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The propagation and parametric effects in the interaction of extremely short magnetic pulses 
(video pulses) with a dielectric paramagnet are analyzed. The paramagrst has a spin s = 1/2 and 

, is in an external magnetic field H, . In contrast with optical video pulses, steady-state, circularly 
polarized pulses may form in an inverted paramagnet under the condition H, < H ,*, where H 8 is 
determined by the parameters of the medium. If H, > H ,+, the results predict amplification of the 
transverse component of the pulse as the longitudinal component reaches saturation. There may 
be a continuous parametric increase in the signal frequency. 

1. INTRODUCTION 

Interest has recently been drawn to the nonresonant 
interaction of extremely short electromagnetic pulses, con- 
sisting of about one oscillation period (video pulses), with 
matter.'-' This interest has been stimulated by progress in 
laser technology, which is now capable of generating femto- 
second-range pulses.* Studies in this direction.can signifi- 
cantly improve dynamic methods of nonresonant laser spec- 
troscopy. The typical frequencies of the optical quantum 
transitions are w, =: 1015 s -  '. For rf-spectroscopy transi- 
tions, on the other hand, they are w, - lo9-10" s -  '. These 
may be transitions between hyperfine levels or between Zee- 
man sublevels of paramagnetic atoms. By analogy with the 
spectroscopy of optical transitions, dynamic methods of 
nonresonant magnetic rfand IR spectroscopy may be devel- 
oped. Since the values of o, are small in the latter case 
(small in comparison with the optical values), it is sufficient 
to use video pulses with a length 7, on the order of a picose- 
cond. Infrared pulses in "one oscillation period" of length 
7, - 10 - 12-10 - l 3  s have recently been generated under ex- 
perimental  condition^.^ 

Several theoretical have also been carried 
out. They have dealt with the nonlinear propagation of elec- 
tromagnetic pulses in a paramagnet. In particular, steady- 
state video pulses traveling at a constant velocity at a certain 
angle with respect to the external magnetic field H, were 
studied in Refs. 10 and 1 1. Circularly polarized pulses prop- 
agating along H, and satisfying the condition w , ~ )  1 were 
studied in Ref. 12. It was shown in that paper that these 
pulses can be described by a "differential nonlinear Schro- 
dinger equation." It was shown in Ref. 13 that the latter 
equation can be integrated by the inverse-scattering method; 
an N-soliton solution of this equation was derived.'' 

Let us consider the interaction of an electromagnetic 
video pulse with a dielectric paramagnet. We assume that 
the paramagnetism stems from the spin of an electron in the 
atomic S state. An external magnetic field causes Zeeman 
splitting of the state into two sublevels with a frequency sep- 
aration w, = gll/3,H0M (gll is a component of the Land6 
tensor, /3, is the Bohr magneton, and fi is Planck's con- 
stant). The magnetic field H of the pulse propagating 
through such a medium can then cause magnetic-dipole 

transitions between the given sublevels. If the magnetic-di- 
pole transitions are to effectively influence the nature of the 
propagation of the video pulse, there must be an appreciable 
difference between the populations of the corresponding 
sublevels. Such a difference is possible at temperatures 
T <  h, /k ,  (k, is the Boltzmann constant). Taking 
w, - 10" s -  ', we find T <  1 K. The two-level approximation 
is legitimate for a paramagnetic medium if14 
(djE /hj )2( 1, where dj is the electric moment of a transi- 
tion from one of the sublevels of interest to the nearest of the 
remote quantum levels, hj is the corresponding distance 
along the energy scale, and E is the electric field of the video 
pulse. 

2. BASIC EQUATIONS 

We assume that the paramagnet is a uniaxial crystal. An 
external magnetic field is directed along the cylindrical-sym- 
metry axis of the crystal (the z axis). The Hamiltonian of 
this paramagnet, incorporating the interaction with the vid- 
eo pulse, is 

H = - A ( W ~  + n , , ) ~ ,  - tin$, - (1) 
A A 

 ere.!?^, S,, S, are electron spin operators; all = gll&Hz/ff; 
ax,, = gLBOHx,, /fi; and H, , H,, Hz are components of the 
magnetic field of the video pulse. In the Heisenberg picture, 
we easily find from ( 1) the equations of motion for the elec- 
tron spin: 

where U =  ( i x ) ,  V =  (i,), W =  ( i z ) , and  (...) meansthe 
operation of taking the expectation value. 

We supplement Eqs. (2)-(4) with Maxwell's equa- 
tions: 

744 JETP 76 (5), May 1993 1063-7761 /93/050744-06$10.00 @ 1993 American Institute of Physics 744 



Here n is the concentration of paramagnetic atoms, and c is 
the velocity of light. We assume that the video pulse is propa- 
gating along the external magnetic field, which is directed 
along the z axis. The z component of Eq. (5) can then be 
integrated easily: 

where W, is the initial spin inversion 
[ ( W, = W(t = - eel ) 1 .  In integrating we note that in the 
absence of a video pulse the spins are oriented parallel to 
( W, > 0) or antiparallel to ( W, < 0) Ho . 

The system (2)-(4) has the integral of motion 
U2 + V2 + W2. Using the initial conditions at t = - co 
( U = V = 0, W = W, ), we can transform to coordinates on 
a sphere U2 + V2 + W2 = I W, 12: 

We also assume R, = R, cos p, R, = R, sin p. In this 
notation, Eqs. (2 )-(4) become 

Alternatively, introducing the variable x = II, - p,  we can 
write 

We further assume 

Inequalities (10) constitute a generalization of the 
strong-field appro~imation'-~.' to the case of circular polar- 
ization. The condition IR, 1 ) / all 1 holds well for pulses 
which are travelling at velocities close to the velocity of light. 
Under these conditions, Eqs. (9)  have a solution 

which can be put in the form 

If R, = R,, = 0, the solution in ( 12)-( 14) is the same as the 
corresponding solutions derived in Refs. 1-3 and 7, by a dif- 
ferent method, for the case of linear polarization. 

Substituting ( 12) into ( 13) into the right sides of the 
(2) and (3),  and using ( 6 ) ,  we find 
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1 = W,exp(ip) [aOsin 6 - iS2,co.s 6 - 3 w & ~ ~  sin 261 , 

(15) 

where 

B0 = wo(f + All * (1) = 4nSogll (l)nWm/bo . 
From (5)  and (15) we then find 

1 - iQ,cas 6 - - 1 w sin 26)] , 2 11 0 
(16) 

where R = R, + iR,. 
Let us assume that the velocity of the pulse is close to 

the velocity of light, c. We can then transform from Eq. ( 16) 
to an equation which describes the motion of a pulse in one 
direction: 

art 
z = Q , ,  

where r = t - Z/C. 

Separating the imaginary and real parts, we find 

3. STEADY-STATE, CIRCULARLY POLARIZED PULSES 

The magnitude of the transverse component of the 
pulse field and the phase of its rotation can thus be expressed 
in terms of the solution of the double sine-Gordon equation. 
According to (6),  the longitudinal component of the pulse 
field is given by 

It is because of the longitudinal component of the vector 
R that a second term arises on the right side of Eq. ( 19). We 
know that solutions of the double sine-Gordon equation do 
not have soliton properties." If the external magnetic field is 
so strong that the condition wo ) 4?rp cgf n I W, I / f i  holds, we 
can ignore the second term in ( 19). The propagating video 
pulses are then solitons of the sine-Gordon equation. The 
law describing the rotation of their polarization plane is giv- 
en by (20). 

For equation ( 19) we can write the "Hamiltonian den- 
sity" 
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Following Refs. 16 and 17, we define the "vacuum state" as 
the state with a constant a,,, which minimizes Z. Corre- 
sponding studies show that under the condition W ,  > 0 we 
have aVac = 2 m  (n = 0,1,2, ...). A transition between the 
vacuum states with n = 0 and n = 1 corresponds to a solu- 
tion in the form of a solitary pulse which is traveling parallel 
to H, at a velocity v and which is rotating in the transverse 
plane (we call this a "stationary" pulse) : 

sech (23) 

-$I g1 
1/2 

p = f(z - ct) + T Z  -- , ,  ( - ) ams(l  t '3h f) . 

Here 

and f(z - ct) is an arbitrary function determined by the ini- 
tial (or boundary) conditions. If f(z - ct) = 0, inequality 
( 10) is violated. Assuming v 5 c, we write 

f(z - ct) = f(z - vt) = -(1 - vIc)$(z - ut) . 
We assume that f(z - ut) is equal to the third term in 

(25 ). We then have 

Since we still have v#c, at a certain distance z, inequality 
(10) becomes violated after the pulse in (25), (26) is 
formed, and the solutions found above are no longer valid. 
This distance can be estimated easily from the condition for 
the convergence of the series obtained by expanding f in 
powers of ( 1 - v/c)z/A. We thus have 

Since v 5 c, this distance can be substantial in units of A. 
The case considered here corresponds to, for example, a 

paramagnet at thermodynamic eq~ilibrium:~) 

The pulse corresponding to (23) is shown in Fig. 1. It fol- 
lows from (24) that the electron spins "undergo a complete 
rotation" through an angle of 2~ over the time taken for the 
pulse to pass. 

If the initial state of the paramagnet is not an equilibri- 
um state ( W ,  < 0), on the other hand, and if the condition 

also holds, then there exists a 9 ,*,, , which is found from 

FIG. 1. Profile of the magnetic field of the pulse in the case of thermody- 
namic equilibrium. 

The quantity 6 ,*,, corresponds to a cancellation of the 
static Zeeman splitting w, by a dynamic Zeeman effect re- 
sulting from the longitudinal component of the magnetic 
field of the pulse [see (2), (3),  (21 ) 1. Thus the resultant 
Zeeman splitting vanishes at 9 = 9 Equation (30) has a 
mechanical analogy in a pendulum whose suspension point 
is vibrating at a frequency v. 

Here we have'' Al l  -2. In this case the pendulum ac- 
quires a stable equilibrium position, which corresponds to 
9 ,*,, in (30). The role of the source which causes the suspen- 
sion point to vibrate is played by the longitudinal component 
of the pulse field. 

The corresponding solitary pulse is described by the fol- 
lowing expressions, where we are using v 5 c: 

QL =2(A,- 1/2p sh 6' 
A,, + (A,, - 1)sh2<' ' 

p = - -  (1 - A,, 

A,, + (A,, - 1)sh2c1 
(33) 

Here 

The pulse in (3 1 ) is shown in Fig. 2. The pulse is bipolar 
in this case, in contrast with the preceding case, and its area 
is zero. 

Solution (3 1 )-(33) corresponds to a single vibration of 
the spin around its equilibrium position 9 = 9 ,*,, . The maxi- 
mum azimuthal angle 9 on the Bloch sphere is determined 
by 

which corresponds to all = - 213, [see (21 ) 1. The resul- 
tant Zeeman splitting is w, + all = - w, < 0. A dynamic 
inversion of Zeeman sublevels has occurred: The excited 
sublevel has become the ground sublevel, and the ground 
sublevel the excited one. It is this effect which is responsible 

746 JETP 76 (5), May 1993 S. V. Sazonov and E. V. Trifonov 746 



Following the papers just cited, we introduce this vari- 
able in our own analysis. Equation ( 19) then becomes 

The function 8 and its derivatives are smooth everywhere. 
We can thus ignore the first term on the right side of (35) 
near 17 = 0. Near T,I = 0 we then find the approximate solu- 
tion 

FIG. 2. Profile of the magnetic field of the pulse in the nonequilibrium 
case with H, < H,. 

for the stability of the pulse (3  1 ) as it propagates through an 
initially inverted system of spins. We mentioned above that 
if the longitudinal component of the pulse field is ignored we 
obtain the ordinary sine-Gordon equation. This equation 
does not allow the existence of stable stationary pulses in an 
inverted system ( W m  < 0), while formal solutions in the 
form of superluminous pulses are unstable. 

Condition (29) imposes a limitation on the external 
magnetic field Ho which causes the static Zeeman splitting 
of the electronic S state. If we have 
Ho < H, = 4n-@ogll n 1 Wm 1 ,  circularly polarized pulses of the 
type in (31), (33), (21) can propagate in a paramagnet. 
Otherwise, they cannot exist. We can thus say that a non- 
equilibrium phase transition occurs in the system as the con- 
trol parameter Ho is varied. Taking ) W m  / - 1, gll ~ 2 ,  and 
n - 10" - cm - 3, we find H, - 10 - 2-104 G. Such fields 
correspond to a Zeeman splitting w, - lo5-10" s-'. Com- 
paring (3 1 ) with (2 1 ), we see the validity of the assertion 
that we have )f l ,)  % 1 fill 1 for values of v close to the velocity 
of light. The latter inequality is important, since its use led to 
the approximate solutions of system (2)-(4). 

4. AMPLIFICATION 

We now assume that inequality (29) does not hold. In 
this case there can be no dynamic inversion of the Zeeman 
sublevels. There can thus be no formation of video pulses of 
the form (3 1 ), (33), which drive the paramagnet from its 
original excited state and then return it to that state. In this 
case, a pulse removes energy stored in the sample as it passes 
through the sample. As a result, the paramagnet goes to the 
ground state, amplifying the signal by virtue of an energy 
transfer to it. Under the condition All  (1, we have the sine- 
Gordon equation for 9. In this case the field and frequency of 
the pulse increase in proportion to the distance tra- 
~ersed.'-~,'. '~ Since the longitudinal component of the mag- 
netic field of the pulse promotes the formation of circularly 
polarized video pulses, we would expect that this component 
would oppose amplification under the condition All  < 1. In 
the nonequilibrium case we have a self-similar solution of the 
sine-Gordon equation for the field which depends on the 
variable 7 = 6~ (Refs. 1-3,7, 15). This solution is a function 
that changes sign and is nonzero primarily near T = 0. Its 
resultant area is IT. 

Here 

k = q ( 2  - A,,) < 1 . 
Far from T = 0, the equation can be linearized near the 

point 9 = IT. We introduce the variable u = I9 - n- ( JuJ < n-) . 
From the linearized versions of Eqs. (35) and (20) we then 
have 

a, = - w J , ( ~ / Z ; S ; ) / G  , (38) 

where J, (a) is the Bessel function of order unity. This solu- 
tion is valid for w r  > 0. For w r  < 0 we find a solution in the 
form of a modified Bessel function of order unity, whose 
asymptotic form (for I W T ~  >> 1 ) is 

If we ignore the longitudinal component of the pulse 
field, we have Al l  = 0 and f l, = a,, = w sech(wr). Follow- 
ing Refs. 1-3 and 7, we interpret w as the frequency of the 
pulse, which increases in proportional to the distance tra- 
versed by the pulse. The amplitude fly, of the transverse 
component of the magnetic field, increases in the same fash- 
ion. The longitudinal field component of the pulse, on the 
other hand, cannot exceed a maximum value Ull w, [see 
(21)l.  From (36) we have 

Since we have 2(1 - All ) / (2 - k)  < 1 under the condi- 
tion Al l  < 1, we conclude that the effect of the longitudinal 
component of the pulse amounts to reducing the amplifica- 
tion effect (fly < fly ) and slowing this effect ( I  > I, ). 

Adopting n-  10" cmP3, we find I, - 10 m. With Al l  = 0.5 
we have q = 0.17,1= 21, -20 m, and f l y= ;0 .27 fLr .  Ac- 
cording to (36) and (37), the inequality IR, 1 > lap /&I 
holds if the distance traversed by the pulse satisfies 
z <  21,/(2 - k) <I. The analysis above is thus valid only at 
distances small in comparison with those over which the 
pulse frequency increases by a,. 

747 JETP 76 (5), May 1993 S. V. Sazonov and E. V. Trifonov 747 



5. PARAMETRIC FREQUENCY CONVERSION 

Along with the effects which stem from the nonlinear 
propagation of the video pulses, it is interesting to look at 
certain parametric processes. An example is the generation 
of higher harmonics, which was studied in Refs. 1, 2, and 7 
for the case of linearly polarized pulses. In our own case, the 
rotation of the spin in real space means that the transverse 
component of the pulse is circularly polarized. Furthermore, 
a longitudinal component is created. We introduce the com- 
plex dipole moment S, = U + iV, and by analogy with Refs. 
2 and 7 we introduce the "Josephson magnetic current," 
J = as, /at [see ( 15) 1. This current generates a circular- 
polarization wave. The magnetic field vector rotates in a cir- 
cle with a frequency w = de, /at. However, the spectrum of 
the reradiated signal acquires components with frequencies 

Solutions (12 ) - (14 )  describe nutation in an ultra- 
strong field. Superimposed on the rapid rotations of the spin 
in the meridional plane of the Bloch sphere, at a frequency 
R,, is a slow motion of the spin in the equatorial plane, at a 
frequency w. The role of the longitudinal component of the 
spin is to generate the frequencies a,,,. The ratio of the inten- 
sities of the spectral lines at the frequencies o,,, and w,,, is 
estimated to be - (wo;l,, /41 fl, 1 )'. Under the condition 
IR, I ) w0 we have w , ,  ~ 2 w , , ~  -0, where I is the pulse 
intensity. By varying I smoothly, we can tune the frequency 
at the exit from the paramagnet continuously. In the case of 
a linearly polarized pulse with an electric dipole interaction, 
a discrete set of harmonics of the frequency w is generated at 
the AS the power is raised, the spectral intensities of 
progressively higher harmonics increase. In our own case, 
there are no harmonics at all. In this case, an increase in the 
pulse power has the result that the four spectral components 
which are generated (a , , ,  , w , ,  ) withdraw continuously to- 
ward progressively higher frequencies. Corresponding to the 
frequency o , ,  - I a, 1 - 10" s - ' is an intensity 
I = cH '/4n-- 10" W/cm2. 

The efficiency of the frequency conversion can be esti- 
mated by calculating an effective cross section uo for the 
process. Since the direction of the reradiated signal is the 
same as the direction of the incident signal, we can restrict 
the discussion to an estimate of the integral cross section. 
From the definition of uo we have uo = &Id W/dt I/I. Us- 
ing ( 15) and the expression for I, and taking a time average, 
we find ( I fl, / = const) 

Taking w/R, -0.1, we find uo - lo-', cm. The mean 
free path of a photon in the medium in the case of a tenfold 
frequency increase is thus I- ( a o  n )  - ' - 1 cm, where 
n - lo2, ~ m - ~ .  TO achieve efficient conversion, we must 
keep the thickness of the paramagnetic sample above this 
value. 

6. CONCLUSION 

Experiments on the generation of extremely short elec- 
tromagnetic pulses in the microwave and IR ranges9 are 

stimulating theoretical work on the nonresonant interac- 
tions of such pulses with various media, which have pre- 
viously been studied by methods of resonant coherent spec- 
troscopy. There is interest in studies of pulse propagation 
processes and also various parametric effects. 

The analysis above shows that the magnetic dipole in- 
teraction of pulses with a paramagnet is quite different from 
the electric dipole interaction of such pulses with a nonre- 
sonant two-level system. The pseudospin describing the two- 
level system "rotates" in isotopic space. The z component of 
the pseudospin (the inversion) is unrelated to the longitudi- 
nal component of the electric field. The spin of a paramag- 
net, on the other hand, "rotates" in real space. The z compo- 
nent of the spin thus creates a longitudinal component of the 
magnetic field of the pulse. This component can radically 
change propagation processes. 

There is the possibility that circularly polarized station- 
ary pulses can propagate in a nonequilibrium paramagnet by 
dynamically inverting the Zeeman sublevels of the S state 
caused by the longitudinal pulsed component of the magnet- 
ic field. 

The propagation of a pulse in a system of inverted spins 
leads to continuous amplification of the transverse field 
component. The longitudinal component, on the other hand, 
is amplified under saturation conditions. Furthermore, its 
presence results in a slowing of the amplification. 

The "rotation" of the spin in real space also makes pos- 
sible continuous parametric frequency up-conversion of a 
signal. 

" Nakata et ~ 1 . ~ ~ ~ ~  correctly associate their results with low-temperature 
ferromagnets (T(Tc, where T, is the Curie temperature). The ex- 
change-interaction field can be ignored since the velocity of spin waves 
is much smaller than the velocity of light. The corresponding formal 
criterion can be derived by comparing the field of the pulse with the 
exchange-interaction field: x=  k,  Tca2/(fir,c2) < 1, where a is the dis- 
tance between the nearest spins in the crystal lattice. Substituting in the 
values Tc- 10' K, a-10W8 cm, and 7,- S, we find x -  lo-''. 
The results of this paper can thus also be extended to low-temperature 
ferromagnets. 

'' For the case of a ferromagnet, the substitution tanh(fuoo/2k, 73 - 1 
should be made in expressions (28) and (41 ). 
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