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Equations describing the propagation of electron waves in double quantum wells or wires with 
nonuniform parameters are derived and employed for investigating the passage of waves through 
smooth junctions in these structures. Quasiclassical solutions of the derived equations are 
presented. Both the case of no classical turning points and cases in which turning points are 
present in one of the wells of the well pair are studied. It is demonstrated that at a turning point the 
passing wave generates a new wave. A junction with linear variation of the asymmetry parameter 
of the double well is studied and it is demonstrated that the electron transmission coefficient 
oscillates as a function of the junction parameters. 

1. INTRODUCTION 

Double quantum wells (DQWs), i.e., pairs of parallel 
quantum wells separated by a tunnel-permeable barrier, be- 
came an object of study in the modern physics of hetero- 
structures comparatively recently. In earlier works the 
transverse-field-effect-controlled dissipative electric con- 
ductivity of DQWs was studied theoretically'-3 and experi- 
men tall^.^ Ballistic transport of electrons in tunnel-coupled 
quantum wires and wells6-" was first studied in Ref. 5. The 
idea of an analogy between electron waves in coupled quan- 
tum wires and electromagnetic waves in coupled optical 

is elaborated in Refs. 5-8. This analogy 
makes it possible to propose an electronic coupler similar to 
an optical coupler (specific "designs" of such devices are 
illustrated in Refs. 5 and 6 ) .  We note that finite fragments of 
double quantum wells are not studied theoretically in these 
works, i.e., these works contain only fundamental wave solu- 
tions for an infinite uniform DQW. 

In Refs. 9 and 10, in contrast to the works indicated 
above, results obtained for specific finite DQW structures 
are described. Three such structures are considered there: 1 ) 
an overlapping tunnel j un~ t ion ,~  2) a tunnel " h ~ l e , " ~  and 3) 
a tunnel reflector.'' The overlapping tunnel junction con- 
sists of two separate semi-infinite quantum wells which over- 
lap on a finite strip lxl<d, where they form a finite DQW. 
The tunnel "hole" is an infinite DQW with a potential bar- 
rier whose tunnel penetrability is finite (i.e., nonzero) only 
in the strip 1x1 <d. Finally, the tunnel reflector is a single 
quantum well covered by another quantum well only in the 
strip 1x1 < d. In all three cases an effective DQW arises only 
in the strip 1x1 <d; outside this strip there are either only 
isolated wells (in the case of the overlapping junction and 
the reflector) or only pairs of uncoupled wells, i.e., also sin- 
gle wells (in the case of a tunnel hole). 

All three structures are characterized by the fact that 
their properties change abruptly at the boundaries x = + d. 
This sharpness is associated with the extreme range of vari- 
ation: one well-two wells or zero transmission-nonzero 
transmission. It is also assumed that the properties change 
one at a time. In realizable heterostructures (see, for exam- 
ple, Ref. 15) these conditions are not satisfied: The junctions 
are smooth, the values of the parameters change by a finite 
amount, and, as a rule, several parameters describing the 
DQW change simultaneously. (Here and below a junction in 

a DQW is a region where the parameters of DQW change.) 
In this paper a more general procedure is developed for 

describing junctions in DQWs and electron transport in 
DQWs with junctions. The procedure is described in Sec. 2. 
In subsequent sections this procedure is employed for de- 
scribing DQW structures with smooth junctions. The behav- 
ior of the solutions near a classical turning point in one of the 
wells of the DQW is studied. 

2. EQUATIONS FOR AN ELECTRON IN A DQW 

In this paper we confine our attention to a nearly sym- 
metric DQW and assume a single constant effective mass 
m = const. There are no fundamental difficulties in extend- 
ing the model to more general cases. We begin with a sym- 
metric quantum well determined by the even potential 

The motion of an electron in this potential is character- 
ized by a system of states $,(z), $,(z), $,(z), ... with ener- 
gies E ~ ,  E,, 4, ..., where 

$,(z) = - z), $,(z) = - $,( -z) ,  and $,(z) and 
$,(z) are real normalized functions corresponding to the 
lowest states and E, > E ~ :  

Together with the states $,,, (z) in the DQW we consider 
"single-well" states 

where 

The functions $' * ' (2) are normalized and orthogonal to 
$, ( z ) ,  n>3, and to one another; they describe mixed states 
with energy 2 = (E,  + ~ , ) / 2 .  It is also easy to show that 
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Suppose that the total potential of the problem U(x , z )  
contains, besides U o ( z ) ,  the perturbation S U ( x , z )  : 

~ ( x ,  z) = uo(z )  + d ~ ( x ,  z). ( 6 )  

We divide the perturbation into even and odd components: 

dU(x ,  z)  = d U l ( x ,  z)  + dU2(x ,  z ) ,  
( 7 )  

and we separate from the even component SU,  ( x , z )  the z- 
independent "constant" component 6 Uo (x)  according to 
the rule introduced below [see Eq. ( 12)  1. 

We seek the wave function of the complete problem 
with the potential ( 6 )  in the following form: 

V ( x ,  z )  = c(+)(x)P(+)(z) + c( - ) (x )q( - ) (z )  + p(x ,  z), ( 9 )  

where p ( x , z )  can be chosen in the form 
p ( x , z )  = 8,"=,Cn ( x ) $ ,  ( z ) ,  i.e., it is orthogonal to 
$' * ' ( 2 ) .  Substituting Eq. ( 9 )  into the Schrodinger equa- 
tion with the potential U ( x , z ) ,  we obtain in first-order per- 
turbation theory 

where 

d * ) ( x )  = Jdz  lq( * ) (z )  1 ~ d U ( x ,  z) ,  
- m 

w(x) = J ~ d w ( - ) ( z ) v l ( + ) ( z ) d ~ ( ~ ,  z) ,  ( 1 0 " )  
- m  

and E is a fixed energy. Now, as we did for SU(x , z )  ( 7 ) ,  we 
divide U (  * ' ( x )  and w ( x )  each into two components: 

V'"(x) = Ujk ) (x )  + * ) ( x ) ,  w(x) = wl (x )  + w2(x).(1 1 )  

Since U + ' ( x )  = U !  - ' ( x ) ,  it is convenient to introduce 
the constant component S U o ( x )  in the form 

CO 

= S d z  IV ( * ) (Z )  I 2 d u l ( x 9  2). ( 1 2 )  
- m  

The functions introduced above also have the proper- 
ties 

so that Eq. ( 10)  can be rewritten in the form 

where we have introduced the functions 

Together with C' * ' ( x )  we introduce and employ the func- 
tions 

for which we obtain from Eq. ( 13)  

If U , ( x )  = 0 holds, i.e., if the perturbation SU(x , z )  
does not contain an odd component [SU2 (x , z )  = 01, then 
the equations ( 15 ) decouple: 

i.e., we obtain two independent electron waves-even and 
odd-which do not mix in any way if only even perturba- 
tions are considered. 

The junction in a DQW is determined by prescribing 
three functions: Z ( x ) ,  S E ( X ) ,  and U , ( x ) .  A change in Z ( x )  
leads to the usual nonspecific quantum reflection. Changes 
in S E ( X )  and U , ( x )  lead to more specific phenomena, char- 
acteristic of a DQW. Before studying some of them, for sim- 
plicity we introduce or replace some notation. We replace x 
by the new variable f = ( 2 m )  "2x / f i ,  which makes it possi- 
ble to write Eqs. ( 13 ) and ( 16 )  in a simpler form, and we 
introduce the following new notation 

- 
& - &(x)  = &(El. d o )  = d ( t ) ,  U2(x)  = ~ ( 5 ) .  

3. QUASICLASSICAL APPROXIMATION 

If the "potentials" ~ ( g ) ,  S ( f ) ,  and ~ ( 6 )  vary sufficient- 
ly smoothly, then the quasiclassical approximation can be 
used for solving Eqs. ( 13 )  and ( 16 ) .  This gives the follow- 
ing: 

where A ,,, and B ,,, are integration constants and 

%;,,(I) = & k m. ( 1 8 )  

The solutions C, , ,  ( 6 )  are constructed from Eq. ( 17 )  with 
the help of the formulas ( 14 ) .  

Let a wave be incident from the left and propagate to the 
right. We consider first the case when the potentials vary so 
that tt: (6 )  and x: ( 6 )  are everywhere positive. In this case, 
in the quasiclassical approximation reflection does not occur 
anywhere, i.e., B ,,, = 0. In order to specify the values of A ,  
and A, we assume that for f = - w the electron wave prop- 
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agates only into the "plus" well, i.e., C' - ' ( - m ) = 0. 
Physically, this condition can be imposed only if the wells 
are isolated from one another at 6 = - m ,  i.e., 

For q (  - a )  >O the conditions C'-' ( - m )  = 0 and 
S( - m )  = Oimply A,  = 0, i.e., 

a single wave with the single wave number x 2 ( 6 )  propagates 
at each point. In this problem the fraction of the flux remain- 
ing in the "plus" well after passage through the junction and 
the fraction of the flux transferred into the "minus" well are 
of interest. In order to formulate this problem it must be 
assumed that the wells are also isolated at 6 = m,  i.e., 

This formulation of the problem corresponds to the con- 
structions considered in Refs. 5 and 6. It is evident from the 
solution ( 2 0 )  thatwehaveC'+' ( a )  = O f o r q ( m )  <Oand c( - ) ( m ) = 0 for q  ( m ) > 0. Thus ip the quasiclassical ap- 

proach the transmission coefficient for "its own" well [in 
this case the coefficient T( + , + ) ]  is equal to unity if 
q (  - m and q (  m ) have the same signs, 
q (  - m ) q ( w ) > O ;  the same coefficient is zero if q (  - m )  
and q  ( w ) have different signs, q  ( - m ) 7 ( co ) < 0. In the 
latter case, the entire electron flux is transferred into the 
"foreign" well, so that the junction transmission coefficient 
T( + , - ) is equal to unity. This result can be written in the 
form 

The result obtained above does not depend on the abso- 
lute values of q (  m ) and q (  - ), but only on their signs. 

A completely different result follows from Eq. ( 1 7 )  if 
the limits q  ( + w ) -. 0  and E ( m ) -. 0 are taken in differ- 
ent order. Assume first that 

Then the condition C' - ' ( - m ) = 0  combined with the 
condition S( - a, ) - 0  leads to 

A, = A, = A, ( 2 4 )  

so that 

If S( co ) -0 also, then [taking into account Eq. ( 2 3 )  ] 

where x ( m )  = x , ( ~ )  = x 2 ( m )  =Jm, X ( f )  
= f ( X I  + ~ ~ ) , S x ( f )  - x z ) .  

For the passing and transfer transmission coefficients 
T (  + , + ) and T( + , - ) we have instead of Eq. (22 )  

i.e., these coefficients oscillate as functions of 
2s: Sx(6)d6.  

Thus, for q (  m ) ,  q (  - W )  #O we have the result (22 ) .  
If, however, q (  w ), q (  - m ) +0 we have either ( 2 2 )  or 
( 2 7 ) ,  depending on the order in which the limits are taken 
[together with S( a, ), S( - m ) -01. The question of the 
experimental realization of ( 2 7 )  remains open. Recall that 
both Eqs. (22 )  and ( 2 7 )  are consequences of the quasiclassi- 
cal approximation. In our work Ref. 9 a result similar to Eq. 
( 2 7 )  was obtained for the case of a tunnel "hole" with sharp 
edges. 

4. BEHAVIOR NEAR ATURNING POINT 

The results of the preceding section were obtained un- 
der the assumption that xi ( f )  > x i  (c) > 0 holds every- 
where, i.e., there are no classical turning points anywhere. 
We now consider the situation in which, together with re- 
gions where these inequalities are satisfied, there exist other 
regions where x: (6 )  > 0 > x;  (6). On the boundary of such 
regions at the point 6 = 6, we have 

x ; ( t ~  = 0. (28 )  

i.e., for electrons with wave vectors + xq this is a classical 
turning point. For electrons with the wave vectors + x ,  the 
point 6 = f c  is a point of general position. 

We now consider the case illustrated in Fig. 1. Let a 
wave with wave vector x ,  (g) be incident from the left: 

Suppose also that at least near a turning point q ( 6 )  %6(6) 
holds, so that the ratio of the amplitudes of the waves in the 
"plus" and "minus" wells is 

Near the turning point 6 = f c  the quasiclassical solu- 
tion ( 2 9 )  is no longer applicable; this could be reflected in 
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FIG. 1. ~ ( 5 )  and + v(<) near the turning point 6 = lC. 

the appearance of additional transmitted waves to the right 
of the turning point (for 6 >  6, ) and reflected waves on the 
left (for 6 < f, ). In the vicinity of a turning point we rewrite 
Eq. ( 13) in the form 

wherev, =7(6,) ,Sc = 6 ( ~ c ) , ~ - ~ ~ a ( ~ - f c ) . I n w h a t  
follows we measure 6 from the point l C ,  i.e., instead of 
6 - 6, we write simply 6. Since 6, is small compared with 17, 
and we have the relation (30), in the zeroth approximation 
we set the right-hand side of Eq. (32) equal to zero and we 
write C' - ' in the form 

where x,, = K. The solution (33) is identical to the 
expression for C' - ' (6) that follows from Eq. (29) (to 
within an insignificant phase factor). The general solution of 
Eq. (3 1 ) [with the expression for C' - ' ( f )  from Eq. (33) 
substituted into its right-hand side] that does not diverge as 
6- - co has the form 

where Ai( - f )  and Bi( - 5) are Airy functions of the first 
and second kind,I6 a = J ~ ( T ~ , / ~ ~ ' ~ ) A , ,  f = a'"{, 
L?f = x,,g; and, B is an integration constant, found below 
from the condition that there is no reflected wave as 5- W .  

After B is found from this condition we have 
01 

c(+)(c) = aJexp(g')~i(-c')d'[~i(-~) + i Ai(-F)] 
-OD 

For f & 1 this solution becomes the quasiclassical solu- 
tion: 

5 

c(+)(t) - $# ~ ~ e x p ~ J x , ( ~ ~ ) d t ~ ~  I-) 
0 

which differs from the expression (29) for C' + ' ( f )  by the 
presence of the second term in Eq. (36)-a wave propagat- 
ing with wave vector ~ ~ ( 6 ) .  This wave is generated by the 
turning point because it is not quasiclassical in the vicinity of 
this point). The electron flux in the plus-well is given by the 
expression 

For 

the solution (35) becomes the quasiclassical solution (36). 
In this case the fraction of the flux associated with the second 
term on the right-hand side of Eq. (36) clearly predominates 
over the flux in the "plus" well, propagating for t <  6, . The 
smaller a ,  i.e., the smoother the change in ~ ( 6 )  - q(6)  near 
the turning point, the stronger the generation of electrons at 
this point from the "minus" the "plus" well is. On the other 
hand, according to the conditions of the approximation 
adopted, the electron flux passing into the "plus" well 
should be small compared with the flux remaining in the 
"minus" well. This requirement imposes a lower limit on a ,  
limiting the possible variation in this quantity near the turn- 
ing point by the inequalities 

The existence of this range is due to the condition (30) 
adopted above. 

The generation of a wave with the wave vector x,(g) 
results in spatial oscillations of electron fluxes in each of the 
two wells of the DQW, but these oscillations are relatively 
small not only in the "minus" well, through which the main 
electron flux passes, but also in the "plus" well, due to the 
fact that when (38) is satisfied the first term on the right- 
hand side of Eq. (36) is small compared to the second term. 

5. LINEAR q-JUNCTION 

In the final section of this paper we consider the case 
opposite to the cases studied in the two preceding sections. 
Let ~ ( 6 )  vary quite rapidly, so that the quasiclassical ap- 
proximation is inapplicable. Assume that ~ ( 6 )  = const, 
6(6)  = const, and ~ ( f )  is an odd function: 
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We call such junctions in DQW symmetric q-junctions. 
Assume, as before, that ~ ( f )  (E, - and also that the range 
of variation of q ( f )  exceeds E, SO that 

Due to this condition, in the absence of tunneling be- 
tween the wells the electrons within each of the two cells 
would be confined in the half-spaces < > - gC and f < f c ,  
where + f c  are classical turning points: 

It is obvious that f c  > 0 if E > 0 and gc < 0 if E < 0 (see 
Fig. 2). For E > 0 there exists an interval ( - Jc, gc ) of com- 
bined classical motion in which an effective DQW is real- 
ized. For E < 0 there is no such interval, and tunneling occurs 
from one well into the other through an extended triangular 
barrier with the base (f f , - { : ) (see Fig. 2). 

We now consider the case of an actual linear q-junction, 
illustrated in Fig. 2, 

where F = a (2m) ' / 2 /k  has the dimension of an electric 
field. We call attention to the fact that here the sign of a is 
different from that in the preceding section. 

Then Eqs. ( 13 ) acquire the form 

where 5, = . If an electron wave is incident on such a 
junction from the left through the "plus" well, then for 6 = 0 
the wave is completely reflected, forming a standing wave 
described by an Airy function of the first kind16 

For S#O a transmitted wave appears in the "minus" 
well. This wave is induced by tunneling transitions from the 
"plus" well and in the limit c+ UI it has the form 

and the transmission coefficient T is 

FIG. 2. Energy diagram of an q-junction for a linear function q = ag The 
turning points * gc correspond to E > 0 and 6: correspond to E < 0. 

It is natural to conjecture that this result is valid only 
for small values of T, i.e., in the case E > 0; then the factor 
[ ~ 6 ( 2 / a ) ~ / ~  l 2  is small, which requires that S/U'/~ be 
small: 

a2l3 >> d, (48) 

i.e., the junction must be quite sharp. The strong inequality 
(48) is consistent with the inequality (38) : there exist values 
of a which satisfy both inequalities. But such a discrepancy 
should not have been expected because the corresponding 
problems are formulated differently. 

The transmission coefficient T (for E > 0)  is character- 
ized by oscillations as a function of ~ / a ~ / ~ .  The oscillations 
appear for z2l3 > 1, i.e., in addition to the requirement 
that T be small, the condition ~ $ 6  must also be satisfied. 
Note that in this case we are dealing with oscillations of the 
transmission coefficient as a function of the characteristic 
electron wavelengths, i.e., these oscillations are somewhat 
different from the oscillations with long spatial period which 
were studied in Refs. 9 and 10. This is because the changes in 
the function ~ ( f )  are not small, and they lead to changes in 
x,,, (6) which are not small, i.e., here the condition 
x, - x,(x, + x2, imposed on the wave vector in the works 
cited, is far from being satisfied. 

It is easy to show that the neighborhood of the reso- 
nance point f = 0 makes the main contribution to the tun- 
neling between the wells. The size of the active neighbor- 
hood depends on the smoothness of the junction, and this is 
responsible for the strong inequality (48). 

The inequality (48) makes it possible to answer one 
other question. In order to realize experimentally the macro- 
scopic quantum effects, indicated in the Introduction and 
generated by a long interwell tunneling length A = ?r/Sk, 
where 2Sk is the difference of the wave numbers of the Fermi 
electron waves in tunnel-split states with energies E, and E, 

[see Eqs. (26) and (27), and Ref. 9 for a more detailed 
discussion], quite sharp transitions from a DQW to a single 
QW in Refs. 9 and 10 or to a pair of spatially separated QWs 
in Refs. 5,6,  and 9 are required. As already mentioned in the 
Introduction, for the most attractive method of prepara- 
tion15 such junctions cannot be extremely sharp. The condi- 
tion (48) is the criterion for admissable smoothness: A junc- 
tion is sharp when the condition (48) is satisfied. However, 
it should be kept in mind that the transitional region with the 
maximum "field" F$ (2m6 3, 'I2 /efi must also pass quite 
abruptly into the region of quasiclassical behavior. The in- 
terval where the field F drops from some maximum value to 
zero must be significantly shorter than the length A. 

6. CONCLUSIONS 

The propagation of electron waves in nonuniform 
DQW structures was studied on the basis of equations of the 
form (10) or ( 13) derived in this paper. The cases of quasi- 
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classical behavior as well as the case (specific to these struc- 
tures) in which a classical turning point exists only for one of 
the resulting pair of levels were investigated. In the latter 
case it was shown that a wave is generated by the turning 
point. The effect is small because the ratio (30) was initially 
assumed to be small. The effect increases with increasing 
ratio 6/qc as well as with the smoothness of the junction. 
But as the effect becomes stronger, it must be analyzed by a 
different method. 

In Sec. 5 the case of nonquasiclassical transport was 
studied and a new example of oscillating (as a function of the 
parameters x and E) transmission coefficients T was ob- 
tained. 

The problem of the criteria for a quasiclassical analysis 
arises in connection with these limiting cases. It is obvious 
that the standard criteria of the form 

are inadequate in this case. An example of such inadequacy 
is the solution (47). In this solution, for (2/a) 2'3 E > 1 the 
Airy functions on the right-hand side can be represented 
entirely legitimately by their asymptotic approximations. 
This indicates that the conditions (49) are satisfied. How- 
ever, the formula (7) itself cannot be derived from the quasi- 
classical solution ( 17). The inadequacy of the criteria (49) 
is connected with the fact that in our case not only the wave 
vectors x, , ,  themselves but also their small difference play 
an important role. For this reason, together with the condi- 
tions (49) the much more delicate condition 

must also be satisfied. 
In addition, another criterion for the validity of the so- 

lution ( 17), representing the first few terms of the quasiclas- 
sical asymptotic expansion, is that interwell transitions must 
be adiabatic, i.e., the preexponential factors in Eq. ( 17) must 
change much over the distance A: 

We now apply the criteria (50) and (51) written out 
above to the linear junction of Sec. 5 with E = const, 

S = const, and q = a%. The criterion (50) gives near the 
point 6 = 0 the condition 

which by no means contradicts (48), since ~ $ 8 .  
From the condition (5 1 ) we obtain 

which always contradicts the condition (48) and indicates 
that the quasiclassical approach is not applicable in the situ- 
ation considered in Sec. 5. 

The inequality (53), combined with the inequality 
(48), shows that there exists and interval of intermediate 
slopes a 

where the transmission coefficient T oscillates with large 
amplitude ( T,,,,, - 1 ) as a function of E and a .  
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