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The phase diagram of an easy-plane hexagonal quasi-one-dimensional antiferromagnet is studied 
on the basis of the theory of symmetry. It is shown that near the Ntel temperature @ for three- 
dimensional ordering this transition splits into two second-order transitions, and the degree of 
splitting depends on the direction of the field. It is shown that ordering occurs through an 
intermediate collinear phase and that in the field-exchange approximation strongly nonlinear 
transverse magnetization exists in the spiral phase. 

Antiferromagnets with a triangular lattice are frustrat- 
ed systems and are characterized by strong degeneracy. This 
is manifested in a rich diversity of structures, which arise 
when the temperature and the external field are varied, as 
well as in the unusual critical properties of these com- 
pounds.' The object of the present work is to study the phase 
diagram of ABX, hexagonal antiferromagnets in an arbi- 
trarily oriented external magnetic field. In these compounds 
A is a large univalent cation, B is a magnetic ion, and X is a 
halogen ion; in addition, the A and X ions form a hexagonal 
close-packed structure and the B ions are located inside octa- 
hedra of halide ions. The octahedra, adjoining at the faces, 
form infinite chains along the C, axis (Fig. 1 ). Since the 
distance between magnetic ions along the principal axis is 
shorter than in a perpendicular direction, exchange being 
direct along the principal axis and indirect in the perpendic- 
ular direction, these compounds exhibit quasi-one-dimen- 
sional properties.2,3 At temperatures T< @ =: 10 K, where @ 
is the NCel temperature, they change into a noncollinear 
"triangular" ordered state: The spins alternate antiferro- 
magnetically along the principal axis and make angles of 
120" between neighboring spins in the basal plane., The 
space group of most of these compounds is D :, . The unit cell 
is chosen so that the origin of coordinates is a c position 
[6m2 symmetry, coordinates (2/3, 4/3, 1) ] and the mag- 
netic ions occupy two-fold a position [3m symmetry, coordi- 
nates (O,O,O) according to Kovalev's handbook4] (see Fig. 
2). The transition into a "triangular" antiferromagnetic 
structure is associated with the double-ray star K 13 of the 
wave vector k = + (1/3, 1/3,0) (the point K of the Bril- 
louin zone) and tripling of the unit-cell volume. The primi- 
tive translations of the magnetic and crystallographic cells 
are determined by the relations 

a; = a l  - a,, a i  = al + 2a2, a; = a,. 

The pair of vectors S+ and S- corresponds to the irreducible 
representation associated with this transition (Fig. 3a). The 
representation determined by the vectors S+ and S- is irre- 
ducible. The components of these vectors are distributed as 
follows over the irreducible representations of the symmetry 
group of the paramagnetic phase: 

(s:, S;) and (s:, s;, Sx, Sy). 
Since the spiral "triangular" structure is commensurate, 
there exists a relation between the vectors S+, S - ,  and the 

spin moments Sk (k  = 1, 2, ..., 6 )  of the sublattices. Then 
this structure can be viewed as a collection of three interca- 
lated two-sublattice antiferromagnets characterized by the 
antiferromagnetism vectors (L, = S, - S, +, , i = 1, 2, 3). 
In the absence of a magnetic field the angles between L,, L,, 
and L, are all equal to 2?r/3. We underscore the fact that due 
to the quasi-one-dimensionality, at least in magnetic fields 
which are weak compared with the main exchange field, it 
can always be assumed that S, + , = - S, , i = 1,2, 3. 

The vectors S+ and S- can be expressed in terms of the 
spin moments of the sublattices as follows: 

s- = 31'2(~, - L,) = 31'2(~, - S3 - SS + S6). 
We expand the thermodynamic potential near the phase- 
transition point I T - @ 1 4 @, taking into account fourth-or- 
der invariants as well as anisotropic terms:5 

FIG. 1. Arrangement of the atoms in the crystallographic unit cell of 
ABX,. 
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2.3 
FIG. 2. a-type position occupied by magnetic B ions (0)  in acrystal with I 
D i, symmetry. 

FIG. 3. *Ground state-spiral 120-degree structure and its discrete 
whereA,=a(T- @),  a > 0 .  degeneracy. The chirality vector is  K = [S+S-1. b--Collapsed "collin- 

In the exchange approximation the "coarse" spiral 120- ear'' phase. The arrows mark the antiferromagnetic vectors L,,  L,, and L,, 
degree structure (S+lS-,  IS+ 1 = IS- I ) will appear if y < 0 respectively. The spin moments of the sublattices S,, S2, and S ,  are paral- 

lel, and the spin moments of the sublattices S,, S,, and S, are antiparallel 
and B + y > 0. Anisotropic relativistic interactions distort to the vectors L,,  L2, and L,, respectively. 
the "coarse" structure and orient it with respect to the crys- 
tallographic axes. We confine our attention to the easy-plane 
case ( d > 0) when the only role of anisotropy is to orient the 
"coarse" structure. Then the ground state @ = !j (A, + bH2)[(s+12 + ( s - ) ~ ]  

arises at the second-order transition point T = O. We note 
that the ground state is continuously degenerate with respect 
to simultaneous rotation of the vectors (S+,  S- ) around the 
C, axis and discretely degenerate ("chirally") with respect 
to a change in sign of the chirality vector K = [S+S- ] (Fig. 
3a).6 

A magnetic field will change the symmetry of the sys- 
tem and distort the ground state, and the field component 
perpendicular to the principal axis will remove the contin- 
uous degeneracy. 

Since magnetization appears only in the presence of a 
magnetic field H, we expand the thermodynamic potential @ 
with respect to S+,  S-, and H. Taking into account only 
exchange invariants of the interaction of the system with the 
field, we write the expansion of @ for I T - 01 4 O as follows: 

Then the magnetization 

M = -(%) = 6, - br(s+12 + ( S - ) ~ J J H  

in the general case with arbitrary orientation of the field is 
not parallel to H.' The signs of a and b cannot be determined 
on the basis of purely thermodynamic considerations. Actu- 
ally, however, the jump in the derivative of the susceptibility 
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components parallel (x,, ) and perpendicular (x, ) to the 
magnetic field at the transition into the paramagnetic phase 
is always which means that a > 0 and b > 0. 

The behavior of the system (2)  is determined by the 
competition between exchange and anisotropic terms and 
the field. In standard non-quasi-one-dimensional antiferro- 
magnets the energy of the "exchange" fields H,, in which a 
transition from the ordered into the paramagnetic phase oc- 
curs at zero temperature, is comparable to the Ntel tempera- 
t ~ r e . ~  A peculiarity of the quasi-one-dimensional problem 
considered here is that the energy of the "exchange" fields 
(H, =: lo3 kOe) is much higher than the ordering tempera- 
ture @, i.e., a and b are such that the exchange "field" terms 
O [ ( H S + ) ~  + (HS-)'I a n d b H 2 [ ( S f ) 2  + (S- )2]  infields 
which are weak compared with the "exchange" fields 
(HgH, ) can always be assumed comparable in energy to 
the second-order anisotropic terms. It is the quasi-one-di- 
mensionality that is responsible, as we shall see below, for 
the significantly nonlinear transverse magnetization before 
the transition of the system into the collinear phase. We also 
note that taking into account the fourth-order anisotropy 
will not change the qualitative results, but it will merely in- 
troduce small corrections. For this reason, everywhere be- 
low we neglect the fourth-order anisotropy energy com- 
pared with the energies of the exchange "field" terms and the 
second-order anisotropy terms (i.e., we set P = 0).  

It is obvious from the expansion of the thermodynamic 
potential that in the general case the second-order phase 
transition at T = @ into the paramagnetic phase splits into 
two transitions, which are associated with the fact that the 
vectors S f  and S-  do not both vanish simultaneously. Van- 
ishing of one of the vectors for some value of H means that 
the spiral phase vanishes and the "collapsed" collinear phase 
appears (Fig. 3b).8 The solution of the equations dQ>/ 
d S * = 0 with stability conditions 

will determine the points of the phase transitions T = T(H) .  
The field H strives to orient the vectors S +  and S- so 

that HS* = 0 and the anisotropy strives to orient the vec- 
tors S' in a plane perpendicular to the principal axis. The 
competition between these two phenomena determines the 
ground state of the system. For H = 0 the vectors S +  and S-  
lie in a plane perpendicular to the principal axis. Minimizing 
the potential @ (2)  with respect to S +  and S- for H#O 
gives a ground state in which one of the vectors S+  (where 
S+ lS -  ) will be oriented perpendicular to the field and the z 
axis (S t lH ,  SZf = 0)  and the second vector S-  will lie in 
the plane formed by the vector H and the z axis. If p, is the 
angle by which H tilts away from the z axis (O<p0<r/2), 
then the tilt angle p of S-  from the z axis in the (z, x )  plane 
(see Fig. 4) will satisfy the condition r / 2 < p < ~ .  This 
ground state is described by the system of equations 

(s-12 = - + A 
B(2 + x) Bx(2 + x)' 

x sin 2po 
tg 29 = x cos 2p0 + 1' 

FIG. 4. Structure of the ground state of the spiral in an arbitrarily oriented 
external magnetic field. 

Here A = A, + bH 2, A = d [x  cos2(p - p,) + cos2 p ] ,  
x = a H  2/dandx = y/B. Since y < 0, we havex < 0. Accord- 
ing to Eqs. (4),  the case p, = 7~/2 is special, since in the 
admissible range of values of p it corresponds to two solu- 
tions p = r a n d  p = ?r/2 in some nonzero field HI in which 
the energies of these states are equal to one another. If, how- 
ever, p, = 0, then the state with p = r / 2  has the lowest en- 
ergy and is the only state for any value of H. 

The instability and, therefore, the points of the phase 
transitions of the system (2)  are determined by the vanish- 
ing of the determinant I Id Sid S- I / for some values of 
S +  and S-. In the absence of a field this occurs for 
S +  = S- = 0 at the point of a second-order phase transition 
T = @. For p,#O, ~ / 2  the determinant vanishes twice: for 
S-  = 0, determining the second-order transition into the 
collinear nonspiral phase (Fig. 3b), and for S f  = 0, deter- 
mining the second-order transition into the paramagnetic 
phase. 

The equation relating the magnetic field H to the tem- 
perature T I  of the transition from the spiral to the collinear 
phase has the form 

where A,  = a( TI  - 0 )  + bH 2. The discriminant of this 
quadratic equation for the easy-plane structure ( d  > 0, y < 0, 
a > 0)  is always positive. From the two roots of Eq. (5 )  we 
choose the one corresponding to the condition ( S  + = 0 for 
H=Oand  T = @ ) :  

- - -(d + aH2) + [(d + aH2cos 2p0)2 + ( a ~ ~ ) ~ s i n ~  2p0] 

27 

The transition from the collinear into the paramagnetic 
phase occurs when the vector S + ,  whose magnitude in the 
collinear phase is determined by the relation (S + ) = - A / 
B (in this phase S- -O), vanishes at the temperature 
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b T - @ - - H Z  2  - a (7)  

and does not depend on the direction of the field H. 
We now write the limiting expressions (5) and (6)  for 

the temperatures TI of the transition from the spiral into the 
collinear phase. 

1) p ,=o:  

A field applied along the z axis preserves the C, axis: 

For this reason, in this case T, = T, holds and the transition 
from the paramagnetic phase occurs directly into the spiral 
phase, bypassing the collinear phase. 

2) p, = 71/2: 

which agrees with the results of Ref. 10. A magnetic field 
applied perpendicular to the C, axis (group D,, ) leaves only 
a two-fold axis directed along the field and splits the transi- 
tion at T= O into two second-order transitions. 

3 )  In weak magnetic fields, such that 7t = ( a H  2/d) 4 1 
holds, the expression ( 6) becomes 

In strong magnetic fields ( x  % 1 ) the expression (6)  becomes 

For an isotropic magnet (d = 0 )  we obtain 
b T1 = O  - -g H 2  = T 2 ,  

since the C3 axis of the spiral in this case is always directed 
along the field. The qualitative phase diagram for T=O and 
arbitrary orientation of H is displayed in Fig. 5. In the case of 
an arbitrarily oriented field the expression for the magneti- 
zation has the form 

(10) 
where n is a unit vector in the direction S-. The vector M has 
a component 

perpendicular to the field. This component vanishes at the 
point T = TI of the transition into the collinear phase (Fig. 
6a). The longitudinal magnetization M ,, has a kink at this 
transition. These results agree with the results of Ref. 7. At 
higher temperatures T, < T< T, 

Since at temperatures T> T, the magnetization is M = X, H, 
the magnetization also has a break at the point T2 of the 
second-order transition (Fig. 6b). 

FIG. 5. Phase-transition surfaces T , ( H )  and T , ( H ) ;  H,=1@ kOe, 
H g H , ,  10 K ,  0(9,<12/2. 

According to the expressions ( 10) and ( 1 la) ,  the mag- 
nitude of the transverse magnetization depends strongly on 
the direction of the field and on the ratio x. We underscore 
the fact that, neglecting the relativistic (in the field) interac- 
tions, the magnetization M, is zero when the field has the 
orientations p, = 71/2 and p, = 0 as well as after a transition 
into the collinear phase for any orientation of the field (Fig. 
6a). 

If the field H is oriented strictly perpendicular to the 
crystallographic axis C3, then the quasi-one-dimensionality 
introduces additional features into the phase diagram. If the 
anisotropy is so large that it can confine the spins (and there- 
fore also the vectors S+ and S F )  in the basal plane before the 
transition into the collinear phase, i.e., x< 1, then, in agree- 
ment with Refs. 8 and 10, the lines of second-order phase 
transitions in the HT plane are determined by the expres- 
sions (7) and (8b). If, however, the anisotropy is weak 
( x %  I ) ,  then there exists a field HI satisfying H,/Hc 1 
(where Hc is the exchange field), in which the system-field 
interaction energy is equal in magnitude to the anisotropy 
energy. In the field HI a first-order spin-flop transition oc- 
curs from the state with S- IIH, SI = 0 into a conical phase 
with S-IH,  S ;  = S ;  = 0 (see Fig. 7b).I1 In this phase all 
spins make the same angle with the field (close to 71/2 in 
fields which are weak compared with H, , H/H, 4 1 ), while 
the ordering of the spin projections on a plane orthogonal to 
the field remains triangular. This transition does not depend 
on temperature and occurs only for a strict orientation of the 
field with x = 1. The latent heat of this transition is very 
small. Both second-order transitions into the collinear and 
paramagnetic phases are preserved and occur at the tem- 
peratures 

for H < HI and 
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FIG. 6. Qualitative dependence of the transverse magnetization 
M, ( a )  and the longitudinal magnetization MI, (b)  on the mag- 
nitudeoftheapplied field with T  = const (O(q,,<rr/2); M, = 0 
for p, = 0, rr/2 and for T, < T <  T,. 

b d B  b T I = @ - , H 2 + 2 , - ,  T Z = O - - H Z  external magnetic field the transition to a three-dimensional 
/ a  a ordered state at T  = O z  10 K in the general case splits into 

two second-order transitions from the paramagnetic to the 
for H >  HI.  Note that for H> HI = ( d  / a )  at the transi- collinear phase and then from the collinear to the spiral 
tion point the magnetization M/IH undergoes a jump phase. It was shown in the field-exchange approximation 

h M = a ~ ( ~ - ) ~ z ( d ) " ~ .  that nonlinear magnetization perpendicular to the magnetic 
field exists in the spiral phase. If we neglect relativistic (in 

Thus we have constructed the H-Tphase diagram of an the field) interactions, this magnetization is zero when the 
easy-plane hexagonal quasi-one-dimensional antiferromag- field is oriented strictly along or perpendicular to the princi- 
net at T z O .  It was shown that in an arbitrarily oriented pal axis C,. Similar results were obtained theoretically and 

FIG. 7. Phase diagram with p,, = 7r/2 in the case of strong 
anisotropy x < l  (a)  and weak anisotropy % > I  (b);  H, /  
H, ( 1. The line H ,  ( T )  is the line of first-order phase transi- 
tions from the state S-JIH into the state S-1H. 
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experimentally in Ref. 7 (using the Heisenberg Hamilto- 
nian) at temperatures close to zero. As the analysis per- 
formed above shows, the qualitative character of the trans- 
verse magnetization found in Ref. 7 also remains at high 
temperatures, right up to 63. 

We emphasize once again that taking into account the 
fourth-order anisotropy will not affect in the basic results, 
but will only result in some "linear" (in this anisotropy) 
change in the values of T, and T, and the magnitude of the 
field H, (T)  of the first-order transition and will also in- 
crease the "latent" heat of this transition. 

In conclusion I thank M. I. Kaganov, who read through 
the manuscript, for helpful remarks and his attention to this 
work, as well as L. A. Prozorova, A. N. Bazhan, I. A. Zaliz- 
nyak, and 0. A. Petrenko for fruitful discussions. 
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