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It is shown that when the separation d between a pair of linear defects introduced into a two- 
dimensional superconductor is varied, periodic singularities in Tc of the form Tc a ( d  - d, ) - ' 
arise; these are the strongest of the known singularities. The smearing of the singularities 
associated with various cutoff mechanisms is examined. These are (a )  the finite transparency of 
the defects, (b) quasiparticle damping, and (c) finite temperatures. The introduction of plane 
defects perpendicular to the Cu-0 layers is discussed as a possibility for significantly raising the 
Tc of the oxide superconductors. 

1. INTRODUCTION 

In a recent paper1 we have predicted oscillations in the 
transition temperature Tc as a function of the distance d 
between two plane defects introduced into a superconduc- 
tor; this effect is analogous to the quantum Tc -oscillations 
which have been observed on coated filmsz4 and discussed 
by Kagan and Dubov~kii.~ We have shown' that one may 
exploit the coherent interaction between the plane defects as 
a means to enhance Tc ; in the present paper this possibility is 
discussed for the high-temperature superconducting ox- 
i d e ~ . ~  

The oxide superconductor is assumed to be described by 
a BCS-type theory1) with a coupling constant A, and a fre- 
quency cutoff o,; the precise nature of the electron-electron 
attraction mechanism (be it by phonons, excitons, or some 
other processes) is of no significance. As shown in Fig. 1, the 
superconductor in question contains a system of periodically 
repeated pairs of plane defects perpendicular to the Cu-0 
layers; the distance d between the defects of a given pair is 
small compared with the period L," and L Sgo, the coher- 
ence length. The change in Tc due to the presence of the 
plane defects is given by the expression7 

which follows exactly from the Gor'kov equationss for a lo- 
calized spatial inhomogeneity. Here the axis ofz is normal to 
the defects; N(z) is the local density of states at the Fermi 
level [cf. Eq. (4)  1; the integration is carried out over a re- 
gion containing one pair of defects; and T,  , No, and Vo rep- 
resent the transition temperature, density of states, and the 
four-fermion interaction constant of the initial supercon- 
ductor (we neglect changes in Vo near the plane defects). 
Neglecting the interaction between the Cu-O layers reduces 
the problem to that of a two-dimensional superconductor 
with linear defects. 

In a three-dimensional superconductor' when the de- 
fect transparency is low and do = const, the oscillations of 
T, with d are of a sawtooth shape. The reason for this is that 
the superconductor is divided by the plane defects into two 
types of weakly-coupled film subsystems, namely films of 
thickness do whose spectrum is quasicontinuous and those of 
thickness d whose spectrum consists of a series of two-di- 
mensional bands as shown in Fig. 2. Increasing d decreases 
the distance between the bands; each time the bottom of a 
two-dimensional band crosses the Fermi level of the system, 
a discontinuous increase in Tc occurs as a result of the jump 
in the density of states. In two dimensions, the two-dimen- 
sional bands go over to one-dimensional bands, with the 
property that the density of states near the bottom of a band 
depends on the energy as &-'I2; accordingly, periodic diver- 
gences - ( d  - d, ) - 'I2 may be expected in Tc . Now while 

FIG. 1. The system under study is an oxide supercon- 
ductor with paired plane defects introduced perpen- 
dicular to the Cu-O layers; d is the defect separation 
within a pair, L the pair separation. 

1 I I '  
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into two weakly-coupled subsystems: films of thickness do 
with a quasicontinuous spectrum (left) and those of thick- 
ness d, whose spectrum consists of a series of two-dimension- 
a1 bands (right). 

periodic divergences in Tc are indeed found (Fig. 3a), they 
turn out to satisfy Tc a (d  - d, ) -'-that is, the variation is 
stronger than expected. The reason is that in the intuitive 
argument above the T, of a spatially varying system is con- 
sidered as a function only of the average density of states 
(the situation for Anderson's theorem9 to be valid); but this, 
according to ( 1 ), is only true if the integrand is dominated 
by its first term (e.g., when SN(z) 4 No); the extra factor of 2 
in the exponent of the divergence is due to the second term in 
(1). 

2. T, OSCILLATIONS WHEN THE SlNGULARlTlES ARE NOT 
CUT OFF 

If we let the Cu-0 layer lie in the (y,z)-plane and sepa- 
rate variables, the one-particle wave functions 9, (y,z) and 
the eigenvalues E,, may be represented as 

where k l l  is the longitudinal quasimomentum and s the 
transverse quantum number; it is assumed that the two-di- 

FIG. 3. ( a )  T, oscillations with d in the absence of 
cutoff (do = const); 1: the envelope of the maxima for 
singularities cut off due to the finite value of x:  2: the 
same for singularities cut off due to a finite quasiparti- 
cle lifetime or finite temperature; 3: asymptotics of the 
envelope of the minima for n, l ;  (b) functions 
$({a})  and f ( a )  determining the shape of the oscilla- 
tions for ns 1 within one period (C is Euler's con- 
stant); (c)  functions F (u )  and G( u) determining the 
shape of the smeared singularities; the dashed line: 
F= u-'I2. 
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mensional spectrum is quadratic, ~ ( k )  = k 2/2m, and that 
the linear defects are 6-functions in the transverse direction 
and are located at z = f d /2 [according to Eq. ( 1 ), only 
one pair of defects need be considered]. The boundary con- 
dition for p(z) ,  the wave function for the transverse motion, 
may then be written as 

for z = d /2 and similarly for z = - d /2. Using the defini- 
tion of the local density of states 

calculating p, (z) and E, and replacing the s summation by 
integration, we find, after dropping the terms -a/L,  where 
a is the interatomic separation, that N(z) EN(&,; y, Z) is 
given by 

k, 

d  z' = IzI - p O ,  

where 

The largest increase in T, is anticipated for the strong defect 
condition 1x1 )k,; in what follows we restrict ourselves to 
x ) k, because addressing the - x s k, case lies outside the 
scope of the mean field t h e ~ r y . ~ '  If lzl < d  /2 holds then for 
x )  k, the local density of states becomes 

It is seen that the integrand in (7)  is localized near the points 

9, = n n l d ' ,  d' = d + 21% (8 )  

and may be approximated by a series of 6-function spikes; a 
similar situation exists for lzl> d /2. As a result 

where No = m/2r, M =  [kFdt / r ] ,  and Jo is the Bessel 
function. Eq. (9b) implies that the integral over lzl > d /2 in 
( 1 ) is independent of d and so may be performed for the case 
d = 0 in which the two defects merge into one; the integral 
over lzl < d /2 yields the oscillatory part of T,, 

Substituting (9a) into ( 1 ) gives 

where [...I denotes the integral part of the number. For 
small values of a the sums S, and S, contain only a few terms 
and may be performed directly; in particular, (ST, ),, = 0 
for 0 < a < 1. For a $1, we can express (6Tc ),,, in terms of 
the periodic functions $({a)) and f ( a )  (see Fig. 3b) 

where $(z) is the logarithmic derivative of the gamma func- 
tion'' and {...) represents the fractional part of the number. 
Near the nth singularity, calculation to leading order in n 
gives 

.I 

where f,, =: 1.03 is the minimum value of f ( a ) ;  the first 
term in the brackets determining the envelope of the oscilla- 
tory minima (Fig. 3a). 

The quantity ST, (0) in ( 10) is calculated by substitut- 
ing (9b) into ( I ) ,  which makes the integral of (SN)' logar- 
ithmically divergent at large lzl. In a dirty superconductor 
this divergence is cut off at the mean free path 1; its finite 
value is accounted for by replacing 
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(b) Quasiparticle damping 

in (4),  so that 

dyz )  + dN(z)exp(-2 1 zl / I ) ,  1 = vF/y , (15) 

and performing the integral in ( 1 ) yields4' 

For a pure superconductor, a logarithmically accurate 
expression for 6Tc (0) is obtained by replacing 1 by L in Eq. 
(16). 

3. T, OSCILLATIONS WITH CUT-OFF SlNGULARlTlES 

Let us consider the major cutoff mechanisms control- 
ling the singularities involved. 

(a) Finite x 

For x finite, the quantity N(z) in the range lzl < d /2 
takes the form 

OD 

N(z) = 2 An[l - (- l)"cos(2qnz)1 , (17) 
n= 1 

where 

The singularities are due to the M th term in the sum ( 17 ) , 
such that qM zk,; separating this term and assuming 
x = co for n #M, we have for T, 

(dTc)- 1 =- 
T& I a-n ddF 1 [ b f d n f i  

By calculating AM for finite x we find 

where the function F (u )  determining the shape of the 
smoothed singularity is given by (Fig. 3c) 

The envelope of the maxima is obtained from (20) by replac- 
ing F(u) +F,,, = (3/4)314z0.81. 

The finiteness of the mean free path is taken into ac- 
count by performing the replacement ( 14) in Eq. (4).  The 
quantity N(z) is then given by Eq. ( 17) with 

and F( u) has the same form as (2 1 ). Using ( 19) we find 

The envelope of the maxima is obtained by replacing F(u)  
by F,,, and, curiously enough, shows a marked difference 
from the n dependence given by Eq. (20). 

(c) Finite temperature 

Representing N(z) by setting E = E, in N(E,z), Eq. (4),  
is only valid if N(E,z) varies slowly on the energy scale of 
order w,; recognizing that N(z) appears in (1) due to the 
sum rule for the superconducting kernel K(r,rl) 

1,14w0 
JK(~ ,  rt)dr' = V(r)N(r)ln - T '  (24) 

(see the derivation in Ref. 7),  we easily conclude that in the 
general case we should replace N(z) by the quantity 

where the sum is over the Matsubara frequencies 
w, = vT(2s + 1) such that Iw, I <o,; we have taken into 
account that T z  T, . Expressing N,, (z) in the form of Eq. 
(17) we find 

For {a)/a)w,/~, we retrieve Eq. (13); reversing this in- 
equality gives, by Eq. ( 19), 

The singularities are cut off at {a}/a- T/E,; in the range 
T/E, 4 {a}/a 4 w,/~, they have logarithmic corrections 
and therefore cannot be described by the pure power law 
form ( 13). The function G(u) determining the shape of the 
maxima is shown in Fig. 3c; the envelope of the maxima is 
obtained from (27) by replacing G(u) + G,,, =: 3.8. 

685 JETP 76 (4), April 1993 Yu. A. Krotov and I. M. Suslov 685 



4. DISCUSSION 

From Eqs. (20), (23), and (27) it follows that the max- 
imum T, increase occurs when 

and its value is 

showing that ST, becomes - T, for L-g0; for ST, k T, 
the initial formula ( 1 ) breaks down, but physical arguments 
suggest a further increase in T, as L is decreased below J0. 

The limiting value of (29) may in fact be unattainable be- 
cause of the effects the instability of the Fermi level near the 
singularity may have on the system (dielectrization of the 
spectrum due to structural transitions; antiferromagnetic 
ordering, symmetry-conserving strains,'' etc.). 

As 7t + cu , the two-dimensional superconductor decom- 
poses into a system of disconnected one-dimensional strips 
whose superconductivity is destroyed by fluctuations. In one 
dimension, the condition for the fluctuations to be unimpor- 
tant is J,  k T :', where J,  is the transverse overlap integral; if 
we set J, - E ~  (%a)- ' ,  the upper bound on tt is (for d-a)  

which turns out to be compatible with (28 ). 
The plane defect structure required (Fig. 1)  may be 

produced (a)  by controlling the twinning process (which 
always operates in the direction normal to the Cu-0 layers); 
(b )  by introducing atomic layers of a dissimilar material 
(superconducting oxide superlattices, periodic normal to 
the c-axis with a period - 100 A, have already been report- 
edE3); and (c) by depositing thin (a few Cu-0 layers) oxide 
layers onto artificially periodic substrates. 

Finally, the T, enhancement effect also occurs for a 
random distribution of defects (with average separation L) .  
Suppose the defect separation d fluctuates by the amount Sd 
such that k ,  ' <Sd4d, L; then averaging Eqs. (20), (23), 
and (27) over d and using Eqs. ( 10) and (16) we obtain 

x ( 3 1n [ max [:;*&+]I - 

indicating that the estimate ST, - T, a/L acquires a large 
logarithmic factor in this case. Qualitatively, this is also true 
for the case Sd-d-L, i.e., for a perfectly random defect 
distribution. It is perhaps not unlikely that the high concen- 
tration of the plane defects or their lucky distribution in 
space may account for the irreproducible observation of un- 
usually high T,'s in the early high-temperature supercon- 
ductivity studies. 

The work was supported by the American Physical So- 
ciety through a Soros Foundation Grant. 

"Because the exact mechanism of high-temperature superconductivity is 
not yet known, this assumption is, admittedly, somewhat questionable, 
but in our view no experimental evidence has been found to contradict it. 

"At a qualitative level, our results also hold for d - L ,  which is a simpler 
case experimentally. 

3'For - x g  k F ,  mean field theory predicts the Tamm-state-induced local- 
ization of the order parameter near the linear defects.' Since for d B 0  this 
localization is destroyed by fluctuations, it follows that, unlike the three- 
dimensional case, in two dimensions the Tamm states are of no conse- 
quence qualitatively and the results for x ,  k ,  should be similar to those 
for - x , k , .  

4'Although performed for a pure superconductor, the derivation of Eq. 
( 1 ) in Ref. 7 also holds in the dirty limit, provided the superconducting 
kernel K(z,zl) is replaced by (K(z,zl)), its average over the impurity 
positions. Accordingly, N(z) in (1) gives way to an averaged quantity 
(N(z)),  expressible through the imaginary part of the average Green's 
function (G(z,z)); the damping of quasiparticles is taken into account 
by replacing E - E  + iyin (G(z,z)), which operation is equivalent to Eq. 
(14). 
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