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On the basis of a detailed investigation of the photon correlation of arbitrary order S of two 
spatially separated modes we elicit characteristic features of their interference, which 
appears in spite of the absence of mode mixing. Here each mode is exposed to the action of 
an independent two-ray interferometer. We establish that the maximal contrast of the 
interference picture is achieved in the framework of the quantum description and the isolated 
contrast takes place for 2S photon states for odd S only. With increasing S the 
interference maxima become sharper and the minima become smoother. The classical theory 
predicts, on the other hand, significantly lower visibility and contrast. 

INTRODUCTION 

A significant role in modern studies in quantum optics 
is played by a variety of projects on the observation of 
interference between so-called entanglement states, charac- 
terized by hard pairwise correlation of photons belonging 
to different modes.'-" Here, as a rule, the two-channel 
detection regime is utilized, and only cases of coincident 
photon appearance in the channels is taken into account. 
Thus we are in fact dealing with modifications of the in- 
terference of the intensities, or with mixed moments of 
another order. 

The most thorough analysis in this sense was given to 
two-photon states, whose correlated photons are in two 
modes separated in space or in frequency. Their prepara- 
tion presents no difficulty: most simply they are obtained in 
the process of nondegenerate parametric scattering in a 
piezocrystal, where a pump photon fissions into two pho- 
tons (signal and idler) with frequency conversion down 
(ao+ a,+ ob) . Therefore the numerous theoretical predic- 
tions are already supported by many experiments. Accord- 
ing to the classification in Refs. 7 and 8 they can be divided 
in two large groups. To the first group belong schemes with 
mixing of the modes produced in the parametric process, 
which can be achieved with the help of a two-ray interfer- 
ometer or a simple beam splitter. The second group is 
interesting in that the prepared modes are not mixed yet 
interference is present: each of them separately passes its 
two-ray interferometer (for example, Mach-Zehnder), 
and the rate of pair photocounts depends on the cosine of 
the sum of the path differences in these independent inter- 
ferometers. The reason for this at first sight unexpected 
behavior lies in the correlation of photons of the entangled 
state. This last group of experiments has received the name 
of interference of the Franson type. 

Thus, two-photon fields have by now been extensively 
studied, which cannot be said of multiphoton processes 
whose study is still in infancy (see, for example, Refs. 
7-11, and the literature cited therein). And whereas 
schemes with mixing have been already subjected to a def- 
inite the multiphoton interference of the Fran- 
soq type is in that sense lagging. The present work is an 

attempt to fill this gap. In this connection it is necessary to 
note that the investigation of the correlation of three or 
more photons displays also a new type of contradiction 
between quantum theory and the concept of hidden 
parameters,'O~" which is sharper and more explicitly pro- 
nounced than by means of violation of the Bell 
inequalities. l2,l3 

1. HOW TO OBSERVE FRANSON-TYPE INTERFERENCE 

The scheme of a possible experiment for the organiza- 
tion of Franson-type interference is shown in Fig. 1. It is 
particularized for the four-photon state (two photons in 
each mode: S=2) ,  which we will consider in greatest de- 
tail. In the case of an arbitrary 2s-photon state, small 
changes not of principal significance have to be introduced 
into the detection system (increase of the number of photo- 
receptors). 

There are the following main possibilities for the prep- 
aration of the four-photon state 122). First, use can be 
made of the four-cascade transition of an atom from the 
excited to the ground state, for which each photon pair is 
degenerate (belongs to the same mode). An alternate pro- 
cedure consists in the application of parametric scattering 
either in a medium with nonlinearity X(4) (by analogy with 
Ref. 14), or as a result of a cascade process analogous to 
that described in Refs. 7 and 15. In the latter case two 
photons are generated in the first stage of strong mono- 
chromatic pumping in the process of nondegenerate para- 
metric scattering in the piezocrystal, for example of the 
type wo + wi + w; (the subscripts a and b correspond to 
different modes, separated either in space, or in frequency, 
or in polarization type), and in the second stage these 
photons split into pairs already in the degenerate regime, 
i.e., in the generation of subharmonics: 2(3iyb - w,b. In the 
following we suppose for simplicity that oa=wb=w. 

The beams formed in this fashion then enter indepen- 
dent Mach-Zehnder interferometers, in which phase shifts 
in the arms can be introduced by the displacement of any 
one of the total-reflection mirrors. The emerging beams are 
detected by photodetectors whose signals are analyzed for 
coincidences and as a result one determines the desired 
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S S moment Gss= (:nanb :), where n,=afa, nb=bf b, with 
a+,  a and b+, b the creation and annihilation operators of 
each of the modes, and the colons denote normal ordering. 
To measure GI, (intensity interference) two detectors are 
sufficient, to measure G22-four (additional receptors are 
shown in Fig. 1 by dashed lines). 

2. STARTING RELATIONS 

The process of formation of the 2s-photon state, which 
consists of the decay of the pump photon into two S pho- 
tons (one S in each mode) is described by the following 
Hamiltonian 

~ = i f i ~ [ ( a + b + ) ~ -  ( ab ) s ] /~ ,  ( 1  

where x is a coefficient that characterizes the nonlinearity 
of the system (for parametric scattering it is proportional 
to the nonlinearity X(2S) of the medium and the pumping 
amplitude, which we assume to be classical and inexhaust- 
ible ) . 

In the Heisenberg picture the evolution of the opera- 
tors determines the following equations of motion 

Here T = x ~ .  

3. PERTURBATION THEORY FOR THE FOUR-PHOTON 
STATES 

For S = 2  the solution of the system of equations (2)  to 
econd order of perturbation theory in T has the form 

(4) 

FIG. 1. Possible variant of a scheme for the observation of 
Franson-type interference in a two-mode four-photon state. All 
beam splitters have identical (50%) transmission and reflection. 
Dashed lines indicate additional photo-detectors and beam split- 
ters necessary for the detection of the fourth moment G,,. The 
coincidence scheme registers only cases of simultaneous detection 
of photons in each of the receptors. The filters in front of the 
photo-receptors are not shown. 

where the subscript "0" corresponds to the initial opera- 
tors for T=O, and R is the detuning frequency from the 
carrier Z, i.e., w =ij + R. The appearance of negative argu- 
ments ( - a )  in (3) is connected with the condition 
wo= 2 (o, + wb) = 40, which follows from the law of con- 
servation of energy (wo is the frequency of the monochro- 
matic pumping), a consequence of which is 
R = Ra= -ab. The relation for b(R)  is obtained from ( 3 ) 
by exchanging a. and bo, but keeping the original argu- 
ments. 

It is not hard to verify that the above solutions satisfy 
the standard commutation relations for bosons: 

= [a(R),bf (R')]  =O 

accurate to second order in T inclusive. 
At the input of the parametric system we specify ther- 

mal noise with an average number of photons 
No = (a$ao) = (b$ bo)  The nonzero normal-ordered mo- 
ments of order S are then equal to 

The main reason for using initial thermal noise is that 
it allows the accomplishment of a gradual passage from a 
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quantum to a classical model. Indeed, the case No=O cor- 
responds to the vacuum at the input of the parametric 
scatterer, i.e., a purely quantum situation. In the opposite 
limit, the noncommutativity of ao, a$ and bo, b$ ceases to 
affect the results and we arrive at the classical description 
of the system. In this way it will be easy to follow the 
specifics of each of the characteristic cases. 

4. TRANSFORMATION OF THE RADIATION BY THE 
INTERFEROMETERS AND ITS SUBSEQUENT DETECTION 

We pass now to a description of the action of the in- 
terferometers (see Fig. l ) ,  which accomplish a unitary 
transformation of the form 

where the operators c(R) and d(R), as well as all the 
others, describe in the Heisenberg picture the vacuum at 
the "second" inputs of the interferometers (on the other 
side of the incident beam splitters); are the relative 
time delays of the light by the arms of the interferometers; 
a=6Ata, P=ZAtb. 

Since we are interested in normally-ordered moments 
Gss, the operators c and d do not contribute upon averag- 
ing over the vacuum, and in what follows the correspond- 
ing terms will be omitted. 

The photocurrents in the detectors are determined by 
the operators 

with 

where T ~ , ~ ( R )  are the spectral characteristics of the photo- 
receptors (in intensity), which can be regulated by the 
linear filters placed in front of them (which are not shown 
in Fig. 1) .  In (9) terms that vanish upon calculation of 
normal-ordered moments, similarly to c and d, were omit- 
ted. Their explicit form is given, for example, in Ref. 7. 
Losses due to additional light dividers when operating with 
four detectors can also be included in the coefficient 
77a,b('R). 

Operators in the temporal and spectral representation 
used in (8) and (9) are connected by a Fourier transfor- 
mation, for example, 

The integration limits can be taken here approximately as 
infinite. 

We first analyze a variant of observation of intensity 
interference. To this end we need in the experimental 

scheme (Fig. 1) two photodetectors. The problem reduces 
to the calculation of the correlation function 

Here we made use of (7)-(10). 
The expectation value in the integrand can be deter- 

mined with the help of Eqs. (3)-(6). Omitting the un- 
wieldy intermediate steps, we obtain in the end 

Thus, 

The first term represents the product of ordinary 
single-photon interference terms. The first two cosines in 
the second term of the integrand are also of the single- 
photon type. We are interested in higher orders, for which 
the additional single-photon modulation is parasitic and 
can be eliminated by an appropriate choice of spectral 
characteristics V ~ , ~ ( R ) .  For simplicity we set 
qa(R) =qb(R) =??(a). Let the bandwidth of the detector 
(or the filter placed in front of it) be AR > 21r/At,,~. Then, 
according to Eq. ( 15), 

x{l+f cos [w(~r ,+~ tb)  + f i ( ~ t , - ~ t ~ ) j ) d R ,  

(16) 

or for Ata= Atb= At 
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\\\ FIG. 2. Graphs of the interference curves of the moments 

I I everywhere. 

Thus the interference is determined by the oscillating 
factor of the second term. The visibility V of the interfer- 
ence picture does not exceed 1/2 and reaches maximum in 
the pure quantum case, when No=A =O, B=4 and 

In passage to the classical description, i.e., with in- 
creasing No, the visibility decreases due to the increase in 
A-N; and in the constant component in ( 17), above 
whose background the oscillations are less noticeable. 
However the very structure of the interference picture re- 
mains unchanged. Only its quantitative parameter V var- 
ies. This circumstance relates the case under consideration 
to interference of intensities of the Franson type of two- 
photon states, where the visibility also falls on going from 
the quantum to the classical However, there 
are also differences: there the maximal visibility reaches 
unity (see the graph in Fig. 2 for S= 1). Further, accord- 
ing to (15)-(17), Gll does not depend on ta and tb. This 
means that the pairs of photons can be detected either 
simultaneously or with an arbitrary relative delay. In the 
two-photon case, on the other hand, simultaneous detec- 
tion was required to obtain maximum visibility. 

We pass now to the analysis of interference of higher 
order, i.e., the correlation function Gz2(ta,tb), in the cal- 
culation of which the main difficulty lies in the evaluation 
of the expectation value 

its extreme unwieldiness and since the smallness of T makes 
it negligibly small relative to the zeroth order of perturba- 
tion theory, i.e., the first term in the braces. The last term 
in (19) is of purely quantum nature and does not vanish 
for No = 0. 

The suppression of lower interference orders, as in the 
preceding case, is achieved by the choice of a sufficiently 
wide detection band Afi > 21r/At,,~. Here the first term in 
( 19) provides only a constant background, proportional to 
#. This terminates its role as a "destroyer" of the inter- 
ference visibility, and in the following we will concentrate 
only on the investigation of the effects due to the last term 
in (19), corresponding to the purely quantum situation 
(No=O). 

With (7)-( 10) taken into account and for equal phase 
shifts in the channels (Ata=Atb=At) we have ultimately 

Here we have set ~ , ( f i )  = ~ , ( f i )  =q(fi).  
To clarify the features of the final relation (20) we 

briefly recall the physical essence of the experiment under 
discussion (Fig. 1 ) . Into each of the independent channels 
"a" and "b" enter pairs of simultaneously produced pho- 
tons which, having traversed the interferometers, are also 
strictly pairwise detected by four receptors. If both photons 
of one channel are distributed with 50% likelihood not 
over two detectors but only appear in one, then the count- 
ing scheme will not react to such an event. This is because 
we only count events corresponding to the simultaneous 
appearance of photo-counts in all four receptors. It is the 
rate of such coincidences that is determined by (20). 

Expanding the detection band Afi without bounds, i.e., 
letting 9 -+ 1, we obtain 

+fi3,fis+fi7). (19) Consequently we are indeed dealing with a four- 

Here we made use of (3)-(6). The term in the square photon state, all of whose quanta are produced and de- 
brackets, proportional to ? N ~ ,  has been omitted in view of tected simultaneously. 
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The normalized graph of the dependence of the inter- 
ference cofactor in (20) on a +P=26At is shown in Fig. 2 
(S=2).  It is seen that it differs insignificantly from the 
case of interference of two-photon states (S= 1), but the 
contrast is lower since 2+cos(a +P) has no zeros. 

5. HIGHER ORDERS OF INTERFERENCE 

We expand the investigation of the purely quantum 
interference (No=O) by generalizing it to the case of an 
arbitrary number of photons S in each mode. To this end 
we need the expectation value 

where the operators are written in the Heisenberg picture 
and the averaging is over the initial vacuum states of the 
modes: 1 0) = 1 O)nl ( 0)a2 ... 1 0)4S. It  is clear that in the 
approximation of second order in perturbation theory the 
quadratic in T terms in the expansion of the operators do 
not contribute to (22). We can therefore limit ourselves to 
the linear in r solutions of the equations of motion (2): 

b ( ~ )  -b0(fi) + ~ a $ ~ (  - ~ ) b $ ~ - ' ( f i ) ,  (23) 

whence the correlator (22) is 

(01 ...I 0) c ~ $ 6 ( f i ~ - f i ~ , f i ~ -  fi31...,fi1-fi2S,fi4S 

-fi4S-1,...,fi4s-fi2~+1)- (24) 

Thus 

Setting AfiAta,b > 25- and Ata= Atb= At we obtain for 
the interference factor 

S-L 

xcos L(a+B)  C ( G G + L ) 2 ,  
K=O 

(26) 

where we have the binomial coefficients c$=s!/K!(s-K)! 
For the particular case S = 2  we have the interference 

factor (20) identically equal to 2[9 + 8 cos(a +P) 
+cos 2(a+P)I. 

For S = 3 we have 

Consequently, with increasing S the number of har- 
monics of the interference term increases being equal to 
S+ 1. 

The normalized graph of Gj3 is also shown in Fig. 2. 
One notices first the return of 100% contrast in the inter- 
ference (G33 again takes on zero values). This is explained 
by the following circumstance. For odd S the number of 
even harmonics (as well as of the even powers of the co- 
sine) is equal to the number of odd harmonics (odd pow- 
ers), and as a result they can compensate each other and 
turn the sum into zero. For even values of S, on the other 
hand, the number of odd harmonics is one less than the 
number of even ones. But it is the odd cosine powers which 
can take on negative values, and so their insufficiency re- 
sults in incomplete compensation and a decrease in the 
interference contrast. 

There is a general tendency towards sharper interfer- 
ence maxima with increasing S and towards smoother min- 
ima, which is also connected with the increased role of 
higher cosine powers. However the distribution and num- 
ber of the maxima and minima are unchanged, which is in 
contrast with the interference of multi-photon states when 
they are mixed with the help of a beam splitter or polar- 
ization where an increase in S is accompanied 
by an increasing number of zeros and local maxima. 

CONCLUSION 

The variants of Franson-type interference here investi- 
gated are endowed with characteristic features that distin- 
guish them from the entire class of multi-photon interfer- 
ometers, which, it is to be hoped, will raise the interest of 
the reader and enthusiasm of the experimenter. 

This work could hardly have been completed without 
the constant stimulating discussions with D. N. Klyshko, 
to whom I am also grateful for comments on the text of the 
article. 
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