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Plane electromagnetic waves obliquely incident on a randomly inhomogeneous one-dimensional 
layer are analyzed. A modified traveling-wave method is used to describe the propagation of 
horizontally and vertically polarized waves in the layer. Statistical characteristics of the 
transmission and reflection coefficients of the layer are derived in the Markovian diffusion 
approximation for the case in which the fluctuations in the dielectric constant of the medium are 
small. These statistical characteristics contain comprehensive information on the polarization of 
the transmitted and reflected radiation. It is shown in particular that under certain conditions the 
radiation reflected from a randomly inhomogeneous layer is completely polarized. 

INTRODUCTION 

The propagation of waves in a randomly varying one- 
dimensional medium has been the subject of many papers, 
among which we will cite only the two1.* of greatest impor- 
tance to the problem of the present paper. The great prepon- 
derance of this research has been limited to the scalar prob- 
lem. At the same time, we know3v4 that when 
electromagnetic waves are incident obliquely on an inhomo- 
geneous medium there are differences in the reflection of 
waves of different polarizations. It is thus worthwhile to take 
the vector nature of the electromagnetic radiation into ac- 
count and to go through the analysis for the case in which an 
incident wave is reflected from a randomly varying plane- 
layer medium. 

Let us consider a one-dimensional, randomly varying 
layer which occupies the region 0 <z < L. Under the as- 
sumption of a quasisteady state, the dielectric constant of the 
medium inside the layer is described by ~ ( z )  = E,  + a&, (z),  
where E~ = const, a is a small dimensionless parameter 
which is a characteristic of the fluctuation depth 
(a - a, = m) , and E, (z) is a random, uniform, and nor- 
mal process with a zero mean and a correlation function 
B ( 0 :  

where c is the velocity of light in vacuum. We assume that a 
monochromatic plane wave of unit amplitude 
E,, = exp{ - i[wt - kzc, - k x s , ] )  is incident at an angle 
8, on the layer along the positive z direction, where w is the 
angular frequency of the incident radiation, k = w/c, 
cO = cos BO, so = sin 8,. AS a result, a wave Ey, 
= T, exp{ - i[wt - kzc, - k x s , ] )  arises in the region 

z >  L, having been transmitted through the layer, while a 
wave EyR = R,  exp{ - i[wt + kzc, - kxs , ] ) ,  reflected 
from the layer, appears in the region z < 0. The unknown 
amplitudes T, and R ,  determine the complex transmission 
and reflection coefficients of the layer for the horizontally 
polarized wave. 

The solution of Eq. (2.1 ) inside the layer can be written 
in traveling-wave form: Ey = A, (z)exp{ - i[wt 
f k @ ,  (z) - kxs, ] ) (Refs. 5 and 6; these are passing or pro- 

gressive waves7). The real amplitude A ,  and the eikonal @, 
are related by 

and satisfy the equation 

( ~ ~ ( z ) )  = 0, B(5) = (E~(z~)E~(zZ))  = cf~(5), 5 = zl - z2. where the prime means differentiation with respect to the 
variable z. 

Here 4 is the variance of the fluctuations in the dielectric Introducing the new variable 
constant of the medium, and the angle brackets mean an 
average over the ensemble of realizations. To streamline the Q~ = (@;)-I = const A:, 
calculations we assume E(Z) = 1 outside the layer. 

we can put the general solution of our original wave equa- 
We will refer to a plane wave whose electric vector E is 

tion, (2.1 ), in the form of a sum of two linearly independent 
perpendicular to the plane of incidence, XZ(E,  = E, = 0, 

traveling These waves are propagating in opposite Ey #O), as a "horizontally polarized" wave. Correspond- 
directions and do not interact with each other:3 

ingly, a wave whose magnetic field vector H is perpendicular 
to the plane of incidence (H, = Hz = 0, Hy + O )  is "verti- 
cally polarized." Ey(x, Z, t )  = [ ~ , ~ ~ ' ~ e x p { i L & ~ )  

2. DESCRIPTION OF THE PROPAGATION OF A 
HORIZONTALLY POLARIZED WAVE 

+ ~ ~ ~ ~ ' ~ e x p { - i k @ , ) ]  exp{-i [wt - kxsg]) ,  (2.5) 

The field of a horizontally polarized wave, Ey (x,z,t), 
inside the layer is described by the wave equation where C ,  and C, are constants of integration. In this prob- 

lem, these constants are determined by the conditions that 
a 2 ~  a 2 ~  d 2 ~  
2 + 2 - - 5 2 = 0 ,  (2.1 ) the field E,, and its derivative El are continuous at the boun- 
ax2 az2 c2 a? daries of the layer, 
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z = 0: 1 + R1 = Q!?(c1 + CZ), 

ikco(l - R,) = 4 Q ; , ~ ~ Q ~ ~ ( c ~  + CJ + UQ;~/~(C, - C2); 

z = L: T,exp{ikc&) = ~ ~ ~ ~ [ ~ , e x ~ { i k @ ~ ~ )  + C2exp{-ikcP,L)], 

ikcoTlexp(ikc& = $ Q ~ I ~ Q , ' ~  [ ~ ~ e x ~ { i k c P ~  J 

+ Czexp{-ik@lL}l 

+ i k ~ ~ ~ ~ ~ [ ~ ~ e x ~ { i k @ ~ ~ ) - C ~ e x p { - i k c p ~ ~ ) l .  (2.6) 

Here and below, the subscripts 0 and L specify the values of 
the corresponding functions at the lower boundary z = 0 
and the upper boundary z = L of the layer. 

Inside the layer, the field of the horizontally polarized 
wave, (2.5 ), is thus determined by the one independent func- 
tion Q,(z) in (2.4). For this function, we find a nonlinear 
second-order differential equation after substituting (2.2) 
into (2.3): 

2QlQi1 - (Q;)' + 4kZ(& - S$Q? - 4kZ = 0. (2.7) 

In general, making an unambiguous choice of a particu- 
lar solution of (2.7) to describe the wave field (2.5) would 
require supplementing this equation with two additional 
conditions (initial conditions, boundary conditions, or con- 
ditions of any other sort which follow from physical consid- 
erations regarding the particular problem involved). Under 
the assumption that the fluctuations of the dielectric con- 
stant of the medium are small (a ( 1 ), we would like to use 
initial conditions at the lower boundary of the layer for the 
corresponding unperturbed problem in order to solve Eq. 
(2.7). In the limiting case of wave propagation in a homoge- 
neous medium (a = 0, E = E,), the unknown function Q, (z) 
is determined unambiguously; specifically, 
Q, = (E ,  - S; ) - I t 2  = const. Accordingly, an analysis of 
the general solutions of (2.7) in the case ~ ( z )  = E, reveals 
that the choice of initial conditions is unique: 

We write a formal solution of (2.7) in the form 

where I% = k2'I2, 2 = E, - s;, and the two new functions 
U ,  (z) and I), (z) = 2kz + p, ( z )  are described by a known 
system of first-order differential equations which has been 
constructed previously by other approaches:'.' 

With (2.8), the solution of system of equations (2.6) 
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determines expressions for the complex reflection and trans- 
mission coefficients of the layer for a horizontally polarized 
wave: 

In the particular case E, = 1, i.e., = kc, and 
Q,, = c; I, these expressions simplify substantially: 

For the square moduli of R  , and T I ,  which characterize the 
reflection and transmission capabilities of the randomly in- 
homogeneous layer, we find, using (2.9), 

i.e., J R ,  l 2  + 1 T ,  l 2  = I. This is a natural consequence of the 
conservation of the energy flux when there is no absorption 
in the medium. 

In the case with E, = 1, which is the simplest from the 
standpoint of an analytical solution, we can find several sta- 
tistical characteristics of wave field (2.5), including the re- 
flection and transmission capabilities of the layer, (2.13), 
simply by examining the distribution of the random function 
u,  (z) in (2.10). 

To conclude this section of the paper we note that the 
function m,  (z) = Q ; ' (z) serves as an effective refractive 
index of the medium inside the randomly varying layer.' 
This index uniquely determines the wave field (2.5). The 
difference between the effective refractive index m,  (z) and 
the local index n(z) = e1I2(z) stems from the retention of 
the first term in Eq. (2.3) in our approach. That term is 
ignored in the geometric-optics approximation and various 
modifications thereof. 

3. DESCRIPTION OF THE PROPAGATION OF A VERTICALLY 
POLARIZED WAVE 

For a vertically polarized wave, the symmetry of the 
problem suggests analyzing the wave equation for the com- 
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ponent Hy (x,z,t) of the magnetic vector: 

We again assume that a monochromatic plane wave of 
unit amplitude, Hy = exp{ - i [o t  - kzc, - kxs, ] ) ,  is inci- 
dent on the layer at an angle 8,. The wave transmitted 
through the layer and the wave reflected by it are character- 
ized by complex transmission and reflection coefficients T2 
and R2, respectively. In contrast with the case discussed in 
the preceding section of this paper, the real amplitude A2(z) 
and the real eikonal @,(z) in the traveling-wave solution of 
( 3.1 ) are related by 

Introducing the new variable Q2=(@;)- '  
= const A z ,  which satisfies the nonlinear differential equa- 

tion 

we can write the general solution of wave equations (3.1 ) as 

Here Y = EQ,, and C, and C, are constants of integra- 
tion, which are determined by the conditions that H, and 
H ; / E  are continuous at both boundaries of the layer, 

z = 0: 1 + R2 = yAI2(c3 + Cq), 

ikco(l - R3 = !j ~ ~ ' T ' / ~ Y ; ( C ~  + C4) + ikT1I2(c3 - Cq); 

z = L: T2exp(ikc&) = ~ 2 / ~ [ c ~ e x ~ ( i & D ~ )  + C4e~p(-ik@2L)], 

ikcoT2exp{ikc&) = -!j E; q 1 1 2 ~ ; [ ~ 3 e ~ p ( i k ~  

+ C4exp(-M,)1 

+ i k q ' l 2  [c3exp{ik@,) - C4exp{-ihD2L)1. 

(3.3) 

From the system of equations (3.3) we find the com- 
plex reflection and transmission coefficients of the layer for a 
vertically polarized wave: 

where A = k ~ .  
To pursue the analysis of this problem, we need to solve ui = a + &](ui - 1)'l2sin V29 u2(z = 0) = 1, 

Eq. (3.2 1. Assuming as before that the fluctuations of the 
dielectric constant are small (a < 1 ), we ignore terms of or- (3.5) 
der a2 and higher in Eq. (3.2). As a result this equation +; = 2~ + a 
becomes 

2Q2Qit - (Q;)' + Q:[4k2 + 2€"/€]  - 4k2 = 0 (3.2') 
P2(z = 0) = W2(,. 

with the same initial conditions. 
Writing a formal solution of (3.2') in the form 

For the simplest case, with E, = 1, and in the approxi- 
mation that the fluctuations of the dielectric constant are 
small, the following relations are valid: 

we find a system of first-order equations for the new function e L = l ,  Y ~ = Q ~ ~ = c ~ ~ ,  Y;=O, 
u2(z) and tj2(z) = 2kz + p2(z).  This system of equations is 
analogous to (2.10) : A = k YL = QU, Yi = Q&. 
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As a result, the expressions (3.4) for the complex re- 
flection and transmission coefficients for a vertically polar- 
ized wave simplify substantially, becoming formally the 
same as the corresponding expressions for a horizontally po- 
larized wave, i.e., (2.12) and (2.13), when we replace Q, by 
Q, (and u, by u,). In particular, the reflection and transmis- 
sion capabilities of the layer are given by identical formulas 
for the waves of the two polarizations: 

To analyze the polarization characteristics of the radi- 
ation reflected and transmitted by a randomly inhomoge- 
neous layer in this approximation, we can thus use the sys- 
tem of stochastic differential equations in (2.10) and (3.5), 
which can be written in the unified form 

u ! = a ~ ( u T - l ) ~ / ~ s i n * . ,  I I I I U ~ O ) =  1, 
(3.7) 

where 8, = kl/z and 2, = 8, + E Y / ~ & E ~ .  
As in the case of a horizontally polarized wave, the ef- 

fective refractive index of the randomly inhomogeneous me- 
dium for the vertically polarized wave is determined by the 
function m2(z) = Q , ' (z). 

4. FOKKER-PLANCK EQUATION AND ITS RANGE OF 
APPLICABILITY 

The system of stochastic differential equations in (3.7) 
can be utilized to go over to the Markovian diffusion approx- 
imation, specifically, to derive a Fokker-Planck equation 
for the one-point probability density P2(uj ,$, ,z), j = 1,2. 

Skipping over the well-studied case of a &correlated 
random field,'.' we take up the more realistic model in which 
e ,  (z) is a single-scale random process with a finite correla- 
tion radius r, = a, where a is a length scale of the variations 
of the medium along the z direction. 

Introducing the two-dimensional vector v, = {u,, $ j ) ,  

and separating the deterministic and fluctuation terms on 
the right side of (3.7), 

we can put (3.7) in the standard form of a stochastic differ- 
ential equation, 

v; = FO + aF(v., z). 
I I (4.2) 

The Fokker-Planck equation corresponding to (4.2), 
derived by the Van Kampen m e t h ~ d , ~  is (a  repeated index v, 
p = u,, $, means a summation) 

where the drift coefficients B, (v, ) and the local dispersions 
B, (v, ) are given by [we are using (4.1 ) ] 

Herex = a k a / ~  is a new dimensionless parameter. In deriv- 
ing the Fokker-Planck equation we used 

(Fh(uj, z)FjP(vP z - E)) = 0 at 6 2 a. (4.5) 

In general, the coefficients of Fokker-Planck equation 
are given by quite unwieldy expressions, and it is difficult to 
solve Eq. (4.3) itself even in the simplest limiting cases. 
However, the situation simplifies substantially when we note 
that the variable $, (z) has the structure 

,,@I = *@ + 2kz + P,@) 

in our case, in which the fluctuations of the dielectric are 
small (a 4 1 ) . 

According to (3.7), the stochastic characteristics of the 
functions uj (z) and pi (z) thus vary slowly over distances on 
the order of the wavelength A =  2n-/k. On the other hand, 
there are rapidly oscillating functions on the right side of the 
system of equations (3.7). To determine the slow variations 
of the statistical characteristics of the weight field (2.5), in 
particular, the mean square absolute values of the reflection 
and transmission coefficients (3.6) of the layer, we can thus 
average the Fokker-Planck equation (4.3) over the period 
of the fast oscillations.' After this average is taken, the coef- 
ficients of the Fokker-Planck equation in (4.4) do not de- 
pend on the variable $, . In other words, it becomes possible 
to integrate the equation over this variable. As a result, we 
find the well-studied one-dimensional Fokker-Planck equa- 
tion for the probability density'.' P(u,,z): 

where we have again introduced a variable Dj which plays 
the role of a diffusion coefficient and which is given by 

In the particular case of a Gaussian correlation function 
of the random field, E,(z), with B(6) = 4 exp{ - g2/a2), 
the diffusion coefficients Dj take the following form, when 
we incorporate the definition of the functions 8, in (3.7): 

for a horizontally polarized wave and 

for a vertically polarized wave. 
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For a layer with E, = 1, i.e., for t = 1 - si = c;, 
= kc,, we find, in accordance with (4.8) and (4.9), 

To evaluate the statistical characteristics of (3.6), we 
use an integral representation' of the solution of the Fokker- 
Planck equation (4.3) : 

Here we have introduced the dimensionless variable 

and 9' - 1/2 + i~ (ui ) is the Legendre function of the first kind 
(the cone function). 

In the derivation of the Fokker-Planck equation (4.3) 
by the Van Kampen method, an expansion was carried out in 
the small parameter x = a/l, where 1 = (ak/Z)- '  is the 
length scale of the variations in the functions u, (2) and 
~ ) i  (z) . If x g 1 holds, i.e., if 

we can partition the layer thickness L into subintervals Az 
such that Azsa  while Az&l. Consequently, the functions 
uj (2) and p, (z) are essentially constant in a subinterval Az, 
while the random process E, (z) has "completely forgotten 
its past," (4.5 ). Collecting these inequalities, 

we find the condition for a two-scale problem-the standard 
condition in the theory of Markovian diffusion p r o c e s ~ e s . ~ ~ ' ~  
Inequalities (4.13) and (4.14) thus determine the range of 
applicability of Fokker-Planck equation (4.3) and of the 
results which follow from it, (4.6) and (4.11). The reason is 
that in terms of the coarse spatial scale characterized by Az, 
this process can be approximated as a Markovian process. 

The probability density P(uj, t, ) in (4.1 1 ) can also be 
used to study the statistical characteristics of the average 
effective refractive index of the medium, me,, (z). After an 
average is taken over the period of the fast oscillations in the 
expressions for the functions Q, (z), e.g., in the first of Eqs. 
(2.9), this index is given by8 

features of the behavior of the horizontally and vertically 
polarized waves stem from the difference between the diffu- 
sion coefficients Dl  in (4.8) and D, in (4.9). In the limit of 
normal incidence (8, = 0), these coefficients are naturally 
the same, since the components of the vectors E and H of the 
waves of different polarizations are parallel to the bound- 
aries of the layer and are physically equivalent. 

Using the probability density (4.11 ), and also using 
Eqs. (3.6) and (4.15 ), we find general expressions for the 
reflectivity of this layer, 

(5.1) 

and for the mean value of its effective refractive index, 

X ~n [(ch c o j ) l I 2  + (ch ~j - 1 ) l I 2 ]  &, 

where wj = 2xt, (j = 1,2). 
Figure 1 shows plots of the functions ( I R 1 ,) (Ref. 2; the 

solid line) and (me,) (Ref. 8; the dashed line) versus the 
dimensionless parameter t = DJ in (4.12) for the case stud- 
ied previously, in which a wave is incident normally on the 
layer (8, = 0),  with Dl = D, = Do. It follows from an analy- 
sis of the expressions for the diffusion coefficients, (4.8)- 
(4. lo),  that the functional dependences remain qualitatively 
the same in the general case in which the waves of the differ- 
ent polarizations are incident obliquely for a fixed initial an- 
gle of incidence on the layer, 8,. For the particular case 
E, = 1 [see (4.10) 1, a vertically polarized wave incident at 
an angle 8, = ?r/4 is an exceptional case, in which we have 
D, = 0, i.e., t, = 0. Consequently, we have ( 1S2l2) = 0, and 
(me,, ) = 1 according to (5.1 ) and (5.2). Note also that the 
effective average refractive index which we introduced [see 
(4.15) ] gives a qualitatively correct description of the pro- 
cess of inverse scattering in the randomly varying layer. 

To analyze polarization effects for the incidence of hori- 

5. REFLECTIVITY OFTHE LAYER FOR HORIZONTALLY AND 
VERTICALLY POLARIZED WAVES 

In our approximation of small fluctuations of the di- 
electric constant, the functions uj (z) and fi (2) described by 
(3.7) characterize the magnitude and phase of the reflection 
coefficient of the layer1 for waves with different types of po- 
larization. Consequently, the Fokker-Planck equation 
(4.3) can be used, after an average is taken over the period of 
the fast oscillations, to analyze the statistical characteristics 
of these quantities; i.e., it contains a complete solution of the 
problem of the polarization of waves reflected and transmit- 
ted by the randomly inhomogeneous layer. The particular 
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FIG. 2. 

zontally and vertically polarized waves on a randomly inho- 
mogeneous layer, we take a closer look at the behavior of the 
reflection capability of the layer, ( I  Rj 1 2 ) ,  as a function of the 
angle of incidence 8, as shown in Figs. 2 and 3. The functions 
corresponding to the incidence of a horizontally polarized 
wave on the layer are shown by the solid lines, while the 
dashed lines show the behavior for vertically polarized 
waves. The curves drawn here correspond to the simple case 
E, = 1, and the parameters determining the diffusion coeffi- 
cients in (4.10) have been assigned the values d = 
k a = l , ~ / a = S . l O ~ i n F i g . 2 a n d ~ = l O - ~ , k a = 5 , L /  
a = 4. lOI3 in Fig. 3. It follows from an analysis of these plots 
that there are certain intervals of the angle of incidence, 
AOO, in which the reflectivities of the layer for the waves with 
different types of polarization are quite different. These an- 
gular intervals depend on the relation among the variances ~ of the fluctuations in the dielectric constant of the medi- 
um inside the layer, the length scale a of the inhomogeneities 
of the medium, the layer thickness L, and the wavelength 
A = 2r/k of the incident radiation. In general, these differ- 
ences lead to degrees of polarization for the transmitted and 
reflected radiation which are different from that of the inci- 
dent radiation. In particular, the reflected and transmitted 

waves turn out to be elliptically polarized because of the 
difference between the arguments of the transmission and 
reflection coefficients of the randomly inhomogeneous layer 
for horizontally polarized waves, (2.1 1 ), and vertically po- 
larized waves, (3.4), when a linearly polarized wave is inci- 
dent on the layer in a direction which is neither normal nor 
tangent to the plane of incidence. 

Of particular interest under the condition E, = 1 is the 
case in which an initially plane wave is incident at an angle 
0, = r/4. From (4.10) we have D, = 0, and the vertically 
polarized wave passes through the layer without reflection. 
On the other hand, we have D, #0, and the reflectivity of the 
layer for a horizontally polarized wave may be extremely 
large, up to unity (Fig. 3). Consequently, a "Brewster law" 
may hold in the reflection from a randomly varying plane- 
layer medium; i.e., there may exist certain angles of inci- 
dence at which the reflected radiation is completely polar- 
ized. The absence of reflection for a vertically polarized 
wave in this case for incidence at an angle 0, = r / 4  is ex- 
plained by analogy with the classic Brewster law describing 
the polarization associated with the reflection from a plane 
interface between two homogeneous and transparent dielec- 
trics. Specifically, the charges which are oscillating in the 
medium as a result of the electric field of the wave do not 
radiate along the oscillation direction. Consequently, a ran- 
domly varying plane-layer medium can serve as a radiation 
polarizer under certain conditions. 

We note in conclusion that the assumption that the fluc- 
tuations of the dielectric constant of the medium inside the 
layer have a normal distribution has been made for conve- 
nience in the intermediate calculations. This is not a neces- 
sary condition for the validity of the results of this study. 
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