PRA and in the steady-state mode the 
probing-wave absorption coefficient has two components, a 
time-independent constant component and a component 
oscillating with frequency D. Equation (27) can be written 
in explicit form, which is much more complicated. Here we 
only list the results of computer calculations, via (27), of 
the peak values of the constant and oscillating components 
of these functions. The characteristic curve are depicted in 
Figs. 3 and 4. In calculating the curves it was assumed that 
elements of all the matrices in (27) except those of Y and 
Y, took on values equal to those at the point of paramag- 
netic resonance (i.e., only the leading terms in the respec- 
tive asymptotic expansions were considered). Since in a 
real situation E assumes specific values, it must be stressed 
once more that these relations describe well the behavior of 
the system characteristics up to I P I =o(E-I). Of course, 

the smaller E the more precise for each given p these terms 
are, that is, the smaller the relative contribution of the next 
terms in the asymptotic expansion. 

Let us now discuss in greater detail the behavior of the 
constant component of the absorption coefficient. The 
structures associated with the presence of a parametric res- 
onance are symmetric with respect to the point that corre- 
sponds exactly to the condition for the parametric reso- 
nance (Fig. 3). Their effective halfwidth yc is determined 
by a complex combination of atomic relaxation constants, 
and to roughly estimate the halfwidth we can use the ap- 
proximate relation yc- (g2 +g2 +dl +d2 +dl ) 'I2. 

(Here we assume that the width of the Doppler contour is 
much larger than y,.) For fairly low values of c these 
structures are bell-shaped. As & increases (and 6 is linearly 
connected with the amplitude a of the additional wave) up 
to ($+dl)'/', there appears a dip o. the bell-shaped 
curve, and with further increase in 6 the contrast and 
width of the dip increase. This is similar to the behavior of 
the characteristics of the Bennett  hole,'^^ which appears 
when a gas of two-level atoms is irradiated by a saturating 
monochromatic quasiresonance wave. The important dif- 
ference is that in our problem the relatively stronger wave 
(the primary wave) creates the conditions necessary for a 
hole whose characteristics are determined by the relatively 
weaker wave (the additional wave). From the viewpoint of 
the results obtained in Ref. 12 this is natural. Indeed, Ref. 
12 shows that a weakly modulated bichromatic quasireso- 
nant field splits the Rabi frequency of a two-level atom. 
For a low-intensity additional wave, when the splitting is 
fairly weak, it does not manifest itself and we see a bell- 
shaped curve, which is the result of convolution of func- 
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FIG. 4. Amplitudes of the oscillating component of function 
V,(/3): g3,=2, g,,=1.5, g2,=2,  g = l ,  x=1.2, a ,=1/3 ,  and 
11 = 1. Series 1 corresponds to a= 5, series 2 to a = 7, and series 3 
to a=9.  

tions, Lorentzian profiles, with different widths in (27). 
When the additional-field amplitude is fairly high, the bell- a 
shaped curve acquires a dip corresponding to the splitting 
of the Rabi spectrum. 

Let us write the relations for PRB similar to (27). Let 
Hb= diag{- iq, - 2iq), 

The 2 X 4 matrix eb has only two nonzero elements, Yb and Y (more precisely, their diagonal parts) depend on 
[eb]13= ~ 1 3 (  1 -q)/2 and [eb114= 1 +q)/2, while g32 a and P in the leading term of the asymptotic expansion, 
and g3, have the same meaning as before. Then while the other objects in the leading term are independent 

of these parameters. This implies that in the steady-state 
~b(P,7)  GX( +PY~ ) mode in the neighborhood of a PRB the probing-wave ab- 

sorption coefficient depends on two oscillating harmonics: 

- --&-I  ~ X P [ - ( : ) ~ ] C O ~ - ~ I ~ I I  v~(P) ,  
one of frequency of 1 and the other of frequency of 2 ( D  
and 2 0  in the initial notation). 

I ~ { P ~ u ~  ~ x ~ ( H ~ T )  YF leg1 u-~c). 5. CONCLUSION 

(28) 
We have discussed the behavior of a gas of three-level 

atoms that is irradiated by a bichromatic field quasireso- 
Here the integration variable is introduced, as above, by nant with one of the transitions, and is probed by a wave 
Eq. (15). Again, in the integrand of (28) only the matrices on an adjacent transition. We found that under a certain 
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threshold condition imposed on the intensity of the exter- 
nal field, a fairly weak additional component leads to para- 
metric resonances in certain groups of atoms. These reso- 
nances can be of different origin. The probing-wave 
absorption coefficient in the neighborhood of parametric 
resonances of the A type (described above) has an oscil- 
lating component (with a frequency of D equal to the 
frequency detuning between the components of the exter- 
nal field) in addition to a constant component. Both com- 
ponents exhibit sharp "singularities" under variations of 
the probing-wave frequency. The singularities are due to 
the coincidence of parametric and ordinary resonances of 
the system of equations describing the dynamics of an 
atom in the external field. The contrast of the singularities 
is of the order of O(1) and the width of the order of O(y). 
The probing-wave absorption coefficient in the neighbor- 
hood of parametric resonances of the B type, resonances 
due to the passage of another ordinary resonance of the 
system, has two oscillating components, with frequencies 
D and 20,  and the behavior of the amplitudes of these 
components is characterized by similar sharp singularities. 
Far from parametric resonances the absorption coefficient 
has no oscillating components. 

These phenomena exist if a number of conditions im- 
posed on the parameters of the external field and atoms are 
met. The most important is the requirement D)y. These 
conditions can easily be met in practice (for more details 
see Ref. 15). It might be interesting to discuss the possible 
role that the described phenomena play in applications, 
such as sub-Doppler spectroscopy and the design of optical 
benchmarks. Recent years have seen an upsurge in the 
employment of two-photon resonances and resonances on 
cooled atoms or atomic beams.2 These methods require 
complex experimental techniques, and the measured sig- 
nals have proved to be fairly low. Methods based on the 
application of parametric resonances have a definite advan- 
tage in this respect. But there is a drawback in the use of 
parametric resonances in comparison to that of two-photon 
resonances. In the first case all atomic relaxation constants 
participate in the formation of the effective widths of the 
singularities in the absorption spectrum, and the larger the 
constant the greater its role, while for two-photon reso- 
nances the width of the singularities is determined by the 
smallest relaxation constants. This poses the following 
question: Can an external field (bichromatic or polychro- 
matic) be used to create physical systems with singularities 
whose widths are determined by the smallest atomic relax- 
ation constants (i.e., ultranarrow resonances)? Next, de- 
vices for stabilizing laser frequencies often use the 
absorption-saturation effect, for instance, in stabilizing a 
helium-neon laser over an I, or CH, cell (Ref. 2, Chap. 
11). Here the peak used as the reference point has an 
extremely low contrast, of the order of 0.5% for I, and of 
1% for CH,. Hence, methods based on the use of para- 
metric resonances have a certain future. 

In this paper we have considered parametric reso- 
nances in a gas of atoms. It goes without saying that sim- 
ilar phenomena emerge (and can be treated by a similar 
asymptotic technique) in situations where no velocity dis- 

tribution of atoms is present, say, for cooled atoms. In such 
an experiment, however, in addition to the usual difficulties 
one encounters a difficulty that lowers the precision of the 
method compared with the use of a gas of atoms, namely, 
the low strength of the signal. 

The author is grateful to D. A. Firsov and A. S. 
Kheifets for technical support and to M. Z. Smirnov for 
stimulating discussions. 

APPENDIX 

Let us show that the eigenvalues of matrix Y satisfy the 
conditions Re @, < 0. We have Y= Y1 + Y2, where Y, and 
Y2 are symmetric: 

Direct calculations easily show that 7, , the eigenvalues of 
matrix Y ,  , satisfy the conditions Re 7, < 0. Next, matrix 
Y2 differs only in notation from matrix Qo and, hence, has 
eigenvalues on the imaginary matrix. For every four-vector 
u and an ordinary scalar product, therefore, we have 
Re(u, Y,u) < 0 and Re(u, Y2u) (0. Adding, we obtain 
Re(u,Yu) <0, from which it immediately follows that 
Re @, < 0. 
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