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We consider effects resulting from the interaction of volume and surface waves at the 
interface between linear and nonlinear media. We investigate the resonant interaction of weakly 
nonlinear p-polarized surface waves due to the diffraction of intersecting coherent light 
beams by the self-consistent grating produced when those beams interfere in the nonlinear 
medium. Expressions are derived for the amplitudes of surface waves leaving the 
interaction region. We study various beam interaction regimes in the nonlinear medium, and 
determine optimal surface-mode excitation conditions both inside and outside the beam 
intersection region. We propose a theory to account for scattering of the incident bulk waves 
at the surfaces, and show that for a strong enough incident field, the incident beam 
pumps energy into the scattered beam and the surface wave and causes instability. Back- 
scattering occurs at certain definite angles of incidence. The characteristics of the scattered field 
are calculated. 

INTRODUCTION 

A great deal of effort has been devoted of late to studies 
of how electromagnetic radiation penetrates and is re- 
flected by nonlinear media with a refractive index that de- 
pends on the square of the electric field amplitude (see, 
e.g., Refs. 1-4). Of particular interest are the linear and 
nonlinear excitation of surface waves by electromagnetic 
 beam^.^-'^ This type of problem has gained prominence 
through its relationship to channeling of strong electro- 
magnetic the creation of new nonlinear 
 material^,'^,'^ optical machining of planar microelectronic 
surface and the burgeoning field of polar- 
iton spectroscopy of condensed 

We consider two related effects in the present paper: 
the resonant excitation of weakly nonlinear p-polarized 
surface waves by intersecting electromagnetic beams, and 
the scattering of radiation by a surface wave with the same 
frequency. The physical basis is the same for both 
phenomena-incident waves are scattered by variations in 
the refractive index of the nonlinear medium that are pro- 
duced by the interference of coherent wave fields. Rela- 
tively recent studies of the kinetics of fast processes in 
solids, liquids, and gases'9-23 have shown that if the elec- 
tromagnetic beams overlap in a nonlinear medium, a self- 
consistent inhomogeneity is produced in the latter-a 
light-induced diffraction grating, which can scatter both 
the original radiation and a probe wave. One would expect 
that surface wave excitation ought to be possible') if an 
appropriate grating is produced near the interface between 
two media, just as in the case of diffraction gratings that 
are artificially deposited on a surface.24 Likewise, the dif- 
fraction grating produced by the interference of surface 
and bulk waves leads to scattering of the latter.2) The de- 
velopment of resonant processes involving surface waves 

entails a significant rise in the local electromagnetic fields 
near the interface,28 with a consequent nonlinear change in 
the phase relationships among the interacting waves. This 
can in turn become the dominant field-constraining mech- 
anism in the interaction region, and can appreciably affect 
the excitation efficiency of the surface waveguide and the 
characteristics of the scattered radiation. An appropriate 
theory therefore requires a self-consistent approach, which 
we now describe. 

1. STATEMENT OF THE PROBLEM. BASIC EQUATIONS 

Let the half-space z < 0 be a vacuum, with dielectric 
constant EO= I ,  and let the half-space z > 0 be occupied by 
a nonlinear medium with dielectric constant E , .  Setting 
aside the specific mechanism producing the nonlinearity, 
we assume in the theory below that the dielectric constant 
of the nonlinear medium is proportional to the square of 
the amplitude of the electric field, 

where a, is a nonlinear coefficient of the medium that can 
be either positive (focusing medium) or negative (defocus- 
ing medium), and is the unperturbed value of the di- 
electric constant. In considering the excitation of surface 
electromagnetic waves (SEW), we will assume that two 
coherent p-polarized beams ( By, Ex,  E, ; B is the magnetic 
field, E the electric field) are incident from the vacuum 
side and overlap somewhere on the interface. The magnetic 
field distribution at z=0 due to the beams can be written in 
the form3) 
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where w is the frequency of the electromagnetic field, 
ko=w/c is the wave number in vacuum, c is the speed of 
light, F1,2(5) specifies the transverse structure of the inci- 
dent fields, al 1,2 is the characteristic transverse 
beam~idth,~'  01,, is the angle of incidence at the interface, 
and  sin If we are concerned with the scattering 
of incident radiation by an SEW, we will need the expres- 
sion corresponding to (2b) for the SEW magnetic field 
(z=O),  

in which y3 > 1, since the phase velocity of the SEW is less 
than the speed of light in vacuum, and F3(x) is the self- 
consistent field distribution of the SEW. With F,=const, 
we will treat the electromagnetic field described by (2) and 
(3) as a zeroth approximation, since it is the solution to 
the linear problem.5) We can thus neglect self-interaction 
effects in the pump field, such as self-focusing and 
b i ~ t a b i l i t ~ ~ ~ . ~ ~  (for a treatment of SEW excitation in the 
presence of bistability by an electromagnetic beam in thin 
plasma films, see Ref. 8). For this to be the case, it is at 
least necessary that perturbations of the dielectric constant 
in the nonlinear medium be relatively small 
(a&"'= a. I E 1 '4 I E I ), which we will assume below. Inter- 
ference between the pump waves then produces a grating 
in the nonlinear dielectric constant with corresponding 
wave numbers ( y, - y2, y2 - yl ) (if the second pump wave 
is a surface wave y2 must be replaced by y3), giving rise to 
a scattered field with wave numbers 
(y, ,2yl - y2,y2,2y2- y1 ). The scattered field can have a 
phase velocity greater than the speed of light, and can be 
radiated into the vacuum (if the corresponding wave num- 
ber is less than unity), or it can be a retarded wave, pro- 
ducing an evanescent near field at the interface. In the 
SEW excitation problem, we will be interested in the situ- 
ation in which a slow spatial harmonic is in resonance with 
the surface wave; in the SEW scattering problem, we will 
study the structure of the radiated field. For clarity, we 
show in Fig. I the regions in which SEW excitation (Fig. 
la)  and bulk scattering (Fig. lb) can take place, and we 
have included in the latter the line on which back- 
scattering is possible. 

FIG. 1.  (a) Domain for excitation of surface electro- 
magnetic waves by volume waves; (b) domain for 
scattering of volume waves by surface electromagnetic 
waves. Dash-dot lines show locus of backscattering. 

Adopting the foregoing assumptions and approxima- 
tions, we will use perturbation theory (in the nonlinearity 
parameter ao,  which is assumed to be small) to construct 
the theory; this approach is well-developed for resonantly 
interacting waves, in particular (see, e.g., Ref. 31). We 
point out that by virtue of the resonant nature of the in- 
teraction, first-order perturbation theory suffices when sur- 
face electromagnetic waves are excited by incident beams, 
while SEW scattering requires a second-order analysis. 

Our starting point is Maxwell's equations for an inho- 
mogeneous, nonlinear medium: 

1 aB i a 
rot E=--- at rot B = - - E ( ~ E ( ~ , ~ ) E .  

c at (4) 

The electromagnetic field components (Ex ,E,, By) in (4) 
correspond to p-polarized waves. 

We can now proceed with the solution of the problems 
at hand. 

2. EXCITATION OF SURFACE ELECTROMAGNETIC WAVES 
BY INTERSECTING ELECTROMAGNETIC BEAMS 

We assume that the beams are wide enough that their 
interaction with the surface looks locally like the interac- 
tion of a plane wave of appropriate amplitude. Since the 
grating period in the nonlinear dielectric constant is dic- 
tated by interference between the incident beams, this ap- 
proach will be justified if the characteristic width ( LF) of 
the beam intersection region is much greater than the pe- 
riod of the interference pattern. We thus require that 

We represent the electric and magnetic fields in the non- 
linear medium in the form 
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where the bp(t,x) are dimensionless, slowly varying mag- 
netic field amplitudes of the spatial harmonics [which de- 
pend only on x in the case of stationary incident beams blY2; 
see Eqs. (2a,b)], and xp= ( $ - E ~ ~ ) " ~ .  Terms in the sums 
in (5) with p=3 correspond to a resonantly excited inter- 
nal surface wave synchronized with the incident fields in 
both space and time. To be definite, let 

In turn, y3 satisfies a linear dispersion relation for SEW 
at the interface, 

The existence criterion for weakly damped SEW is 
Re < - 1. The corrections B y ,  $,,, and the surface- 
wave amplitude b3 in (5) can be found via first-order per- 
turbation theory in the nonlinearity parameter (as the lat- 
ter relates to the fields in the zeroth approximation). 

Substituting the expressions in (5) into the basic equa- 
tions (4) and equating terms with the same y and the equal 
powers of the perturbation parameter, thereby satisfying 
the continuity conditions on Ex and By at the interface, and 
likewise making use of a well-known method based on 
Fredholm's alternative theorem3' to eliminate corrections 
in (5) that grow in space and time, a series of lengthy 
calculations yields an equation describing SEW generation 
in the field of two intersecting electromagnetic beams: 

where f i  and q are linear phase mismatches from reso- 
nance; the adopted normalization of time and space coor- 
dinates is t=wt, Z= (w/c)x (overbars have been omitted); 

6 is a phenomenological damping constant introduced into 
Eq. (8) (the reciprocal of the surface wave's mean free 
path), and is due to weak absorption in the nonlinear me- 
dium; vg=w-' do/dy is the SEW group velocity, normal- 
ized to the speed of light; and 

The parameters in corresponding coefficients are related by 
(6) and (7), and are assumed to be real. The space-time 
distribution of the incident field at the interface is spelled 
out by the functions bl(t,x) and b2(t,x), which are as- 
sumed to be given. By redefining the SEW amplitude to be 
b3 = b; exp( - ifit + iqx), we can eliminate the exponen- 
tial factor in (8); the linear and nonlinear phase mis- 
matches are then represented in the same way, and Eq. (8) 
takes the form (omitting the prime on b3) 

where (fi/vg-q). For Eq. (9) to hold, perturbation 
theory requires that the linear and nonlinear phase mis- 
matches ( p ~ '  and p;) and the linear SEW damping factor 
all be small. In dimensionless form, 

We point out that these coefficients bear no particular size 
relationship to one another. 

Now consider the stationary (a/dt=O) excitation of 
surface electromagnetic waves by intersecting beams, and 
above all, by a spatially uniform pump, b,,,=const. We 
can find the appropriate spatially uniform solution for the 
surface wave amplitude from a cubic equation in I b3 1 2, 

where pZ =p;+p;! Clearly, when > - (14 6 +p:'), Eq. 
(10) has a single real root. When the inequality has the 
opposite sense, there is a range of amplitudes for which Eq. 
( 10) has three real roots, giving rise to optical bistability in 
SEW generation (it can easily be shown that two roots are 
stable and the third is not). With a uniform pump, how- 
ever, there are also oscillatory regimes produced by beats 
associated with the loss of synchronism between the SEW 
and the incident radiation; the latter results from both lin- 
ear and nonlinear phase mismatches. 

For simplicity, we first consider the lossless case (6 
=O) .  Let the SEW field be b3 = d e x p  i@. The amplitude 
and phase are then 

d d  -- - Fo sin @, 
dx 

where the functions b1,2 can be assumed to be real with no 
loss of generality. Figure 2 shows phase-plane portraits in 
the variables d and @ for various values of the linear 
mismatch p;. The solutions plotted in Fig. 2 depict the 
periodic variation of SEW amplitude along the surface of 
the nonlinear medium; the period depends on the pump- 
wave amplitudes. This sort of surface-wave field behavior 
suggests that there is a distinct nonlinear scale length (cor- 
responding to the period), which in turn gives rise to op- 
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FIG. 2. Amplitude vs phase for a surface electromagnetic wave excited by 
two uniform incident plane waves. a) p, >pel; b) p, <px <pc,; c )  p, <p,,, 
where p,, = - [33/2 ( A P O  18333/2]2/3, pc2=2'"pC~. 

timum scale sizes for the beam intersection and focusing 
regions that produce SEW of maximum amplitude. 

To determine the corresponding scale length and cal- 
culate the amplitude of the SEW that is excited, we linear- 
ize Eq. (9) by neglecting the term proportional to - I b3 1 2, 
which takes SEW self-interaction effects into account: 
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Equation ( 1 1 ) admits of an analytic solution; noting that 
b3-0 when x- - co, we can write the solution in the form * 

For purposes of estimation, we start by assuming that the 
fields in the beams have a rectangular transverse distribu- 
tion, i.e., 

From ( 12), then, the expression for the squared  SEW'^^- 
plitude in the beam intersection region becomes 

The amplitude of the SEW exiting the beam intersection 
region can be found from ( 13 ) , letting x = LF . 

We now analyze Eq. (13) and determine the optimal 
conditions for SEW excitation both inside and outside the 
interaction region. Different wave-generation conditions 
prevail, depending on the ratio between pX and 8. From 
Eq. ( 13), it can be seen that the most favorable regime 
corresponds to pZ=O, i.e., cancellation of the linear and 
nonlinear phase mismatches. The solution ( 13) can then 
be rewritten: 

Equation (14) describes an SEW that attains its max- 
imum amplitude at the boundary x= LF of the beam in- 
tersection region. The optimum size of that region is then 
a scale length significantly greater than the SEW mean free 
path, LF$ L, . This condition simultaneously ensures that 
the surface waveguide is excited at maximum efficiency. 

Consider now the situation in which Jp, 1 &S, which 
can only come about if the linear mismatch is large 
enough, ( (pk1 )a), or the pump fields are strong enough, 
(p{',S). The SEW attains its maximum amplitude, in gen- T 

eral, inside the intersection region at a point xrn--7r/pZ (if 
x, < L,, of course); that amplitude is 

An SEW leaving the interaction region will have its max- 
imum amplitude when x,= LF, which then sets the cor- 
responding optimum scale length. Note that the SEW am- 
plitude varies quasiperiodically, with period Ax -- 2r/p,, 
depending on the width of the intersection region. The 
behavior of the emerging SEW as a function of SLF is 
illustrated in Fig. 3. 

Analysis of the solution of Eq. (12) for beams with a 
smooth transverse intensity distribution is much more 
complicated than for beams with a rectangular profile.'But 
if the function Fo(x) is smooth on a scale I/& it can be 
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FIG. 3. Squared amplitude of a surface electromagnetic wave emerging 
from beam intersection region, as a function of SL,: 1-pp/6=0; 
2-p,/&= 1 ;  3-pp/6= 5 .  The squared amplitude has been normalized to 
its maximum possible value, I b3 I :,,= 1 F,,, 1 2/62. 

taken outside the integral in ( 12) and assigned its value at 
the upper limit; an approximate expression for the SEW 
amplitude is then 

(15) 

One feature of the solution ( 15) is that the SEW am- 
plitude vanishes at the boundary of the beam intersection 

region (b3 +O as Fo+ 0). Meanwhile, an SEW is excited 
within the interaction region, and it reaches a maximum 
amplitude b3 ,ax-Fo,ax/6 when the linear and nonlinear 
phase mismatches cancel, 

To ensure the most efficient possible generation of the 
outgoing SEW, it is necessary in this case that Fo(x) have 
two distinct scale lengths: a width scale LF)1/6 and an 
outer scale Lb(l/S, which can be achieved in practice by 
using apertures to define the beams. For high-power pump 
fields for which the phase mismatches do not cancel, L, 
should be close to the appropriate optimal scale length 
calculated above for incident beams with a rectangular 
transverse intensity profile. 

Recall that the solutions obtained so far hold when 
A&333 1 b3 ( 2( maxCpZ ,S). If this is not in fact the case, it 
will not be possible to obtain a stationary solution of Eq. 
(9), .necessitating the use of numerical methods. As an 
example, we have plotted in Fig. 4 the calculated SEW 
amplitude distribution for three different linear phase off- 
sets, one of which (curve 3) corresponds approximately to 
cancellation of the nonlinear phase. 

Similar considerations apply to the excitation of sur- 
face electromagnetic waves by electromagnetic pulses in 
the spatially homogeneous problem [d/dx = 0 in (9)] when 
they are long enough that the "source" Fo in Eq. (9) can 
be assumed to depend solely on time, i.e., Fo=Fo(t). The 
above conclusions will then hold if we make the substitu- 
tion x + v g  in the appropriate solutions. 

The results derived above still hold for more compli- 
cated interface structures, which for instance might con- 
tain a thin transition layer.@ The only modifications are in 
the quantitative relationships and are due to changes in the 

FIG. 4. Spatial profile of the amplitude of a surface electromagnetic 
wave generated by intersecting beams: I )  1 2 )  2-p;= -0.03; 
3 )  3-pL= -0.06. The dashed curve shows the function I Fo(x)  1 (nor- 
malized to  IF^^:,,). LFz600, 6=0.01 ( 6 .  L,--,6), b,,,,=b2,,,=0.1, 
y, =0.8, y2= -0.4 (y3=2,  - 1.33). 
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constant coefficients in Eq. (9).  In Appendix 1, we present 
expressions for the appropriate coefficients in several 
"complex" interface examples. Note that the existence of 
an interface transition layer will occasionally lead to a non- 
monotonic SEW dispersion relation, with two types of sur- 
face waves-forward and backward (having oppositely di- 
rected phase and group velocities)-at each frequency.32 
Under those circumstances, double the number of SEW 
can be excited, depending on how the beams' angles of 
incidence vary. 

3. BEAM SCATTERING BY SURFACE ELECTROMAGNETIC 
WAVES 

When we consider the scattering of electromagnetic 
volume waves incident upon the surface of a nonlinear 
medium, the surface electromagnetic waves are basically 
governed, as before, by Maxwell's equations (4). Let the 
electromagnetic field be given in the form ( 5 ) ,  where the 
pump waves consist of an incident volume wave (p= 1) 
and an internal surface wave (p=3). When these interact 
they produce electromagnetic fields with wave numbers 
y4 = 2 y3 - y1 and y2 = 2 y1 - y3, corresponding to an exter- 
nal evanescent wave ( y4) and a radiated (for I y2 1 < 1 ) 
scattered field. It is the structure of the latter in which we 
are interested. 

First-order perturbation theory in the nonlinearity en- 
ables us to derive expressions for the scattered and near 
fields, and likewise for the corrections to the specularly 
reflected field and the propagation constant of the SEW. 
As before, omitting details of the lengthy derivation, we 
can immediately write out the expressions for the dimen- 
sionless magnetic field amplitudes [see Eq. ( 5 ) ]  at the sur- 
face, 

The nonlinear correction to the magnetic field ampli- 
tude for the specularly reflected wave takes the form 

where 

The variation of the SEW amplitude, allowing for energy 
exchange between the interacting waves, is given by 
second-order perturbation theory: 

where 

When A3 ( 6 , )  > 6, Eq. ( 18) describes convective SEW in- 
stability, which transfers energy out of the volume pump 
wave. It  is clear from (16) that the scattered field is alge- 
braically related to the fields of the pump waves, and it 
grows in concert with the SEW. 

Now consider stationary scattering (d/at=O) of the 
beam. We can write the solution of Eq. (18) in the form 

where we set x=O at the point at which the amplitude 
(b30) of the SEW entering the interaction region has been 
specified. The SEW field traversing the interaction region 
will be amplified if 

where d=al ,/( 1 -&) 'I2 is the size of the illuminated spot 
at the interface. Making use of ( 16) and ( 19), we obtain 
the structure of the scattered field at the surface of the 
nonlinear medium, 

To obtain an estimate, assume as before that the field 
in the interface region illuminated by the incident beam has 
a rectangular profile, 

In the region occupied by the beam, the solution of Eq. 
(18) will be 

163) =b30exp[r(x+d)I, (21) 

where r = A 3  1 bl, 1 4--6 is the SEW spatial growth rate. 
From (20), we obtain the transverse structure of the scat- 
tered field, 

Thus, if rd(1, Eq. (22) will describe a transverse 
magnetic field distribution in the scattered beam that 
closely resembles the distribution in the incident wave. 
Conversely, when rd> 1, the structure of the scattered ra- 
diation differs significantly from that of the pump. The 
characteristic transverse scale length in the scattered beam 
is l / r (d,  i.e., the scattered beam is narrower (with a 
broader spatial spectrum) than the incident beam (in the 
spatially uniform (d/dx=O) temporal problem this means 
that the scattered pulse is shorter than the incident one). 
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Physically, this results from the nonlinear interaction re- 
gion being smaller than the illuminated spot width. Fur- 
thermore, its center of gravity, as given by 

is displaced (we assume that J 2 x 1  bl ) 2dx=0). For an 
assumed rectangular incident profile, the displacement A is 

There is no displacement at the threshold of instability 
(I'=O), and when I'd) 1, the quantity A+d amounts to a 
generalization of the nonlinear Goos-Hanchen effect to 
scattering (see, e.g., Ref. 9). The angle between the out- 
going scattering beam and the surface normal is given by 

sin 02=yz=2y,-y3. (23) 

When y2= - y1 (or y1 = y3/3), [as follows from (23)], 
we have backscattering. Bearing in mind that I y3 I > 1 and 

I fil < 1, we obtain the range of angles of incidence over 
which backscattering from SEW is possible: 

To the accuracy of the constant coefficients in Eqs. 
( 16)-( 18), these results are unchanged for an interface 
consisting of a thin transition layer. The expressions for the 
coefficients appropriate to a thin nonlinear film deposited 
on a metallic surface are given in Appendix 2. 

CONCLUSION 

We have described and studied the excitation of sur- 
face electromagnetic waves (SEW) by electromagnetic 
beams, and the scattering of such beams by SEW at the 
interface between linear and nonlinear media. Our results 
demonstrate that a significant transformation of field struc- 
ture is possible when radiation interacts with such an in- 
terface, which may well prove useful for diagnostics of 
nonlinear media and surfaces. The resonant nature of SEW 
excitation by means of two interfering incident beams 
makes it possible to transform volume waves into surface 
waves much more efficiently than is the case for linear 
SEW excitation by grazing-incidence electromagnetic 
beams (see Ref. 6).  The excitation of SEW therefore does 
not require complicated optical coupling elements like 
frustrated total internal reflection prisms, slit transducers, 
diffraction gratings, and so forth. We predict several novel 
effects (such as pulse shortening and scattered-beam com- 
pression) that could be usefully verified in a real experi- 
ment. The present theory enables one to take account of 
nonlinear relaxation and the excitation of low-frequency 
wave motion (sound, for example) in a nonlinear medium; 
these processes must typically be factored into any study of 
the interaction between short electromagnetic pulses and a 
nonlinear medium. 

APPENDIX 1 

We give two examples of expressions for the constant 
coefficients in Eq. (9) for the case of two linear media 

separated by a thin nonlinear transition layer of thickness 
h, (koh( 1, ko( 1 E,( ) 'l2h 4 1, E, is the dielectric constant of 
the transition layer, E , = E ~ + c z , ~  E 1 2) .  

a )  For a nonresonant transition layer that weakly af- 
fects SEW dispersion, the SEW dispersion relation is 

In fact, the transition layer in this case serves to produce a 
diffraction grating. The coefficients are 

These dimensionless coefficients effect a renormaliza- 
tion of the electromagnetic field [as in Eq. (5)] by the 
characteristic nonlinear field strength, i.e., by (a,)-"2. 
This situation is typical of experiments on nonlinear inter- 
actions that involve surface electromagnetic waves." A 
nonlinear thin-film medium is most commonly deposited 
on a metallic surface, in which the mean free path of in- 
frared SEW is quite large. 

b) For a resonant nonlinear thin film on a perfect con- 
ductor (a- co ), I E~ 1 ( 1, and E, < 0. The SEW dispersion 
properties are largely determined by the film. The corre- 
sponding SEW dispersion relation is 

We point out that there is an opportunity here for 
significant enhancement of nonlinear effects (compared 
with the simple interface considered earlier in this paper) 
due to resonant growth in the film of the electric field 
component normal to the surface.33734 

The coefficients are 

742 JETP 76 (5), May 1993 A. A. Zharov and A. K. Kotov 742 



These coefficients appear in an equation of the form 
(9) that describes SEW generation, and which contains the 
normal components of the electric field in the correspond- 
ing wave within the thin film instead of the magnetic fields 
b1,2,3 at the interface. Note here that excitation of both 
forward and backward  SEW^' are possible at two corre- 
sponding angles of incidence if the wave number of the 
backward mode yibaCk) < 3; otherwise, there will be no 
backward wave. 

APPENDIX 2 

For the case corresponding to part 2 of Appendix 1, 
the coefficients in Eqs. ( 16)-( 18) take the form 

Here we point out the possibility, in principle, of res- 
onant scattering when the "slow" field with wave number 
y4 is in resonance with the backward SEW. The resonant 
field should then have a scattered wave of much higher 
intensity. 

"~ontrol of the spatial spectrum of scattered radiation induced in thin 
plasma films by a diffraction grating is treated in Ref. 25. 

"~nverse problems-in a certain sense-related to nonlinear radiation 
from thin films of plasma-like media by surface waves have been solved 
in Refs. 26 and 27. 

j ' ~ h e  media are assumed to be nonmagnetic, with B=H. 
4 ' ~ h e  beams are assumed to be much broader than a wavelength. 
"The structure of the electromagnetic field in z is obtained from the 

corresponding linear solution. The electric field components can then be 
expressed in terms of the magnetic field components: E,,= - (yi/~) By,, 
Ec= - (i/k,,e)dB,i/dz; i= 1, 2, 3. 

6'Calculations show that the nature of the equations depends solely on the 
type of nonlinearity, and not on the structure of the interface. 
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