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The reflection of a transverse elastic wave from a periodic structure of piezomagnetic layers with 
thin superconducting interlayers and also from a periodic structure of piezoelectric layers with 
metallized boundaries is analyzed. The conditions for Bragg resonance are analyzed. In this case, 
the reflection coefficient approaches unity in spectral intervals which are narrow to the extent 
that the magneto- or electromechanical coupling parameter q2is small. The resonant 
enhancement of reflection is seen particularly vividly in the case of a periodic structure formed by 
layers of the same material, since in this case the reflection coefficient far from the resonant region 
of frequencies (or of angles of incidence) is on the order of q2. In the case of a piezomagnetic 
layered structure, the reflection essentially vanishes when the interlayer coatings undergo a 
transition to the n state. In other words, the reflection coefficient can jump abruptly from zero to 
values close to unity when the phase state of the superconducting interlayers changes. The latter 
change could be caused by a temperature change or an electric current, for example. 

INTRODUCTION 

As elastic waves propagate through a piezomagnetic 
(or piezoelectric) medium, quasistatic magnetic (or elec- 
tric) wave fields, moving at the velocity of sound, are excit- 
ed.' These waves are correspondingly sensitive to the mag- 
netic (or electric) properties of the boundary of the medium, 
so some distinctive acoustic effects may arise. Even more 
interesting are coherent effects which occur when magneto- 
acoustic (or electroacoustic) waves propagate in layered 
media with special coatings-superconducting or metal- 
lic-at the interfaces. 

One consequence of the discovery of the high T, super- 
conductors has been an increase in interest in the diagnostics 
of superconductors and in applied aspects of phenomena re- 
lated to superconductivity. For example, various acoustic 
effects which arise at the interface between a piezomagnet 
and a superconductor were examined theoretically in Refs. 2 
and 3. The basic idea is that when the superconductor goes 
into the s state the boundary conditions for an elastic wave 
propagating in the piezomagnet change. Specifically, be- 
cause of the Meissner effect, the normal component of the 
magnetic induction, B,, accompanying the elastic wave 
must vanish at the interface. As a result, the parameters of 
the elastic wave are modified in a certain way. 

This idea was examined in Refs. 3 for the situation in 
which a horizontally polarized transverse elastic wave is in- 
cident on a thin interlayer of a superconducting material in a 
piezomagnetic crystal. The thickness of the interlayer was 
much smaller than the wavelength but much larger than the 
London penetration depth.2 If the interlayer is in the normal 
state, then in a first approximation the incident wave "does 
not notice" the interface; i.e., no reflection occurs. When the 
interlayer goes into the superconducting state, the boundary 
condition B, = 0 gives rise to a reflected wave. The reflec- 
tion from the interlayer is thus a consequence of the phase 
state of this interlayer; this state can be controlled by varying 
the temperature, an electric current, etc. 

Unfortunately, the effects discussed in Refs. 2 and 3 are 
generally weak, since they are proportional to the magneto- 
mechanical coupling parameter, which is usually small. This 

comment applies in particular to reflection from a supercon- 
ducting interlayer in a piezomagnet. In the present paper we 
discuss one possibility for intensifying this effect: using the 
Bragg resonance in the reflection of a transverse elastic wave 
from a periodic structure of piezomagnetic layers with su- 
perconducting coatings. For generality, we consider differ- 
ent situations: (a )  The periodic structure is formed by alter- 
nating layers of two different hexagonal piezomagnetic 
materials. (b)  The periodic structure is formed by supercon- 
ducting interlayers in a hexagonal piezomagnet, so that the 
layers of the two types have identical material constants and 
differ only in thickness (in a particular case, the layers may 
also be identical in terms of thickness). In case (b),  which is 
one of particular interest, the reflection coefficient may jump 
abruptly from zero to a value close to unity under Bragg- 
resonance conditions when the interlayers go into the s state. 

In this paper we also solve another problem: that of the 
reflection of a transverse elastic wave from a periodic struc- 
ture of piezoelectric layers of hexagonal symmetry with me- 
tallized boundaries. A similar problem was taken up in Ref. 
4, but the results of Ref. 4 imply that when the piezoelectric 
layers are made of the same material the Bloch wave number 
is identically equal to the longitudinal component of the 
wave vector of the elastic wave. This means that either the 
forbidden Bloch modes have zero width or there is no reflec- 
tion at all from metallized boundaries of identical layers. We 
regard both of these conclusions as dubious. Indeed, the 
analysis of this problem below leads to results different from 
those of Ref. 4. 

STATEMENT OF THE PROBLEM 

We consider a periodic structure formed by repeating 
cells, each consisting of two different hexagonal piezomag- 
netic layers of thicknesses d, and d2 with mutually parallel 6 
axes, which lie in the plane of the interface, which is the xz 
plane (2116; Fig. 1). The layers have thin superconducting 
coatings in the s state. In the quasistatic approximation, the 
propagation of sound in a piezomagnetic medium is de- 
scribed by the standard equations 
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where 

Oij = cijklVku1 + mkijvkFv Bi = mik1vkul - pijv,.F, 

p is the density, u is the elastic displacement, B is the stress, 2 
is the elastic constants, 6 are the piezomagnetic moduli, Fis 
the magnetic potential, and f i  is the magnetic permeability. 
We assume that a transverse wave is excited in the first layer 
and propagates in the xy plane. It is polarized along the z 
axis. The total wave field in each layer consists of the inci- 
dent and reflected transverse elastic waves, which are ac- 
companied by a quasistatic magnetic field, and two nonuni- 
form magnetic-field modes, which cause corresponding 
elastic forces via the piezomagnetic effect (there are no non- 
uniform elastic displacements because of the symmetry; see 
Ref. 2, for example). Omitting a common factor of 
exp [i( k,x - wt) 1, we write the parameters of the wave field 
for the ath layer (a = 1,2) of the nth cell, the displacement 
uinva)(y), the elastic force f lnsa' = a!,"."', and the normal 
component of the magnetic induction, B y ' :  

A subscript i specifies the incident wave, r the reflected 
wave, and s and s' the nonuniform modes. The asterisk (*)  
means complex conjugation; 

FIG. 1.  Geometry of the problem. 

The wave fields in the layers (n, 1 ), (n,2), and (n + 1,l)  are 
related by the boundary conditions 

Substituting ( 1 ) into (3) and (4), we find 

( 5 )  
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We know that one way to calculate the reflection coeffi- 
cient of a periodic structure is to construct the matrix propa- 
gator, i.e., a matrix which can be used to express the wave 
fields in neighboring cells in terms of each other. When the 
boundary conditions are incorporated in the requirement 
that the wave characteristics be continuous, this matrix can 
be constructed directly by joining the wave fields at the inter- 
faces. In particular, this algorithm can be applied to acoustic 
waves in piezomagnetic or piezoelectric layers with inter- 
faces which are magnetically or electrically "open," i.e., in- 
terfaces which maintain the continuity of the elastic dis- 
placements and forces and which also maintain the 
continuity of the normal component of the magnetic induc- 
tion (or electric displacement) and the tangential compo- 
nent of the accompanying magnetic (or electric) field. The 
corresponding calculation of the 4 X 4 matrix propagator for 
a transverse wave propagating through a periodic system of 
piezoelectric layers was carried out in Ref. 5 (this problem 
was also solved, by other methods, in Refs. 6 and 7). 

For "piezolayers" with magnetically "closed" (super- 
conducting) or electrically closed (metallized) interfaces, 
in contrast, the standard joining method cannot be used. 
Formally, the reason is that in expressions (5)  and (6)  (in 
the case of piezoelectrics, By should be replaced by the elec- 
tric potential p )  the matrices multiplied by the columns of 
amplitudes of partial wave modes are from the outset degen- 
erate, i.e., do not have inverses. It is thus not possible to 
construct a 4 x 4 propagator which couples the four-compo- 
nent columns of partial amplitudes. 

On the other hand, it is not difficult to see that a propa- 
gator modified in a certain way can be defined even in the 
case of piezolayers with metallized or superconducting 
boundaries. For this purpose, in each (n,a)th layer the 
boundary conditions B y '  = 0 or p = 0 at the two 
boundaries of the layer should be used to express the ampli- 
tudes of the nonuniform modes, b b I:'"', in terms of the 
amplitudes of the incident and reflected waves, b b in'"'. 
The amplitudes b jn*"', b j,"*") can thus be eliminated from the 
boundary conditions stating the continuity of the elastic dis- 
placements and forces. It  then becomes possible to con- 
struct, in the standard way, a 2 X 2 propagator which acts on 
a column consisting of the amplitudes b I"."', b ins"'. (In this 
case of magnetically or electrically closed boundary condi- 
tions, it is difficult to use Fourier analysis, which is an alter- 

native to the matrix-propagator method in the case of open 
boundary conditions. ) 

GENERAL SOLUTION FOR A PERIODIC LAYERED 
STRUCTURE OFTWO DIFFERENT PIEZOMAGNETIC 
MATERIALS 

Let us apply this calculation procedure to the problem 
described by Eqs. (1)-(6). From the two equations 
B F 2 ' = O a t y =  - ( n -  1 )D-d l  andy=  -nD[seethe 
last rows of the matrix equations ( 5 ) and (6) 1 we find1) 

In a similar way we find the corresponding expression for the 
(n,l)st  layer: 

Because of the periodicity, Eqs. (7) and (8) of course hold 
for any cell index n. 

Substituting (7) ,  (8) into (5) and (6),  we find 

Here we are using the notation 

Expressions ( F) and ( 1 1 ) can be used to calculate the 
matrix propagator Uin which we are interested. This propa- 
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gator couples the amplitudes of the incident and reflected 
waves in neighboring cells: 

where 

We assume that the periodic structure contains 2N + 1 
layers, i.e., has N cells, each consisting of a pair of a layers, 
a = 1 and a = 2, and a last "unpaired" a = 1 layer. We also 
assume that this periodic structure has, on each side, a super- 
conducting boundary with a semi-infinite medium (sub- 
strate) of piezomagnetic material corresponding to a = 2 
(this configuration is therefore symmetric along they axis; 
Fig. 1 ) . The amplitudes b jO', b 1" of the incident and reflect- 
ed waves propagating in the "entrance" substrate are then 
related to the amplitude b, of the transmitted wave in the 
"exit" substrate by 

where the matrix 6"'"' couples the amplitudes of the bulk 
waves at the interface between the substrate and the a = 1 

h 

layer, and W",' does the same at the interface between the 
a = 1 layer asd the subgrate. These matrices are found from 
the matrices W"' and W "', respectively, by taking the limit 
d, -+ CQ . We thus have 

where 

p(en) = (26;)ctg B2)-' [.3+;Ictg B2 - $actg el 

h 

The components of the matrix U N2re exg-essed in terms of 
those of the unimodular matrix U (det U = 1 ) as follows 
(Ref. 9, for example) : 

sin NKD sin(N - l ) K D  (uN)" = ( u N ) ; ~  = U 1 ,  - - sin KD sin KD ' 

sin NKD 
( u N ) , ,  = (uN); ,  = u 1 2 w  

The quantity K, the "Bloch wave number," is given by 

cos KD = ((1,' + q 1 ) / 2 .  (21 

Usi5g t i e  calculat%d values of the components of the matri- 
ces U, W""', and W'"', we can work from ( 15), (20), and 
(2 1 ) to find the reflection coefficient R = b to'/b jO'. 

BRAGG RESONANCE IN THE REFLECTION FROM A 
PERIODIC STRUCTURE OF LAYERS MADE OF A COMMON 
PIEZOMAGNETIC MATERIAL 

According to Refs. 3, which we referred to back in the 
Introduction, no reflection of an elastic wave occurs in the 
case of identical piezomagnetic layers with thin supercon- 
ducting coatings if these coatings are in the n state. When 
they go into the s state, the reflection from each coating is 
proportional to the small magnetomechanical coupling pa- 
rameter 

We wish to analyze the conditions for Bragg resonance, i.e., 
to determine the relationship among the period D, the angle 
of incidence 8, and the magnitude of the wave vector k at 
which the reflection coefficient of a periodic structure of this 
sort (with a sufficiently large number of layers) reaches a 
value on the order of unity. 

To avoid some complicated calculations below, we as- 
sume that the quantity exp(k,d, ) is a large parameter. It is 
easy to verify by means of the expressions derived below [see 
in particular (36) and (40); see also Fig. 2a] that this as- 
sumption is approximately correct even near the first maxi- 
mum of the reflection coefficient (corresponding to the 
longest Bragg-resonance wavelength), provided that the an- 
gle of incidence is far from grazing and provided that the 
layers do not differ too greatly in thickness. Adopting the 
conditionexp(k,d,)>l, wefind from (16) and (17) 

We can thus approximate expression ( 15) by 

where 

is the matrix propagator which couples the incident and re- 
flected waves in the (n,2)nd and (n + 1,2)nd layers [in con- 
trast with (13) and (14)l.  From (24) we find 

Another approximation used below is that terms of 
higher than first order in the small parameter qk are dis- 
carded. In this case we find the following results from ( 10)- 
(12), (25) for this structure of layers of the same material: 
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where 

-ik d ik d 
iq; e Y - ch kxdl e y - ch k,d2 

= - [ shkxdl 2 ctg e + sh kxd2 (29) 

From (21) and (27) we find a relation which determines the 
Bloch wave number K = K(O,k): 

cos KD = cos k p  

ch kxdl - cos k dl ch kxd2 - cos + q;tg 6 sin kjD sh kxdl + 
sh kg2  

It can be seen from (30) that there are narrow regions 
(narrow to the extent that the parameter qK is small) of the 
values of Oand k for which the condition I cos KD I > 1 holds, 
i.e., for which K(O,k) is a complex quantity. We call these 
"forbidden zones." The boundaries of these zones are speci- 
fied by the condition 

Inside a forbidden zone and in a small neighborhood of it, 
the reflection coefficient is found from (20), (2 1 ), and (26) 
to be2' (Ref. 9) :  

lRI2 = 
I v,z12 

I v121 + [sin KD/sin(N + ~)KD] 2' 
(32) 

Here, according to (28) and (29), we have 

1 - cos k dlch k,d, + 
sh kxdl i (33 

Since we have I V12 I -q&, the maximum values of the reflec- 
tion coefficient IR(8,k) 1 ,  which are in the forbidden zones 
according to the general theory, have a value on the order of 
unity at N- l/qK [a more accurate estimate follows from 
(39) in the discussion below]. 

Let us find the intervals of 6 and k which correspond to 
the forbidden zones. Substituting (30) into (3  1 ), we find an 
equation which has two solutions for each sign in (31). 
These two solutions specify the upper and lower boundaries, 
respectively, of the forbidden zones: 

cos k p  = rt 1,  (34) 

2 1 - cos k p  ch kxd, - cos k,dl 
sin k p  ctg 6 sh kxdl 

ch kxd2 - cos k d2 + 
sh k,d2 I . (35) 

Making use of the small parameter q&, and assuming that 
the angle of incidence O is far from grazing, we find the posi- 
tions of the boundaries of the forbidden zone of index I as a 

function of the quantity k,D [I = 1,2,3, ...; the upper sign in 
(3  1 ), (34), and (35) corresponds to even values of I, and the 
lower one to odd values] : 

(kp)l l )  = XI, (kyo)12) = XL + A1. (36) 

The width of the forbidden zone, A,, is 

The maximum value I R (O,k) I , ,,, , , is realized at the centers 
of the forbidden zones, where we have 

i.e., (Im KD),,, = A,/2. From (32) we have 

where the quantity I V12 I ( 1  V12 I -A ,  -q&) is given by (33), 
in which we have k,, zn-1 /D, k, z (TI /D) tan6. The maxi- 
mum value of the reflection coefficient is evidently close to 
unity under the condition exp(A,N) % 1. 

It is interesting to look at the case in which layers made 
of the same piezomagnetic material are between two sub- 
strates of the same piezomagnet, which also have identical 
thicknesses d. In principle, the original problem can be 
solved first; i.e., we can construct the matrix propagator 
through one layer by replacing the period D by d in the phase 
factors in wave field (1)  [see expressions (45) and (46) 
below]. On theother hand, we know that the result which we 
are seeking for a system of N equidistant layers can be de- 
rived by taking the corresponding limit in the equations de- 
rived above for the case of layers of different thicknesses d l  
and d,. Substituting the values d l  =d, d2 -0, and D-d into 
(36) and (37), we find 

where 

I t h ( q ,  
foreven*, 

A, = 2qLtg 8x (41) 

cth (+) , for odd i. 

According to (33 ), in a forbidden zone the quantity I V12 I is 
given by 

IV121 = A1/2. (42) 

Substituting (42) into (32) with D = d, we find that for 
values of k, in (40) which correspond to the edges of the I th 
forbidden zone (sin Kd-0) the reflection coefficient is 
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FIG. 2. Absolute value of the reflection coefficient, IR I, 
versus k,d /a for N identical piezomagnetic layers with 
superconducting coatings between two substrates, for 

s: qL = 0.1 and B = 45'. a-N = 3; b-5; c-10; d-15. The 
inset in part a compares results calculated from Eqs. ( 15') 

0.40 - (the heavy curve) and (24'). 
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The maximum value I R I :,,, , , at the centers of the forbidden 
zones is, according to (39) and (42), 

2 1 IRl(-), = 1 - 
1 + [sh ALN + 1)/212' 

(44) 

The limit d ,  =d, d2 -.dl, D-. 2d obviously has a slight- 
ly different physical meaning. The maxima of the reflection 
coefficient corresponding in the case d l  #d2 to the 1 th for- 
bidden zones of even index (1 = 21 ' ) disappear, while the two 
maxima corresponding to the 1 the forbidden zones of odd 
index (1 = 21 ' + 1 ) are found from the same expressions, 
(40)-(44), in which 1 is to be replaced by 1 '. 

To illustrate the procedure, we will go through an exact 
numerical calculation of the reflection coefficient for a sys- 
tem of N identical piezomagnetic layers of thickness d be- 
tween two substrates. We will not resort to the approxima- 
tions used above, involving the condition exp ( k, d)  ) 1 and 
the assumption that the parameter q L  is small. In other 
words, we use an expression analogous to ( 15 ) : 

in which we set D = d l  = d  and d2 = 0 for the matrices 
@'(en', @"ex' in ( 16)-( 19). We also assume that the materi- 
al constants gf the layers are equal, and we specify the matrix 
propagator W, which couples the amplitudes in neighboring 
layers, by 

where 

iqi,(cos kyd - ch k x 4  
5 = 

ctg 6 sh k,d + qi,sin kyd' 

Hence 

cos Kd = (Wl l  + W;,)/2 

- ctg 6 cos kyd sh kxd + q$in k,d ch k,d - . (47) 
ctg 6 sh k,d + qhsin kyd 

Figure 2 shows the results of a numerical calculation of the 
modulus of the reflection coefficient, IR I, as a function of 
k,d /r for q L  = 0.1 and 0 = 45", for structures of N = 3, 5, 
10, and 15 identical layers between two substrates. The inset 
in Fig. 2a shows that even at the first reflection maximum 
there is essentially complete agreement between the calcula- 
tions based on exact equation ( 15') and on the approximate 
equation 

(the ter%s quadratic in q& are not considered in the expres- 
sion for W N +  I). The latter equation is the basis of the ana- 
lytic study of the Bragg resonance carried out above. In par- 
ticular, for N = 15 we find from (44) that the value of the 
first-order maximum is IR 1 ,,,,,, ~ 0 . 9 4 .  This result corre- 
sponds to the height of the given peak in Fig. 2d. The width 
of the 1 th forbidden zone, A, -q& evidently characterizes 
the width of the corresponding maximum in the reflection 
coefficient only at large values of N, at which the values of 
(R ( at the edges of the forbidden zone and at the center of the 
zone are sufficiently different [see (43), (44) 1. Since the 
parameter A, given by (41) is nearly independent of I for 
1 = 2, 3, ..., the maxima of IR I of order higher than the first 
( I  > 1) are essentially identical at a fixed value of N. 

REFLECTION FROM A PERIODIC SYSTEM OF 
PIEZOELECTRIC LAYERS WITH METALLIZED BOUNDARIES 

Let us examine the reflection of a transverse elastic 
wave from a periodic system of piezoelectric layers of hexag- 
onal symmetry with metallized boundaries and mutually 
parallel G axes. These axes lie in the plane of the interfaces 
and are oriented perpendicular to the plane of incidence 
(Fig. 1 ). As we pointed out above, this problem can be 
solved by the same method as was used in the case of piezo- 
magnetic layers with superconducting coatings. On the oth- 
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er hand, as was pointed out in Ref. 3, these two problems are 
generally not completely similar, because the tangential 
component of the electric field and the normal component of 
the magnetic induction, which vanish at the metallized 
boundary of the piezoelectric and at the superconducting 
boundary of the piezomagnetic, respectively, are not sym- 
metric under the interchange of electric and magnetic prop- 
erties in Maxwell's equations. Nevertheless, after going 
through calculations similar to those in the preceding sec- 
tions of this paper, we find that all the final expressions for 
piezoelectric layers are the same as those for piezomagnetic 
layers, except for the substitution 

where q; = e:, E4,& is the electromechanical coupling pa- 
rameter, 7, = c, + e:, /&, e15 is the coefficient of the piezo- 
electric effect, and E is the dielectric constant. 

CONCLUSION 

When a transverse elastic wave is incident obliquely on 
a periodic structure of N piezomagnetic layers with thin su- 
perconducting interlayers, a Bragg reflection resonance 
arises. The maxima of the reflection coefficient correspond- 
ing to the resonant conditions have a spectral width propor- 
tional to the small magnetomechanical coupling parameter 
qL. Their height is close to unity under the condition 
exp(NqL)&l ((R 1$,,~0.94 withN= 15 and& =0.1). 
If the layers are made of the same piezomagnetic material, 
the reflection disappears essentially completely when the 
coatings undergo a transition to the end state. Under these 
conditions the reflection coefficient can thus jump abruptly 
from zero to values close to unity as the phase state of the 
superconducting interlayers is changed, e.g., by means of a 
change in temperature or electric current. 

A similar Bragg-resonance effect arises in the reflection 

of an elastic wave from a periodic structure of piezoelectric 
layers with metallized boundaries. Resonant reflection is 
possible, in particular, for a periodic structure formed by 
layers of the same piezoelectric material. Since the reflection 
coefficient under conditions far from resonance is small in 
this case ( IR 1 - q i ,  where q i  g 1 is the electromechanical 
coupling parameter), a periodic structure of this sort is more 
selective than the Bragg reflectors which are ordinarily used 

~ - 

in acoustoelectronics, which are made of different piezoelec- 
tric layers with unmetallized boundaries. 

" Recall that the quasistatic approximation used in describing the mag- 
netic or electric field accompanying the elastic wave in the piezomagnet 
or piezoelectric breaks down at "ultrasmall" angles of incident 19 5 v/c, 
where v is the sound velocity, and c the velocity of light.' It should thus 
not be surprising to find that the equations derived below are inconsis- 
tent with the operation of taking the limit of the case of normal inci- 
dence, in which there is no reflection, because the boundary condition 
By = 0 (or q, = 0)  holds_identic_ally. 

') The matrix propagator V, like U, is evidently unimodula~and saJjsfies 
(20) and (21 ). Incidentally, in verifying the identity det U  = det V  = 1 
in the expressions for U,  , = V,  , one must incorporate terms - qk . 
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