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A study is presented of the interchange between the (intrinsically different) Boltzmann, hopping, 
and-in the critical region-scaling conduction mechanisms near a metal-insulator transition. 
For the case when the electron-electron interaction governs the conduction mechanism in this 
vicinity, an analog of a phase diagram is constructed for the transition, based on data obtained for 
Cd-Sb alloy in the process of its amorphization. A quasireentrant superconducting-transition 
line is also shown on the diagram. 

1. INTRODUCTION 

Near the metal-insulator (MI)  transition, intrinsically 
different conduction mechanisms compete and change one 
into another. In this paper an analog of a phase diagram for 
this vicinity is constructed on the basis of experimental data 
obtained from a Cd-Sb during its amorphization. 
The purpose of the diagram is to illustrate the relationship 
between the coexistence domains of various conduction 
mechanisms in the MI transition range at finite tempera- 
tures. 

It is known that the MI transition is defined by the van- 
ishing of the conductivity a (o )  at temperature T = 0. Since 
there are a variety of "metallicity parameters" indicative of 
the distance from the transition (such as impurity concen- 
t r a t i ~ n , ~  the degree of d i~order ,~  the band overlap, etc. ), the 
motion through the phase space of the system often implies a 
change, or changes, from one material to another. It happens 
only rarely that the MI transition can be passed through in a 
reversible manner, by just varying some external parameters 
rather than the properties of the sample. For example, one 
can pass the transition by varying the magnetic field applied 
to the system-and thereby changing the overlap of the im- 
purity-localized electronic wave  function^.^.^ Even then, 
however, no singularities in either specific heat or any other 
thermodynamic function are involved, and one must ex- 
trapolate the temperature dependences a( T) to T = 0 to es- 
tablish the occurrence of the transition. 

At finite temperatures, varying the metallicity param- 
eter enables one to bypass a phase transition when changing 
from the M to the I state, in much the same manner as a 
change from a liquid to a gaseous state may be performed 
without a phase transition. To describe this bypass path, the 
vicinity of the transition in an appropriately constructed 
phase space must be analyzed. 

All transitions depend on much the same concepts for 
their statistical description. One of these is the correlation 
length 6, a statistical quantity divergent on both sides of the 
t ran~it ion.~ As a measure of the proximity to the transition 
we use a quantity f, defined as f = 1/6 on the I side and as 
f = - I/{ on the M side of the transition. Let us investigate 
the vicinity of the MI transition on the Cf, TI-plane shown in 
Fig. 1. The origin of the coordinate system is taken to be at 
the transition point ~ ( 0 )  = 0 on the horizontal axis T = 0. If 
the motion of the system along the f axis is due to the vari- 
ation in the degree of disorder, then we are dealing with what 
is known as the Anderson t ran~it ion.~ Variation of the den- 
sity of electronic states results in a Mott t ran~it ion.~ The 

parameter 1/{ is useful in either case. In the I region it is 
interpreted as the localization radius of the wave functions at 
the Fermi level. lo 

We ignore the possibility of a superconducting transi- 
tion for the moment, and discuss only the normal conduc- 
tion regime at various points of the Cf, TI-plane. 

Far enough on the M side of the transition we have a 
Boltzmann conductivity modified by quantum correc- 
tions:" 

where k, is the Fermi wave vector, I the mean free path, and 
L the phase relaxation length of the wave function. In terms 
of the diffusion coefficient D and the phase relaxation time 
Tp : 

Deep inside the I region we are in the hopping regime 
with 

where T,,, is a parameter and l/m is, in t h r e ~  dimensions, 
either 1/4 (Mott's law12) or 1/2 (Shklovskii-Efros' lawI3). 

The central, or small 1/g, part of the diagram belongs to 
the so-called critical, or scaling, regime.7 In this region the 
inequality (2)  is reversed, indicating that the conductivity is 
largely quantum-mechanical in character. The scaling re- 
gion may be subdivided into M and I subregions lying on the 
opposite sides of the f = 0 axis. Either of these will be consid- 
ered separately further below. First, however, a brief de- 
scription of our experimental background will be given. 

2. EXPERIMENT 

The experimental data used in this study were obtained 
from the Cd,,Sb,, alloy in the process of amorphization of 
its high-pressure metastable M phase. While this phase may 
persist arbitrarily long at nitrogen temperatures, heating to 
room temperatures irreversibly transforms it inot an amor- 
phous I phase.14 By stepwise heating one can repeatedly in- 
terrupt this process to obtain a sequence of intermediate qua- 
sistable states in one and the same sample at certain 
below-room temperature. Refs. 1 and 2 give a detailed dis- 
cussion of this procedure as well as of the transport and su- 
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FIG. 1.  Conduction mechanisms in the vicinity of the metal- 
insulation transition (schematic). 

perconducting properties of the series of states so obtained. 
The same references present arguments intended to show 
that the initial material is homogeneous and has only small 
element-density spatial fluctuations (these fluctuations be- 
ing the main "external" source of inhomogeneity of an 
amorphous material). Specifically, these arguments are the 
ucc T ' ' ~  dependence observed over a wide range of the 
states,' and the narrow superconducting transition occur- 
ring at one of the amorphization stages (Figs. 1 and 2 in Ref. 
2). Needless to say, these arguments do not actually prove 
the homogeneity property, nor do they permit any quantita- 
tive estimates. 

In Ref. 2 the states of the sample in the above sequence 
were indexed by the logarithm of the resistivity ratio mea- 
sured at T = 6 K: 

reveals a relatively small magnetoresistance for T >  4 K. In 
the q = 4.9 state, for example, application of a magnetic field 
H = 4 T at T = 4.2 K increases R by 1 % (Fig. 2), as against 
the twofold increase due to a temperature rise from 4 to 
10 K. 

3. METALLIC PARTOFTHE SCALING REGION 

As the MI transition is approached from its metallic 
side at T = 0, the product k,l decreases and tends to unity 
while the conductivity a (0 )  approaches its minimum Boltz- 
mann value 

where y replaces the free-electron factor 1/37? of Eq. ( 1 ) . 
N. Mott, the author of the concept of a minimum metallic 
cond~ctivity,'~ suggested a rather close value y = 0.026. 
The condition 

where R, is the resistivity of the sample in the initial state. 
The results we present here were obtained in the same series -f = ykF or 11E = ykF = yll (6)  
of experiments. The MI transition occurred at q = 3.9. 

unlike in ~ ~ f .  1, in the present study the dependence yields the left boundary for the scaling region shown in Fig. 

a( T )  was measured in a magnetic field H = 4 T in order to 1. TO the right ofthe boundary, the physical meaning of the 

eliminate superconducting interaction effects. Comparison length Parameter entering the conductivity expression 

of the R ( T )  dependences obtained with and without field changes. In the scaling region this length does not represent 
the mean free path but is rather the correlation length 

and the conductivity in this region is less than a,,,, : 

At finite temperatures one more parameter with the di- 
mensions of length comes into play: the length L defined by 
Eq. (3)  and dependent on inelastic interactions. In the left 
portion of the scaling region the conductivity is usually in- 
terpolated by '' 

1,00 where the constant f i  = 2/3d-0.022 calculated by Kawa- 
0 2 4 6 bata,16 differs little from both the constant 0.026 in Mott's 

H ,  T a,,,, expressionI5 and the factor ( 3 2 ) - '  in (1).  In what 
FIG. 2. Magnetoresistivity for the q = 4.9 state at T = 4.2 K. follows we put y = fi to be able to match the lengths due to 
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appear in the analysis. A change in y has no other effect than of Fig. 1. If g,  does not change from one state to another 
to modify the 6 scale. (Anderson transition), the T a  ( l/f13 along this line. Note 

We restrict ourselves to the case of a critical regime that g, may depend onf, however. 
dominated by the e-e interaction" We now turn to the experimental data. For the states 

3 < q  < 3.9, immediately on the M side of the transition, a 
5 = 7 e e = ~ ~ ,  L = L , = ( D ~ ~ I T ) ~ ~ ~  comparison of the a ( T )  dependences with the universal 

curve ( 10) was made to determine the state parameters a ( 0 )  
(from here on, T is measured in ergs, i.e., the Boltzmann and T * [see Fig. 3 and Table I] .  The state q = 3.9 is close 
constant k ,  = 1). Substituting L e e  into (8) and using the enough to the transition to use the asymptotic expression 
Einstein relation 

( 11 ) when determining u(0)  and g,. The results permit 

(g, being the density of states at the Fermi level), we obtain 
the equation 

$12 = x 1 / 2  + + I 2  (10) 

expressed in the dimensionless units 

If T>) T* then u (T)  >)u(O), and the solution to Eq. ( 10) 
takes the form 

real-scale Cf, T) -diagrams to be plotted (see Fig. 9 below). 
Since the correlation length l a  [u(O) 1 -', it follows 

from the three upper rows of the table that the true T * (6) 
dependence is closer to T * a & -' than to T * a & -3. This is 
accounted for by changes in g,. The evolution of the density 
of states is thus an independent factor affecting the nature of 
the transition. 

For the boundary state near the MI transition, the value 
of g, differs by a factor of about 10 from that for another 
sample,' indicative of an approximately twofold spread in 
the conductivity of boundary-state samples. This, we pre- 
sume, is due to uncertainties in determining geometrical fac- 
tors for irregularly shaped samples. 

2 2 e2 
x = - + 1'13, 0 = 3 o(0) + j; @ZgFq1/3.  3 ( 11 ) 4. INSULATING PART OF THE SCALING REGION 

On crossing over from the Minto Isubregion along the f 
The dependence c T ' I 3  has been observed many times axis at moderately low temperatures, the functional depend- 
e~per imenta l ly .~-~ ." -~  In the oppositeextreme case T< T * ence of the type ( 1 1 1, 
we have 

a = a + br'I3 (15) 
312 112 

x = 1 + r112 ,  o(r) = o(0) + r112 (:) %. (12) remains unchanged, but this time a <0.6,' This has to do 
with the fact that as the temperature is lowered, a transition 
from the critical to the hopping regime must occur. This is 

Equation ( 12) is of the same form as Eq. ( 1 ) for the quan- illustrated in Fig. 4. 
tum-corrected Boltzmann conductivity, 

The question of the existence of a Coulomb gap-and 

What makes the difference, however, is that the main term 
u(0)  in ( 12) can no longer be described by the electron-gas 
model but is rather of a quantum-mechanical nature, just as 
the second term, Au a TI1'. 

The equation T = T *, i.e., 

defines the dividing line in the scaling region of the diagram 

hence the question of the exponent l/m in (4)-is usually 
answered by analyzing the experimental R ( T) dependence, 
the temperature range being taken as wide as possible for the 
p u r p o s ~ . ~ ~ ' ~  In the present study the temperature range is 
bounded from above by our assumption that at Te2-3 K 
the scaling regime sets in. Figure 5 shows in a semilogarith- 
mic scale the temperature dependences for T <  3 K for the 
same states as in Fig. 4. The straight-line plots of Fig. 5a 
imply that the obtained results are describable in terms of the 
Mott law. 

FIG. 3. The universal function, Eq. ( lo ) ,  and its linear asympto- 
tic form, Eq. ( 1 1  ). Experimental points represents the states 
q = 3, 3.35, and 3.7. 
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TABLE I. 

The state parameter qb is defined in (5); g,, the density of states at the Fermi level, is defined by 
theslopeofthe straight-line plots of o (  T ' I 3 ) ;  o(0)  and T * (relevant only for q > 3.9, the Mpart 
of the table) are found by setting the scale for the dimensionless units x and t on the universal 
graph of Fig. 2; T, and T, are determined from the graphs of Fig. 5; T, values are taken from 
Ref. 2 (see also inset in Fig. 7 ) . 

It is worthwhile, however, to take a closer look at the T, 
values obtained. Noting that the permittivity diverges as 

x = x0 + 47re2gd2, (16) 

in the vicinity of the MI transition, it can be shown (see a 
review article by Castner3) that the constants T, and T2 and 
the Coulomb gap A scale with like 

T4/T, = 80, T4/A =i 800. (17) 

The second of these estimates suggests a Coulomb gap 
of order A~0.2-0.4 K in these states. The average hopping 
energy in the presence of a Coulomb gap is3*I3 

so that the ~hklovskil-~fros law can only be obeyed for 
T <  A/2. It is not surprising therefore that it is only at the 
lowest temperatures that the loga(T 'I2) curves asymptote 
into straight lines as shown in Fig. 5b. Note, however, that 
the slope of the straight lines is correct in the sense of being 
consistent with the first of the estimates ( 17). 

In order to describe the lower boundary of the scaling 
region let us note that variable-range hopping conduction 
occurs when 

where r,,, is the hopping length. If m = 4 (Mott's law), then3 

and the boundary of the scaling region is given, to within a 
numerical factor, by equation ( 14) encountered in the M 
region. 

When fhe Coulomb gap becomes significant, so that 
Shklovskii-Efros hopping conduction with m = 2 takes 
place, we have 

Substituting ( 16) for x we again arrive at (14), but with a 
coefficient 2.8/47~= 0.22 instead of 18. 

Thus Eq. ( 14) is a correct functional dependence of the 
boundary temperature T * on 6 and gF in the I region. We 
note, however, that the numerical factor in (14) is depen- 
dent on the particular hopping conduction model being 
used. We also note that, in contrast to the M region, we have 
not independent method for determining 6. In particular, 
there is as yet no model capable to relate 6 to the absolute 
value of the constant a in expression ( 15) for the I region. 
Experiment shows that a is a monotonic function of q, see 
Fig. 6. 

This problem gives rise to another one. According to 
Ref. 1, a change from ( 15) to Aacc T ' I 2  occurs not only on 
moving in the M direction, but in the I direction as well. This 

a, (ohm cm)-' 

0. J 
FIG. 4. Variation of owith T for the states q = 4.7 and 4.9 in a magnetic 
field H = 4 T. Vertical bars indicate temperatures at which a systematic 
deviation of experimental points from straight-line plots begins. 
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a. (ohm cm)-1 

a, (ohm c m ) - I  

FIG. 5. The same as in Fig. 3 in coordinates a) In u, T- ' I4  and b) In u, 
T -  1 '2 ,  

naturally raises some purely experimental problems and it 
would certainly be helpful to perform a more detailed study 
of the same material and to confirm the above result for 
others. However, it is theoretical questions which are more 
important to answer, and these are: How can the critical 
regime be possibly realized in a clustered medium, and pre- 
cisely what is the meaning of the negative constant a in ( 15)? 

5. UPPER BOUNDARY OF THE CRITICAL REGION 

The expressions ( lo)-( 12) for the conductivity in the 
critical region were derived under the assumption that thee- 
e interaction predominates. This manifests itself in that Eqs. 
(8)  and (9) are solved self-consistently and that no ad hoc 
diffusion mechanism has been forced onto the system. It is 
tacitly assumed that the diffusion of electrons is due to the 
fluctuations of the same electric field that determines the 
interaction between the electrons. With rise of temperature, 
a natural limit is encountered to the validity of such a model. 
The quantity Lee, which has the meaning of the diffusion 
length and decreases with increasing T, can never become 
less than I ,  the mean free path due to structural inhomogene- 
ities." Although such an I must exist, how and if it can be 
measured is somewhat unclear considering that of all elec- 

FIG. 6. Nonmonotonic dependence of quantity a, Eq. ( 1 5 ) ,  on the state 
parameter q. 

tron gas parameters the only one at our disposal is gF, the 
density of states at the Fermi level. It is probably the exis- 
tence of an upper temperature bound for the region 
A a a  T 'I3 which permits an independent measurement of I. 

Using the result of Sec. 3, the condition Lee = I becomes 

The dependence of gF and I on f (i.e., on 6) is of course 
different for different materials, but the quantity gF is mea- 
sured independently from the derivative du/d( T 'I3). 

The preceding discussion does not mean that at T > P  / 
g,l the properties of the material are those of an ordinary 
metal with du/d(T) <O. On the contrary, in many cases the 
growth of a with temperature is even accelerated. A cross- 
over from a a T 'I3 to a a T has been observed in In,0, : Cd- 
Sb,' and Ge-Au." Reference 1 explains this in terms of the 
model (8) .  It is assumed that the inelastic length L is a com- 
bination of two lengths, 

FIG. 7. Evolution of superconducting response over the entire range of 
states, O<q<5. Inset: transition onset temperature T, as a function of q. 
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either of which may decrease down to the limiting value of I. 
It follows then that in the high-temperature region the evo- 
lution of the system is determined by the length Lin a T -', 
determined by the inelastic scattering from structural inho- 
mogeneities. It is quite possible that the sum (20) may have 
more than two terms, each additional term depending on its 
respective interaction mechanism. We shall not discuss this 
possibility further, however. 

Thus by the upper bound of the critical region we mean 
that portion of the transition vicinity in which transport 
properties are dominated by the e-e interaction. In Cd-Sb 
this boundary is at about 40 K, which agrees to within an 
order of magnitude with results on amorphous  material^'^'^' 
and  oxide^.^ In materials based on doped A3B5 compounds 
this boundary passes at much lower temperatures of about 1 
K,5,6,22 whereas in doped-silicon-based materials it is not 
possible at all to indentify a critical region with predominant 
e-e in te ra~t ion .~~-~ '  

6. SUPERCONDUCTING INTERACTION ANDTHE LOWER 
TEMPERATURE PART OFTHE (f,PDIAGRAM 

The metastable metallic phase of Cd,,Sb5, has a super- 
conducting transition at T z  5 K. The evolution of this tran- 
sition at various amorphization stages of the material has 
been studied in Ref. 2 and it is of interest to plot this evolu- 
tion in our Cf, T)-diagram. It must be emphasized that the 
material under study has no large-scale concentration fluc- 
tuations (see Sec. 2 above), and is a 3 0  material in which the 
superconducting interaction near the MI transition mani- 
fests itself in an essentially different manner26.27*2 than in a 
2 0  

We may summarize as follows those S-state results 
which are relevant to our diagram. 

As the localization threshold is approached the S tran- 
sition is gradually washed out and on the I side the resitivity 
does not vanish at all with decreasing temperature. We note, 
however, that the kink at the onset of the transition remains 
observable even further on in the I region and is virtually 
unchanged on the R ( T) curve. This is readily seen on the 
graphs of Fig. 7. It appears that instead of an Sstate it is more 
appropriate to speak of the Sresponse of the material when it 
is "switched on" at a certain temperature T, . 

The finite resistance observed at T < T, may simply be 
attributed to "technological" macroscopic inhomogeneities 

- - - - - - - - - -  - - - -  
Positive 
magnetores. 

-0.1 - 

Negative 
rnagnetores. 

FIG. 8. Magnetoresistiviy as a function of temperature in the field H = 4 
T for the state q = 4.9. 

in the form of S enclaves in the normal-metal environment. 
It is likelier, however, that we are dealing with "physical" 
inhomogeneities due to the phase stratification of the materi- 
al on the electronic level. The theoretical premises for this 
stratification idea can be found in Refs. 30-32. 

Experimental evidence in favor of this hypothesis 
comes from the temperature dependence of the magnetore- 
sistance R, ( T )  . In terms of the macroinclusion model, the 
destruction of the superconducting inclusions by the field at 
T <  T, increases the sample resistance by an amount 

AR 3 R d T )  - RO(T), 

dependent on the fractional volume of theSphase. But as the 
temperature is lowered, it would appear that AR (T)  can 
only increase, whereas we see that in q > 4 states it not only 
passes through a maximum but even changes sign with 
further decrease (Fig. 8). This means that at low tempera- 
tures the system ceases to exhibit a superconducting re- 
sponse with a reduced zero-magnetic-field resistivity-i.e., 
that a reentrant transition has taken place.27 

As a characteristic temperature by which to mark the 
reeentrant transition, we may take Tree,, at which 
AR (T)  = 0. Strictly speaking, the Tree,, so defined should 

FIG. 9. Low-temperature part of the Cf, T)-diagram. The 6 scale 
refers only to the negative half-axis, f<0. + : results obtained by 
comparing experimental curves with the universal curve of Fig. 2; 
X :  results from Fig. 3; 0: values of T, (see inset in Fig. 7 ) ;  0: 
values of T,,, (see Fig. 8 ) .  

71 9 JETP 76 (4), April 1993 Gantrnakher et at. 719 



be dependent on H, but this dependence is unlikely to be of 
importance. The key features of the AR ( T) curve are con- 
tained in Ro( T ) ,  the R, ( T) curve playing the role of the 
smooth part of AR ( T). It is for this reason that the quantity 
AR(T) of Fig. 8 is normalized with respect to R, rather 
than to Ro. 

We now turn to the low-temperature part of the Cf, T)- 
diagram, see Fig. 9. 

Since a (0)  yields6 through Eq. (7) in the Mpart of the 
scaling region, we employ transverse Angstroms to graduate 
the left half-axis of the diagram. It is this scale which was 
used to fit the experimental points to the T* curve (two 
crosses on the plot representing points for which T * < 6 K).  

This scale does not pertain to the right Cf> 0) side of the 
diagram. The only assertion to make here is that the points 
marking the characteristic temperatures of an individual 
state are all located on a common vertical line. Shown on the 
diagram are points for two states with q = 4.7 and q = 4.9. 
The vertically connected pairs of crosses are taken from the 
graphs of Fig. 3, the upper points corresponding to the tem- 
perature at which a systematic departure of experimental 
points from a straight line starts to be observed (see vertical 
bars in Fig. 3). The lower points are determined from inter- 
sections ofthe (extrapolated) straight lines a( T 'I3) with the 
T ' ' ~  axis. The scatter so obtained shows the experimental 
uncertainty in estimating the lower bound of the scaling re- 
gion in the I portion of the diagram. 

The dashed curve in Fig. 9 fits the points obtained for 
the S state. The upper and lower parts of the curve respec- 
tively locate the points T, (circles) and Tree,, (squares). 
There is no real significance in that the lower branch of this 
curve coincides with the solid dividing line between the criti- 
cal and hopping regions. This simply reflects the suggestion2 
that the superconducting response should vanish when con- 
duction by hopping becomes predominant. As shown in Fig. 
9, this suggestion is not inconsistent with experiment. 

7. CONCLUSIONS 

The behavior of conductivity near the MI transition is 
strongly dependent on the inelastic electron interaction do- 
minating in the system. When subject to an amorphization 
process, the Cd-Sb alloy offers an example of a three-dimen- 
sional material with the e-e interaction controlling the tran- 
sition vicinity. In the scaling region, the temperature de- 
pendence of o is given by Eq. ( 15),  i.e., Aa cc T 'I3. AS the 
temperature is reduced, this gives way either to Eq. ( 13) on 
the M side ( A a a  T 'I2)  or to Eq. (4) type behavior on the I 
side (hopping-conduction exponential). Cd-Sb is one of 
those materials in which the scaling region manifests itself at 
relatively high  temperature^,^^"^^' so that in principle the 
above changes in temperature dependences may be studied 
on either side of the transition. In practice, however, this can 
only be done in a magnetic field H > 4 T, because at weaker 
fields the superconducting interaction comes into play at 
T < 4 K. On the other hand, this adds the evolution of the 
superconducting response near the MI transition to the 
range of problems amenable to study on this particular mate- 
rial. 

Theoretical ~ t u d i e s ~ ~ - ~ ~  on the superconducting transi- 
tion temperature Tc near the Anderson transition have 
shown a degradation of superconductivity, i.e., a depression 
of Tc with increasing disorder. Referring to our Cf, Tl-dia- 

gram, this means that as f increases, Tc should decrease 
until it eventually vanishes. It is assumed in Refs. 33-35 that 
the S state remains homogeneous near the Anderson transi- 
tion. In an alternative s ~ e n a r i o ~ ~ . ~ '  we envisage a loss of ho- 
mogeneity by the S state close to the MI transition, followed 
by phase stratification of the system on the electron level. 
This may probably explain the existence of two branches, 
with Tc = T, and Tc r Tree,, , on the T, (f') curve for Cd-Sb. 
An immediate experimental problem which then arises is 
elucidating the as yet unknown nature of the states in be- 
tween the branches. 

The authors are grateful to A. G. Aronov and D. E. 
Khmel'nitskii for instructive discussions on the problem, 
and to E. G. Ponyatovsky for his interest in the work. 

lV. M. Teplinskii, V. F. Gantmakher, and 0. I. Barkalov, Zh. Eksp. Teor. 
Fiz. 101, 1698 ( 1992) [Sov. Phys. JETP 74,905 ( 1992) 1. 

'V. F. Gantmakher, V. N. Zverev, V. M. Teplinskii, and 0. I. Barkalov, 
Pis'ma Zh. Eksp. Teor. Fiz. 56, 311 (1992) [JETP Letters 56, 309 
(1992)l. 

3T. G. Castner, in Hopping Transport in Solids, ed. by M .  Pollak and B. I. 
Shklovskii, North-Holland ( 1991 ), p. 1. 

4Y. Irnry and Z. Ovadyahu, 1. Phys. C 15, L 327 (1982). 
'M. C. Maliepaard, M. Pepper, R. Newbury et al., Phys. Rev. B 39, 1430 
(1989). 

6M. C. Maliepaard, M. Pepper, R. Newbury, and G. Hill, Phys. Rev. 
Lett. 61, 369 (1988). 

'E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramak- 
rishnan, Phys. Rev. Lett. 42,673 (1979). 

'P. W. Anderson, Phys. Rev. 109, 1492 (1958). 
9N. F. Mott, Metal-Znsulator Transitions, 2nd ed., Taylor & Francis, 
1990. 

1°Y. Imry, 1. Appl. Phys. 52, 1817 (1981); Phys. Rev. Lett. 44, 469 
(1980). 

"B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in 
Disordered Systems, ed. by A. L. Efros and M. Pollak, North-Holland, 
Amsterdam ( 1985), p. 1 

12N. F. Mott, 1. Non-Cryst. Solids 1, 1 (1968). 
"A. L. Efros and B. I. Shklovskii in Electron-Electron Interactions in 

Disordered Systems (Ref. 1 1 ) p. 409. 
I4E. G. Ponyatovsky and 0. I. Barkalov, Mater. Sci. Rep. 8, 147 ( 1992). 
"N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline 

Materials, Clarendon Press, Oxford ( 1971 ). 
I6A. Kawabata, 1. Phys. Soc. Japan. 34,2169 (1984). 
"B. W. Dodson, W. L. McMillian, 1. M. Mochel, and R. C. Dynes, Phys. 

Rev. Lett. 46,46 (1981). 
IRK. 1. Friedland, A. N. Ionov, R. Rentzch etal., 1. Phys.: Cond. Matter 2, 

3759 (1990). 
19D. M. Finlayson, 1. Phys.: Cond. Matter 3, 3331 (1981). 
'OK. M. Abkemeier, C. 1. Adkins, R. Asal, and E. A. Davis, 1. Phys.: 

Cond. Matter ( 1992) (to be published). 
'IN. Nishida, T. Furubayashi, M. Yamaguchi etal., Solid State Electron. 

28,81 (1985). 
"D. L. Newson and M. Pepper, 1. Phys. C 19, 3983 (1986). 
23W. N. Shafarman, D. W. Koon, and T. G. Castner, Phys. Rev. B 40, 

1216 (1989). 
24J. C. Phillips, Europhys. Lett. 14, 367 (1991). 
25P. Dai,Y. Zhang, andM. P. Sarachik, Phys. Rev. Lett. 66,1914 (1991). 
26M. Kunchur, P. Lindenfeld, W. L. McLean, and 1. S. Brooks, Phys. Rev. 

Lett. 59, 1232 (1987). 
"M. Kunchur, Y. Z. Zhang, P. Lindenfeld et al., Phys. Rev. B 36,4062 

(1987). 
'"D. B. Haviland, Y. Liu, T. Wane. and A. M. Goldman. Phvsica B 169. -. . . 

238 (1991). 
29T. Tamegai, K. Koga, K. Suzuki et al., Jpn. 1. Appl. Phys. 28, L 112 

(1989). 
30L. N. Bulaevskii, S. V. Panyukov, and M. V. Sadovskii, Zh. Eksp. Teor. 

Fiz. 92,672 ( 1987) [Sov. Phys. JETP 65,380 ( 1987) 1. 
31A. A. Gorbatsevich, Yu. V. Kopaev, and I. V. Tokatly, Zh. Eksp. Teor. 

Fiz. 101,971 (1992) [Sov. Phys. JETP74,521 (1992)l. 
3ZM. V. Sadovskii, in Studies of High- T, Supercond., ed. by A. V. Narli- 

car, Nova Sci. Publ., New York ( 1992). 
33M. Ma and P. A. Lee, Phys. Rev. B 32,5658 (1985). 
34T. K. Ng, Phys Rev. B 43, 10204 (1991). 
35T. R. Kirkpatrick and D. Belitz, Phys. Rev. Lett. 68, 3232 ( 1992). 

Translated by E. Strelchenko 

720 JETP 76 (4), April 1993 Gantmakher etal. 720 


