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We show that if the wave vector k  of a periodic perturbation in one- and two-dimensional crystals 
satisfies the condition k < m <  1, wheregand tare the perturbation's magnitude and the 
bandwidth, a highly nonequidistant spectrum consisting of a large number of states, n = 
9 1, forms in the neighborhood of the extremal points of the spectrum over a width of 2g. This 
weakens the singularity in the density of states: in one-dimensional systems a root singularity 
becomes logarithmic, and in two-dimensional a flat maximum is all that remains of a logarithmic 
singularity. The width of the logarithmic peak in the one-dimensional case and that of the 
maximum in the two-dimensional are values of the order ofg< t. We establish the conditions for 
and characteristic of the instability to formation of a wave of deformation. In the one-dimensional 
case the system is unstable for values of the chemical potentialp < p c  - t(w, /t)'< t, while in the 
two-dimensional case the system is unstable only if the Fermi energy is exponentially close to a 
saddle point. In the one-dimensional case the transition to a state with spontaneous deformation 
a tp  = p, occurs suddenly, in a jump. Maximum instability occurs a t p  = 0, which corresponds to 
the bottom of the "initial" band or, which is the same, when the band ( - 2g,2g) is half-filled. As 
a result, in the one-dimensional the carriers become completely localized, while in the two- 
dimensional case they become localized only in one direction, which must lead to a strong 
anisotropy in resistance. 

1. INTRODUCTION 

It is well known'.' that the main anomalous properties 
of layered and quasi-one-dimensional crystals (such as the 
A 15 compounds, dichalcogenides, and Chevrel phases) can 
be explained only by assuming that near the Fermi surface 
(FS) the density of states exhibits a narrow peak of width 
not exceeding several hundred degrees. In all crystals listed 
above there is certain to be a structural transition, which in 
some cases is accompanied by the formation of a superstruc- 
ture. 

Perovskite-like high- Tc compounds belong to systems 
with a quasi-two-dimensional subsystem of carriers and, ap- 
parently, a maximum in the density of states near the FS 
(Ref. 3 ). To explain the peak in the density of states in A15 
compounds, several models with ~ne-dimensional~-~ and an- 
isotropic two-dimensi~nal'.~ carrier spectra have been sug- 
gested. In these models, however, the energy scale determin- 
ing the width of the peak was generally of the order of the 
d-band width, which is considerably greater than required. 
Another feature that remained ambiguous was the relation 
between the peaks in the density of states and the structural 
transition. The polaron mechanism of peak narrowing dis- 
cussed in Ref. 9 requires an unrealistically high value of the 
electron-phonon coupling constant. Kagan and Prokof ev" 
discussed the mechanism of peak narrowing caused by the 
electron polaron effect. 

At the same time it is known that the excitation spectra 
in the neighborhood of Van Hove points are exceptionally 
sensitive to perturbations. For instance, Afanas'ev and Ka- 
gan" discovered a qualitative transformation of the phonon 
spectrum caused by Van Hove singularities in the electron 
subsystem. 

For a two-dimensional electron system with an interac- 

tion of a general type the instability to formation of charge- 
density and spin-density waves, when the Fermi surface 
passes through saddle points, was studied in Refs. 12 and 13. 

This paper focuses on the fact that there is a fairly sim- 
ple mechanism of formation of peaks in the density of states 
near the Fermi surface; and this mechanism, in the first 
place, yields a universal width for the peaks (much smaller 
than the bandwidth) and, in the second, is directly linked to 
the structural transition. 

According to this mechanism, peak formation is caused 
by the quasi-classical quantization of the carrier spectrum in 
the neighborhood of Van Hove points under interaction with 
an exceptionally long-wave perturbation. 

Such a perturbation can be produced either by the order 
parameter proper when there is a superstructure or by long- 
wave fluctuations of the parameter above the transition 
point. 

We discuss below the long-wave deformation of the lat- 
tice as the order parameter, but the same results can be 
achieved with spontaneous magnetization or polarization. 
Note that the variation in a singularity in the carrier spec- 
trum brought about by a deformation wave is, in a certain 
sense, an effect opposite to the one discovered by Afanas'ev 
and Kagan." 

The main results achieved in this paper may be listed as 
follows: 

1. We show that if the wave vector k  of a periodic per- 
turbation in one- and two-dimensional crystals satisfies the 
condition 

where g and t are the perturbation's magnitude and band- 
width, then in the neighborhood of the extremal points of the 
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spectrum (Van Hove points) there forms, over a width of 2g, 
a highly nonequidistant discrete spectrum, and the number 
of states in each well is high: 

In the neighborhood of a saddle point of the spectrum of a 
square lattice, the spectrum resembles a collection of Lan- 
dau levels in a magnetic field, but in contrast to the latter is 
highly nonequidistant. 

2. In the one-dimensional case this leads to a weakening 
of the root singularity in the density of states to a logarith- 
mic. The logarithmic peak lies at the boundary separating 
the discrete spectrum from the continuous near the bottom 
or top of the band. The peak width is of the order of gg t. 

3. Allowing for the interaction in the case of two-dimen- 
sional carriers leads to a smoothing-out of the logarithmic 
singularity. There remains a flat maximum approximately 
In ( t  /g) high and g wide (Fig. 1 ) . 

4. Calculation of thermodynamic potentials at d = 1 
and d = 2 (at d = 1 the problem can be solved exactly) 
shows that the system is unstable with respect to spontane- 
ous formation of a wave of deformation. In the one-dimen- 
sional case this happens for a fairly low electron density, 
when 

with w, the Debye energy. In the two dimensional-case the 
transition is possible only if the Fermi energy is exceptional- 
ly close to a saddle point. 

As a result of such a transition in the one-dimensional 
case, the carriers become localized (a transition of the metal- 
insulator type). In the two-dimensional case the carriers be- 
come localized in a single dimension, which should lead to a 
sharp resistance anisotropy. 

The instabilities considered below are caused by the ex- 
istence of a quasiclassical discrete spectrum in the neighbor- 
hood of the extremal points of the "initial" band. The stron- 

FIG. 1. 

gest instability occurs at p = 0 (corresponding to the 
bottom of the initial band), which corresponds to the band 
( - 2g,2g) being half-filled. Here the number of electrons 
occupying discrete levels is determined by a quantity of the 
order of Jg/t-. 

Note that at d = 1 the instability discussed above oc- 
curs only if the number of electrons or holes is fairly low and, 
therefore, does not compete with the Peierls-Frohlich insta- 
bility,14,15 which occurs when the occupancy is one-half or 
close to it. 

The plan of the paper is as follows. In Sec. 2 we obtain 
the quasiclassical spectra and the singularities in the density 
of states for carriers moving in the field of a long static wave 
directed along one of the principal axes at d = 1 and d = 2. 
In Sec. 3 we calculate the thermodynamic potentials and 
discuss the respective instabilities. Finally, in Sec. 4 we de- 
scribe the quasiclassical motion when there is interaction 
with a periodic perturbation of a general type. We show that 
in the neighborhood of the extremal points of the spectrum 
the problem is reduced to an exactly solvable universal mod- 
el. We also establish the dependence of the characteristics of 
the discrete spectrum on the direction of the wave. 

2. QUASICLASSICAL SPECTRA AND THE DENSITY OF 
STATES FOR ONE- ANDTWO-DIMENSIONAL CARRIERS 

1. In the presence of a static wave (along the direction 
of the chain) the Schrodinger equation for one-dimensional 
carriers near the extremal points of the spectrum takes the 
form of the equation for a quantum rotator (or Mathieu's 
equation) : 

For E > 2g this equation has a continuous spectrum, while 
for - 2g < E < 2g it has narrow allowed bands. If we ignore 
the bandwidths, we can speak of a discrete spectrum in wells 
whose number is kL /2a, with L the size of the "chain." 

If condition ( 1 ) is met [or, which is the same, condition 
( 3 ) ] ,  the number of levels in a well, n,,, = k , /k ,  is great 
and the discrete spectrum is specified by the Bohr-Sommer- 
feld formula 

where x2 = ( E  + 2g)/4g, and K and E are complete elliptic 
integrals of the first and second kinds. 

The level separation in (4)  is given by the following 
expression: 

The quantity 

determines the maximum splitting of the levels in the field of 
the static wave. 
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Combining (4)  and (5 ), we arrive at an expression for 
the density of states in the discrete spectrum region: 

The number of a level and the density of states in the contin- 
uous spectrum region (E > 2g) are 

As Eqs. (4)  and (7)  imply, at the boundary separating the 
discrete and continuous spectra there emerges a new loga- 
rithmic singularity (Fig. la): 

2. Let us now study how the electron spectrum of a 
square lattice in the neighborhood of saddle points is trans- 
formed by a wave along one of the principal axes: 

[-2t(cos px + cos py) + 2g cos kxl lV = q. (10) 

Near the saddle point ( 0 , ~ )  Eq. ( 1 1 ) assumes the form 

[(tp: + 2g cos kx) - tp$] I/J = q. (11) 

The Hamiltonian of the motion along the x axis coincides 
with (3 ) . The eigenvalues of Eq. ( 1 1 ), 

with E, taken from (4) and (8) ,  resemble the spectrum of an 
electron in a magnetic field, but the branches of the parabola 
go downward from p, . The separation of the E ,  -levels de- 
creases rapidly as n increases, and above the line 
E = 2g - tp: the spectrum becomes that of free two-dimen- 
sional motion. In the neighborhood of the second saddle 
point the spectrum is inverted, 

In the absence of a wave the density of states has a logarith- 
mic singularity on the line I E I  = 0: 

The wave smooths out this singularity. 
If the wave is sufficiently long [Eq. ( 1 ) 1 ,  electron mo- 

tion is quasiclassical both in the continuous spectrum region 
and in the region of states localized along the direction of the 
wave. Hence, for an arbitrarily directed wave the density of 
states is given by the integral 

dxdp dydp 
p(&) = .f+J 2 

Integration over momenta and along the direction perpen- 
dicular to the wave's direction yields 

1 p(&) = , .fdX,,,(r + 2gcos X). 
0 

Note that ( 16) depends explicitly neither on the size nor on 
the direction of vector k. Substituting ( 14) into (16) yields 

where 

We see that the density of states in the layer between 
- 2g and 2g "freezes" at a constant level: 

In regions adjacent to this layer the density of states is higher 
than the initial density of states ( 14) by a small quantity: 

The density of states p (E)  is depicted in Fig. lb  (the dashed 
curves designate the logarithmic peak in the density of states 
( 14) of the unperturbed spectrum). 

3. INSTABILITIESTO FORMATION OF A DEFORMATION 
WAVE 

Knowing the density of states, we can easily find the 
thermodynamic potential of the electron system and study 
the stability at T = 0. In the one-dimensional case the prob- 
lem can be solved here exactly, while in the two-dimensional 
only with logarithmic accuracy. 

1. We begin with the one-dimensional case. If the chem- 
ical potential lies below the upper edge of the discrete spec- 
trum (7)  (p < 2g), using Eq. (9) we arrive at the following 
expressions for the number of particles N, the thermody- 
namic potential In, and the energy = In + p N  (here p is 
measured from the bottom of the initial band, and the length 
L is assumed equal to unity) : 

If the chemical potential lies in the continuous spec- 
trum region ( p  > 2g), we have 
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For the sake of comparison we give the expressions for the 
case of unperturbed motion: 

We see that the deformation variations of all thermodynam- 
ic quantities are the greatest whenp 5; 2g and, with a further 
increase in the chemical potential, decrease in the following 
manner: 

The thermodynamic functions fl(g,p) and 8 (g,p) and 
their first derivatives are continuous in g, and ld2fl/ 
dg21 aln(12g-pI-')-. oo nearg=p/2. Whatisimportant 
is that for all g values the thermodynamic potential f l  is a 
decreasing function of g, that is, (dfl/dg), < 0. Hence, the 
system is unstable to an increase in deformation. 

The equilibrium values of g are determined from the 
condition that the Landau functional 

assumes the minimum value. We write the expression for the 
deformation energy in the form of a generalized Hooke's 
law: 

Then the equilibrium value of g is determined from the fol- 
lowing equation: 

Figure 2 depicts Idfl/agl as a function of g. According to 
(201, ldfl/dgl am as g + ~ ,  and from (21) we find that 
ldfl/dgl -g/fi as g +  0. 

From Fig. 2 we see that for p > 0 and Q < Qo = g/~fi 
= &(p) the initial state with g = 0 is absolutely unstable 

to the transition to a "deformed" state (g#O). In the inter- 
val Qo < Q < Qc , with Qc =: 1. 14Q0, the state with g = 0 be- 
comes metastable. In the interval Qc <Q<Q,,  with 
Q, z 1.25Qo, the deformed state is metastable. Finally, for 
Q>  Q, Eq. (25) has no solutions with g#O. 

It is essential that in the deformed state (stable or meta- 
stable), the carriers on the Fermi surface are localized. This 
implies that if at a fixed elastic modulus the occupancy of the 
band is decreased, the transition to the deformed state oc- 
curs jumpwise at 

FIG. 2. 

Assuming that Q-o; ', we arrive at the estimate (2) forp, . 
For p < 0 the carriers are localized on discrete levels with 
- 2g < E < 0, irrespective of the value of the elastic energy. 
In this sense the value p = 0 determines the maximally un- 
stable state of the system. The electron number No = 0.2Nc 
corresponds to this state. 

A remark is in order. For the band spectrum 
E~ = - 2t cosp the above results refer directly to a low oc- 
cupancy of the initial band ( p  4 t )  and can easily be applied 
to the case of an almost completely filled state via transition 
to the hole representation. 

2. Let us now discuss instability in a two-dimensional 
system. Knowing the variation Sp = p - po of the density of 
states ( 15)-( 19), we can easily find the variations of ther- 
modynamic quantities. With logarithmic accuracy, 

(p is measured from the middle of the initial band). A de- 
crease in the total electron energy in the presence of a wave 
may lead to spontaneous formation of a wave of deformation 
as in the one-dimensional case. But because S g  is a smooth 
function ofg in the two-dimensional case, the transition oc- 
curs in a way similar to a second-order phase transition. Sub- 
stituting (27) into the Landau functional (25), we arrive at 
the instability condition in the form 

which is met only when the elastic modulus is fairly low. 
Sincep,,,,/Q-o,/t( 1, condition (26) is very stringent. For 
instance, when the band is half-filled, at Ip I = 0, equilibrium 
deformation is of the scale 

For 1p1> gc the homogeneous state is stable. In the inhomo- 
geneous state local delocalization takes place. More precise- 
ly, the carriers move freely along one axis, while along the 
other the motion is localized. 

3. When the quasiclassical conditions (1)  and (3) are 
met, the density of states and hence the thermodynamic po- 
tentials do not explicitly depend on k. The wave vector of the 
inhomogeneous state can be fixed by the following mecha- 
nisms: ( 1 ) corrections to the quasiclassical solution, (2) 
tunneling of carriers between wells, and (3)  the dependence 
on k of amplitude g and the elastic energy V(g). For one 
thing, bearing in mind that g determines the magnitude of 
the interaction of carriers with a quasiclassical state of the 
boson field, its dependence on k can be expressed as follows: 

where N, is the number of bosons in the quasiclassical state. 
For the interaction with acoustic phonons, a = f l =  1/2. In 
this case the mechanism that fixes k is anharmonicity. Since 
g+O as k-0, the equilibrium values of the wave vector 
clearly cannot be too small. Our paper, however, does not 
consider this aspect. 
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4. GENERAL DESCRIPTION AND QUANTIZATION OF 
QUASICLASSICAL MOTION 

In this section we describe the quasiclassical motion of 
electrons in long-wave periodic potentials of a more general 
form than the above case of a static wave along one of the 
principal axes. 

1. We start with the two-dimensional case. For a static 
wave pointing in an arbitrarily chosen direction, 

The motion and the shape of the spectrum change drastically 
in the neighborhood of the values p,, and p,,, that satisfy 
the condition 

as, aso 
k  - + k  -=0. 

1 ap, 2 apY 

This condition specifies the region of anomalous condensa- 
tion of energy values. Hence, a perturbation in the form (30) 
leads in the neighborhood of the values specified by ( 3  1 ) to 
transformation of a large number of levels. 

The quasiclassical trajectories for a system with the 
Hamiltonian 

are determined by the following equations of motion: 

& = -2klg  sin X ,  pY = -2k2g sin X ,  
(32) 

X = k l x  + k2y. X = k  - + k  - 
1 ap, ap,' 

The first two equations imply that aside from energy the 
system has an additional integral of motion: 

The variable conjugate to X is p, = p, /2k1 or p, = p, /2k2. 
We select the pair (p,,X). Condition (3  1 ) now determines 
the position of the condensation points (Van Hove points) 
p,, (Po) of the energy values &,(pl,P0). For each fixed value 
of Po this condition, combined with (33), assumes the form 
d ~ d d p ,  = 0. Near the extremal points for the electron ener- 
gy we have 

where 

Thus, the motion in the neighborhood of extremal 
points is described by the universal and exactly solvable 
model of a simple pendulum (34). Quantization of (34) pro- 
duces a spectrum of the form (4) for each fixed value of Po. 
The energy levels in (4)  correspond to the quasiclassical 
trajectories of finite motion with E~ < 2g in the phase plane 
{q,;X}. These trajectories describe phase oscillations satisfy- 
ing the equation x + w i  sin X = 0, with = 2g&zm. The 
maximum possible value of q, for these trajectories is 
qlmaX =,/=. The expansion in (34) is valid for 

qlmax (QPlm 

2. Next we apply the above description to the electron 
spectrum of a square lattice [Eq. ( 1 1 ) 1 .  We introduce the 
angle q, that specifies the direction of the wave: k, = k cos p 
and k, = k sin p. In the neighborhood of a saddle point the 
Hamiltonian in ( 11 ) with perturbation (30) is diagonalized 
in the new canonical variables: 

A wave along one of the principal axes, as in ( 11 ), corre- 
sponds to k, = 0 and q, = 0. 

As a result of the transformation specified by ( 35 1, Eq. 
( 34) becomes 

Combining the condition q,,,, = dg/tk 2 l  cos 2q, 1 gp,, 
= r/2k cos(q, - r /4)  with the requirement that 

we arrive at a condition for the applicability of solutions 
obtained from model ( 34) : 

At p = 0 this condition coincides with ( 1 ), while it becomes 
much more stringent as q,-+ r/4. Quantization of (36) yields 
spectra of the form ( 12) for cos 2q, < 0 and of the form ( 13) 
for cos 2 q  > 0 [with k replaced by k lcos 2q, in ( 12) and 
( 13) 1. As condition (37) implies, as q, grows the level sepa- 
ration decreases but the number of levels in each well in- 
creases: 

At the same time the region (38) of quasilocalized states 
becomes narrower, that is, we see that the region with the 
discrete spectrum is the biggest when the wave is directed 
along one of the principal axes [q, = 0 in (37) and (39)l. 
This is the case considered by Eq. ( 11 ) . Via Eqs. (37) and 
(39) one can easily understand why the density of states in 
( 15) and (16) is direction-independent. The reason is that 
as the direction changes, an increase in the number of levels 
in a well corresponds to a decrease in the number of wells 
that "fit" into length L. As a result the dependence on direc- 
tion in the density of states vanishes. Clearly, the density of 
states begins to depend on k when k z g / t  and the quasiclas- 
sical conditions ( 1 ) , (2),  and (37) break down. 

3. Let us now consider the interaction with a traveling 
wave (for simplicity we restrict our discussion to the one- 
dimensional case) 

where w, is the oscillation frequency. Such a perturbation 
leads to quantization of the electron spectrum in the neigh- 
borhood of point p, satisfying the condition 
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with I an integer. For the optical dispersion law, 
wk = w0 + a k  2, pointp, is generally a common point of the 
electron spectrum. In the neighborhood of this point the 
electron energy has the form (34) with X = kx - wk t. Cor- 
respondingly, the spectrum is determined by Eqs. (4)  and 
(8).  In the neighborhood the density of states (9) has a loga- 
rithmic peak. 

However, in contrast to the problems considered above, 
the eigenfunctions of the Hamiltonian H = ~ , ( p )  + g(x,t) 
possess certain quasienergies16 (similar to the quasi-momen- 
tum in a lattice) that coincide with its eigenvalues. This 
model is apparently capable of describing, among other 
things, the interaction of carriers with weakly decaying criti- 
cal oscillations of the order parameter above the transition 
point. 

4. A final remark is in order. It deals with singularities 
in the density of states of carriers with a "long-wave" 
Kronig-Penney potential. Such a potential may occur if a 
periodic domain structure is formed in the sample, with the 
domains characterized by different values of some sort of a 
parameter (magnetization, spontaneous polarization, etc.), 
and interacts with the carriers. The potential corresponds to 
the splitting of the peak in the density of states, the root peak 
in the one-dimensional case or the logarithmic one in the 
two-dimensional, into two similar peaks separated by a dis- 
tance of 2g. Such a singularity structure in the density of 
states may lead to system instability to formation of a large- 
scale domain structure. 

We are grateful to N. V. Prokof ev for helpful discus- 
sions. 
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