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The spectrum of the electromagnetic vibrations of a ferromagnetic plate magnetized parallel to its 
surfaces is discussed. The dispersion law is obtained for wave propagation along the plate and 
normal to both the magnetic field and magnetization directions. In addition to ordinary wave 
solutions, an unusual mode analogous to the Damon-Eshbach wave is predicted. For low 
frequencies and sufficiently large wave vectors the velocity of the new waves is shown to be much 
slower than the speed of light. 

Low frequency vibrations in magnetic materials contin- 
ue to be a subject of much interest, largely because their 
spectra have proven amenable to study by laser radiation 
scattering techniques.' 

In particular, considerable attention has been given to 
the Damon-Eshbach waves,2 which are surface magnetosta- 
tic modes with amplitudes concentrated near the surface of 
the magnetic. The dispersion relations of the Damon-Esh- 
bach waves are derived by analyzing the magnetostatic equa- 
tions subject to appropriate boundary conditions (the conti- 
nuity of the tangential components of the magnetic field and 
of the normal component of the magnetic induction). 

Introducing the retardation effect (i.e., recognizing 
that the velocity of light c is finite) naturally modifies the 
dispersion law of the waves being studied as well as establish- 
ing the domain of applicability of magnetostatic equations 
and enabling the relation between the wave frequency w and 
the wave vector k to be obtained for those values of param- 
eters where the magnetostatic equations are no longer valid. 
Note that the Damon-Eshbach wave is slow: for kd) l , 2d  
being the plate thickness, the wave velocity is v = dw/dk &c. 
Apart from the slow waves, the introduction of retardation 
into analysis enables waves to be obtained whose velocities 
are strongly dependent on the frequency or, for a fixed fre- 
quency, on the magnetic field H (the propagation direction 
being along the plate). In some of these waves v-c holds, 
which result seems to offer promise for practical applica- 
tions. 

We consider the simplest geometry possible, one in 
which a ferromagnetic plate of thickness 2d is magnetized 
parallel to its surfaces and a wave of wavelength 27r/k and 
frequency w travels parallel to the surfaces and perpendicu- 
lar to both the magnetic field H and the magnetization M 
(MIIH by assumption). (The case of a normally magnetized 
plate has been treated by Savchenko et ~ 1 . ~ 1 .  

The variable fields of the problem are concentrated in- 
side and near the plate and decay exponentially away from it 
with a logarithmic decrement 

yo =&=2P. (1 

Accordingly, our interest is in waves for which @<kc. 
Inside the plate, let us denote by q the component of the 

wave vector normal to the plane of the plate. From Max- 
well's equations, 

where E is the dielectric permittivity and per (w) is the effec- 
tive susceptibility of the plate material; from the Landau- 
Lifshitz e q ~ a t i o n , ~  

The characteristic frequencies are 

where g is the magnetomechanical ratio; He, is the effective 
magnetic field (incorporating the anisotropy field4); and M 
is the specific magnetization. Although generally of the 
same order of magnitude, w, and w, may differ appreciably 
from one another. 

The field patterns in the plate are determined by the 
sign of q2. For q2 > 0 (Case A)  the field variables in the plate 
are superpositions of the trigonometric functions" cos qz 
and sin qz. For q2 = - 9 ( y  > 0, Case B) they are superpo- 
sitions of cosh qz and sinh yz. 

The boundary conditions of the problem (the continu- 
ity of the tangential components of the electric and magnetic 
fields in the wave) enable the following dispersion relations 
to be formulated: 

Case A 

Case B 

From Eqs. ( 1 ), (2),  (4),  and (5) ,  the wave frequency/wave 
vector dependence may be determined. 

We shall first consider Case A. The multivalued nature 
of the cotangent gives rise to an infinite number of spectral 
branches, and it is easy to show that in Case A the branches 
w = w, (k)  are all located outside the frequency range 
(~w, (w ,  + w,) , oo + w,/2) and have their starting 
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points on the straight line w = ck. As k+O, the frequency of 
the lowest branch w = w, (k)  vanishes 

As k- W ,  the frequency of this branch-indeed of all 
the branches which lie below Joo(oo + w,) (and are 
infinite in number)-tends to the limiting value 
wlim = JwO(oO + W M )  as 

For w > w, + wM/2, the branches are asymptotic to the 
straight line w = ck /&: 

For n > 1, the starting points of all the branches w = a;;" (k)  
are found from the condition that y vanish [cf. Eq. ( 1 ) 1, 
which implies that cotangent must go to infinity and hence 
q, = ~ ( n  - 1 )/2d. Equations (2) and (3) then yield 

The biquadratic equations ( 10) have roots w: - ' located be- 
low w,,, = Jw,(w, + w,) and giving rise to branches 
which crowd together at this frequency [see Eq. (8) 1 .  The 
roots w;+ ' above the frequency w, + Jw, give rise to the 
branches asymptotically approaching the straight line 
w =ck/&   see^^. ( 9 ) I . F o r ~ -  1~1itfollowsfrom (10) 
that 

Note that as E-  1, the upper branches of the spectrum 
all go to infinity (at E = 1 they are absent altogether!). On 
the initial portions of the dispersion curves (k  2 k, = w, /c; 
w 2 on ), the group velocities of the wave differ only slightly 
from the velocity of light c: - -. 

For E = 1, using the second of equations ( 1 1 ) simplifies 
(12) to - - 

For large wave vectors [ o  -. w,,, , see Eq. ( 8 ) 1, the group 
velocities of the lower branches tend to zero, 

I 

whereas those of the upper branches are relatively less tem- 
perature-dependent: for w - w the group velocities behave 
like 

el + c / G .  (13') 

Case B. In the frequency interval 

Wlim = )/WO(wO + w ~ )  a w wo + w M / 2  (14) 

there exists one (unusual) vibration branch, o = mu, (k) ,  
which, for kd, 1 and c- W ,  "converts" to the Damon-Esh- 
bach wave2 

The starting point of the unusual branch is on the lower 
boundary of the interval ( 14). For w 2 wIi, 

and for w 5 w,, 

On the boundaries of the frequency interval (that is, for 
w -wli, or w do,, ) the velocity of the unusual branch 
turns to zero, its maximum value in-between being close to 
the velocity of light, (v~:) , , ,  -c. 

A further point to note is that at w = o,,, the penetra- 
tion depth of the unusual wave is zero ( y+ w ). As the fre- 
quency o tends to a,, , the logarithmic decrement y tends 
to infinity along with k. We have discussed elsewhere5 the 
applicability of macroscopic electrodynamics equations in 
situations like this. 

Now the existence of a crowding point for the lower 
branches of the spectrum raises the question of their resolu- 
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tion and hence requires an estimate for the term Im - ' (k) 
responsible for dissipation processes in the system. 

Let us modify the Landau-Lifshitz equation to incor- 
porate a relaxation term containing the transverse (7,) and 
longitudinal (7,) relaxation times [cf. Ref. 4, $ 6, Eq. 
(6.3.1) 1. Writing w = w' + iw" and neglecting terms qua- 
dratic in w",  it is readily found that 

As k-+ co , it follows from (2)  that the effective susceptibility 
tends to infinity. Hence 

(Im w < 0 because of the assumed e - '"' frequency depen- 
dence). For kd, 1, the branches are distinct if w; - '  
- w: 1 > ( a "  I. For n ) 1, the distinguishability condition 
is 

The above inequality is not the only limitation on the k and n 
values. The neglect of the inhomogeneous exchange interac- 
tion in the original formulas also implies that the wave vec- 
tors k and q should be relatively small, 

where the exchange integral I i s  of the order of T, , the ferro- 
magnetic's Curie temperature. The last inequality suggests 
that the plate be sufficiently thick and that the mode number 
n not too large, 

dln >> a(11tw~)~I~. (21) 

Reference 5, which we quoted earlier, analyses the ef- 
fects of the inhomogeneous exchange interaction (i.e., of 
spin waves, or magnons) on the dispersion of low-frequency 
electromagnetic vibrations in magnetics. 

The unusual wave we have discussed appears to be of 
particular interest. It is a simple matter to show that if the 

FIG. 1. Spectrum of electromagnetic vibrations of a ferro- 
magnetic plate magnetized parallel to its surfaces. 
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FIG. 2. a )  Electric- and magnetic-field patterns in the wave for w 2 o,,, ( y- m ). b) Electric- and magnetic-field patterns in the wave for o S om, kd> 1 
(y0sy=k-  m). 
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