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The single-particle density of states is calculated for a CuO, cluster by direct diagonalization of 
the many-electron Hamiltonian. A dielectric gap exists in the undoped case, in which new states 
appear in connection with doping by holes. The concentration dependence of the Fermi level is 
found, and the critical concentration of the insulator-metal Anderson transition is estimated. 

The conclusion concerning formation of new deep im- 
purity states when La, p , Sr, Cu0,-type systems are doped 
by holes can be assumed to have been established quite reli- 
ably.' At the same time the details of their locations inside 
the insulating gap, as well as the location of the Fermi level, 
remain unclear and inconsistent (for example, the conclu- 
sions of Ref. 2 are in disagreement with those of Ref. 1 ). 

Electron structure calculations of weakly doped copper 
oxides from first principles are impossible at the present 
time. The reason is the strong electron correlations, giving 
rise to the basic dielectric arrangement in the undoped case. 
Using a realistic many-electron model we have suggested a 
generalized tight-binding m e t h ~ d , ~  explicitly including 
strong electron correlations. In the first phase one carries 
out exact diagonalization of the CuO, cluster, and in the 
second-an approximate one, taking into account interclus- 
ter hoppings in the spirit of the "Hubbard I" approximation. 

It seems that the pattern of the density of states N(E) is 
basically determined by intracluster excitations, while inter- 
cluster hops only broaden the peaks of N(E) with a typical 
band width -0.5 eV. Therefore, for weakly doped oxides the 
main distinction from the undoped case is caused by the 
close neighborhood of the impurity center. The simplest 
model of an impurity center is a CuO, cluster with an excess 

scription of sod lo for copper and p6 for oxygen, in the un- 
doped case the number of holes per cluster n = 1 is obtained. 
Similarly, in the doped case the electrically neutral cell of 
La, - , Sr, CuO, corresponds to a number of holes per clus- 
ter n = 1 + x. 

For numerical diagonalization of small clusters one 
usually utilizes various modifications of the Lanczos meth- 
od; we have also employed another method, consisting es- 
sentially of the following: The number of holes in the cluster 
is a conserved quantity; therefore in the subspaces with var- 
ious fixed number of holes n = 0, 1, 2 the Hamiltonian 
blocks are diagonalized numerically exactly, and the eigen- 
energies and eigenstates In,y) are found, where the index y 
labels all cluster states with a given number of holes n. One 
then constructs the Hubbard operators Tb = la) ( b  I from 
the cluster states, and the single-particle Green's function is 
calculated exactly in the Hubbard operator representation. 

The energy of single-particle excitations in a strongly 
correlated system is determined by the "resonances" 
R(y,,y,) = En + , (y,)  - En (y,);  it is obtained automati- 
cally in the Hubbard operator representation. Rather than 
the pair of numbers specifying the initial and final states 
during single-particle excitation, it is convenient to intro- 
duce the vector4 

. ~ 

hole in the cluster. n+ 1 ,y, ;n.y, 
a = (n + 1,yl;n,y2) + X(a) = X 

In the present study we report results of calculations of 9 

the density of states for a CuO, cluster, carried out by exact in which case the single-particle Fermi operator for hole 
diagonalization of the many-electron Hamiltonian of the annihilation at site i and in the orbitals A, a = f 1/2 is 
generalized Hubbard model. It seems that in a system with 
strong correlations there exists a specific formation mech- ah = 2 (a 1 auul b ) f l  = vh(a)x(a), (1) 
anism of induced doping states inside the insulating gap. ab a 

The model consistiof the minimum set of stateswhich 
are important for the layer: these are the two d,> _ fl -and d2- 
orbitals of copper, and the two p, - and py -orbitals of each 
oxygen ion. The explicit form of the Hamiltonian is given in 
Ref. 3, and contains the following terms: the single-hole en- 
ergies of the 10 orbitals provided above with splitting param- 
eters in the crystalline field A, = E? - cX2 - ,2 ,  

A, = E~ - E, , the charge transport energy S = E, - E,Z - fl, 
the three Coulomb matrix elements of the intra-ion interac- 
tion at each ion-the Hubbard energy Ud ( Up ), the interor- 
bit Coulomb parameter Vd ( V, ) and the Hund exchange J, 
(J, ), the Coulomb and exchange Cu-0 interaction matrix 
elements: V,, and Jpd,  CU-0 hops Tpd for dx2 -9 and T,,/ 
1'3 for the dZZ -orbital, as well as oxygen-oxygen hops tpp . 

The cluster in question is a fragment of the La,CuO, 
cell, which of course, is electrically neutral. Since lanthanum 
is trivalent, the neutral cell corresponds to (CUO,)~- or 
C U ~ + O , ~ -  clusters. Assuming vacuum terms in the hole de- 

where the matrix elements Y,, (a) are calculated explicitly, 
as the cluster eigenstates are known. Since the Hamiltonian 
is decomposed into diagonal blocks in the Hubbard operator 
representation, the exact single-particle Green's function 
equals 

where F ( a )  = ( [X(a)  ,X + (a) ] + ) is the so-called terminal 
factor in the terminology of Ref. 4, equal to the sum of the 
occupation numbers of the initial and final many-electron 
states associated with the single-particle "resonance" a .  As 
a result we obtain for the single-particle density of states 

Note that the method developed here makes it possible 
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to combine exact cluster calculations with approximate ac- 
count of p-d and p-p hops between clusters, leading to the 
appearance of narrow bands a, (k)  instead of the cluster 
energies a , ,  similarly to the band-structure calculation of 
undoped La2Cu04 and Nd2Cu04 carried out in Ref. 5. For 
the purpose of the present study the broadening mechanism 
of levels 0, is unimportant, and the dispersion in k is re- 
placed by simpler broadening, replacing each delta-function 
in (3)  by a Lorentzian curve with halfwidth E. Curve 1 of 
Fig. 1 shows the density of states of an undoped CuO, layer, 
calculated with the model parameters selected for La2Cu04 
from Ref. 5 (in eV) : 

The energy is taken in the hole representation, so the valence 
band is located above the conduction band. 

The nature of the dielectric gap has been discussed in 
detail in Ref. 5, and here it is only noted that, along with the 
major contribution due to charge transport processes, there 
also exists a Coulomb contribution. In the undoped case the 
Fermi level is located in the gap. This is most obvious in the 
hole representation, since the empty conduction band is po- 
sitioned with account of the spin of a single hole per cell (and 
not two, as is the case for free electrons, in consequence of 
Hubbard subband splitting). 

Two approaches are possible in calculating a doped sys- 
tem with hole concentration n,, = 1 + x. In the first the 

model parameters are unchanged, with only the hole con- 
centration changing. In analogy with the rigid band model, 
it is natural to call this approach the rigid crystal model. In 
this case the whole concentration dependence is contained in 
the terminal factors F(a). Even in this approach it is clear 
that doping causes new states to appear, since several "re- 
sonances" satisfy F(a) a x  and contribute only when there is 
doping. The density of states in the solid-crystal model is 
shown in Fig. 1, where the new states are seen to occur ap- 
proximately in the middle of the gap; their intensity in- 
creases with x. The impurity state is a mixture of the dX2 - 9 
function with the b, molecular orbital of the oxygen ions. 

The second method takes into account the change in the 
Hamiltonian parameters due to the impurities as well. This 
is naturally called the impurity method. The most evident 
changes are the decrease in the quantity S on account of the 
difference in the La3+ and Sr2+ electrostatic potentials (in 
the point-charge model this causes a change of 0.5-1 eV), 
and the decrease in the p-d hop because the 0- radius is 
smaller than that of 02-. Following Ref. 3, the magnetic 
moment p of the copper ion is determined from the ratio 
Tpd/S. Since for small x the quantity p does not change, it is 
assumed that Tpd (x)/S(x) = Tpd (O)/S(O). For simplicity 
the remaining parameters are assumed unchanged, and their 
values are selected from (4). For x 4 1, when the impurity 
correlation can be neglected, within the simplest approxima- 
tion in impurity fluctuations we have 

Figure 2 shows the density of states in the impurity model 
with T,, = 0.9 eV, S = 1.2 eV. It is seen that in this ap- 
proach the number of impurity levels and the shape of the 

FIG. 1 .  The density of hole states in the rigid crystal model with the parameter of (4)  and E = 0.05 eV. Here: for I )  x = 0-solid line with asterisks, 2) 
dots-x = 0.1,3) solid line-x = 0.3. 
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FIG. 3. The density of hole states inside the gap with improved resolution, 
FIG. 2. The density of hole states in the impurity model with T,, = 0.9 = O.O1 eV, with the same parameters as in ~ i ~ ,  2, solid line--x = 0.1, 
eV, 15 = 1.2, with the remaining parameters the same as in Fig. 1. Dots- = 0.3. 
x = 0, solid line--x = 0.3, dashed-dotted line-x = 0.3 for an ortho- 
rhombically distorted cluster. 

the gap, E~ = - 0.75 eV. For x = 0.001 the Fermi level is 

N(E) curve differ substantially from the rigid crystal model. 
The dashed curve in Fig. 2 shows N(E) for a CuO, cluster 
with orthorhombic distortion, which was modeled by as- 
signing variousp-d hopping integrals along thex and y axes, 
Tpd(x) = T,, +a, ,  Tp,(y) = T,, -a , ,  a,  =0.2 eV. No 
significant differences were generated inside the gap. Figure 
3 shows a high-resolution region inside the gap for two dif- 
ferent concentrations, from which it is seen that for impurity 
levels N(E) a X. 

Consider the nature of the states at the edge of the gap 
and inside it. As seen from Fig. 3, the top of the valence band 
consists of two peaks: for E = 1.1 eV it is a mixture of 35% 
d2 and 65% of a ,  oxygen molecular orbital (MO), and for 
E = 1.2 eV it is 13% of copper dx2 - $ states, hybridized with 
87% of b, oxygen MO. The closeness of these two bands was 
demonstrated earlier in Ref. 6. The bottom of the conduction 
band at E = - 2 eV consists of dx2 -$ states (almost 70%) 
and nearly 30% a ,  oxygen MO. Their hybridization part- 
ners, b, oxygen MO and dl copper orbital, have an annihila- 
tion weight - 1 %. The impurity state with the largest spec- 
tral weight for E l  = 0.7 eV is the dx2 -$ mixture ( 12%) and 
the b, molecular orbital (88%) of oxygen. Two peaks with 
small spectral weights at E, = - 0.6 eV and E, = - 1.7 eV 
are formed mainly from the a ,  molecular orbital and the 
nonbinding orbital of oxygen. 

The density dependence of the Fermi level is found by 
solving the equation 

e~ ZIN(E, x)dE = 1 + X. (6) 
- O D  

Without doping the Fermi level is located near the middle of 

- -  
eF = - 0.45 eV and is near the E2 impurity level. The num- 
ber of states in this level is small, however. It fills up quickly 
and EF undergoes a further shift: for x = 0.01 we have 
E~ = - 0.2 eV and for x = 0.05 we have E, = 0.5 eV. We 
will estimate the critical concentration x, of the insulator- 
metal Anderson transition, using the Mott criterion for the 
mobility threshold E, : N(E, ) ~ 0 . 1  N,,, .' It is seen from 
Figs. 2 and 3 that E, = 0.6 eV, with the E, value being 
reached at x, = 0.065. This is in good agreement with the 
experimental value for La, - , Sr, CuO,. With further in- 
crease in x the single-impurity approximation ( 5 ) is scarcely 
likely to hold, so Figs. 2 and 3 with x = 0.1 and x = 0.3 can 
be used only for illustration purposes, since at x- lop2 the 
impurity peaks are too low. For the mean distance between 
impurities near the insulator-metal transition point we ob- 
tain 1, ~ 4 a .  

If these results are extrapolated to the region x R x, , 
where the impurity peak El spreads into a narrow band, the 
conclusion is reached that superconductivity is generated at 
concentrations such that EF is inside the narrow impurity 
pdG band, formed in the p, ground state of oxygen with 
symmetry 6,. 
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