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The possibility of a small polaron formation within the microscopic model of the local electron- 
phonon interaction is considered. It is shown that in the 2Dcase the solution of the Schrodinger 
equation on a discrete lattice in the adiabatic approximation gives evidence for the presence of a 
barrier that separates self-localized polaron and delocalized electron states. The polaron stability 
and metastability regions are found. The possibility of polaron formation in high-T, 
superconductors is discussed. 

The discovery of high-T, superconductivity stimulated 
a great number of theoretical treatments of this problem. 
The antiferromagnetic order observed in the CuO, planes at 
low carrier concentration indicates that the magnetic sub- 
system is important in the formation of the superconducting 
state.' Structural phase transitions as well as a number of 
other experiments2 give evidence for the important role of 
the electron-phonon interaction. The reports concerning the 
direct observation of polarons in the dielectric phase with 
carrier doping3 and a small but nonzero isotope effect4 lead 
to the same conclusion. The recent work of Mott5 and Auer- 
bach and Larson6 is also noteworthy. It has been shown6 that 
a magnetic polaron in the CuO, planes has a lower ground- 
state energy than any other known magnetic phase. Note 
that magnetic polaron formation must be accompanied by 
the usual polaronic e f f e~ t .~  

In this connection a recent series of experiments on 
measurement of the optical conductivity seems of great im- 
p~rtance.'-~ In the insulating state the conductivity a(@) 
shows no absorption in the region 0 < 1.5-2 eV. For w > 2 
eV, U ( W )  has a large step that corresponds to a "charge- 
transfer gap" in the excitation spectrum. If some carriers are 
introduced into the CuO, plane by doping, a Drude-like 
peak appears and its weight grows with the carrier concen- 
tration. Two peaks in a(w) occur for 0 lying inside the 
"charge-transfer gap" at w = 0.07-0.1 eV ando = 0.8-1 eV. 
The effective total carrier concentration N,,, defined as the 
integra of a(w ) over the charge-transfer gap, increases faster 
than one could expect from the doped carrier concentration. 
A qualitative interpretation of these experiments within the 
small polaron model was proposed by Mihailovic.lo The 
mid-infrared structure of the optical conductivity corre- 
sponds to the excitation of the polaron into delocalized states 
with energy on the order of the Frank-Condon shift. 

In the present work the possibility of a small-size po- 
laron (SSP) formation in the 2 0  cases is analyzed within the 
model of the strain interaction between an electron and dis- 
persionless phonons. It is shown that taking into account the 
finite bandwidth leads to self-localization with barrier for- 
mation (see Ref. 1 1 ). Nonadiabatic corrections to the ener- 
gy of the SSP are calculated in the 2 0  case. 

In order to treat the problem of SSP formation, we con- 
sider the following model: an electron interacts locally with 
a single disperionless phonon mode R,. The Lagrangian of 
this system is 

where Ti (Yi ) is the fermion fields describing creation 
(annihilation of an electron at the site i, 4i is the scalar field 
corresponding to a local displacement at the site i, 

b i+ (bi ) being the local phonon creation (annihilation) op- 
erator, t is the hopping integral, and g is the dimensionless 
electron-phonon coupling. Note that 4 a M 1/4,g a M 'I4 and 
no a M - ' I 2  ( M  is the ion's mass). Since the parameter gZCl, 
is independent of M, it is possible to use the adiabatic ap- 
proximation. 

Since the Lagrangian ( 1) is quadratic in the fermion 
fields, we can perform explicitly the functional integration 
over these fields. Formally the problem is reduced to calcu- 
lating the fermionic determinant in an arbitrary field 4. As a 
result of this procedure, we obtain the effective boson action, 
its minimum in 4 bring the phonon vacuum. Note that the 
effective action is not merely a classical quantity, since it 
involves quantum fluctuations arising from the fermionic 
determinant. Below we apply the method used widely in the 
theory of non-zero least action. The main idea of this ap- 
proximation is to substitute the Schrodinger wave functions 
for the fermion fields gi :I2  

where c(n, ) is a combinatorial factor, E,, (4) is the classi- 
cal energy of the field cPi, n, is the occupation number, and E, 

is the eigenvalue of the Schrodinger equation in the field 4. 
Applying the variational procedure in 4 to (2) ,  one can 

obtain the following set of equations: 
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The equations (3) and (4) give the polaron energy and are 
written in the approximation 6'qVd.r = 0 (adiabatic approxi- 
mation"). Note that similar equations have been derived in 
Ref. 6 for a magnetic polaron in an antiferromagnetic back- 
ground. Equation (4)  contains no spatial derivatives, since 
the bare phonon subsystem is supposed to be dispersionless. 

Assuming that a single fermion mode is excited, the 
solution of Eqs. (3) and (4) can be written as a power series 
in t / ( 2Ro)  (28RO$t):" 

The total energy of the system is the sum of the electronic 
energy E, in the strain field 4 and the energy of the field 4 
itself: 

zt' .. -a0 - - 
&o' 

Note that the correction to E ,,, is of order t and consistent 
with the result obtained by summation of a definite set of 
diagrams with noncrossing phonon lines.13 Equations (3) 
and (4) have the extended solution 

which reaches the minimum at the point k = ( a , ~ )  of the 
Brillouin zone and corresponds to the absence of a self-local- 
ized state. 

For the 1D case in the limit $R, $ t the solution of Eqs. 
(3) and (4) is given by expressions (5)  and (6) withz = 2. 
In the opposite limiting case g2Ro(t one can obtain the fol- 
lowing exact solution:I4 

The results of numerical analysis of Eqs. ( 3 ) and (4) 
are represented in Fig. 1. As can be seen from Fig. 1, a self- 
trapped state exists for all g of interest. If we have g%lo < t 
the radius of this self-trapped state is restricted to the lattice 
constant. Further decrease of electron-phonon coupling g 
leads to an increase in the radius. Thus in the 1D case a 
smooth transition from a SSP with energy E, ag2 to a large- 
size polaron with energy E, a g 4  takes place and self-local- 
ization occurs without barrier formation. 

In the 2 0  case the situation changes drastically (Fig. 
1 ). The bound states of Eqs. (3) and (4) arise for 8 > dl 
(gf, = 2.85r/Ro in 20) .  However, the polaron energy is 
greater than the energy of delocalized state. For 

FIG. 1 .  Energy of the self-localized state versus coupling $a,. Dashed 
lines correspond to the energy of the delocalized states. 

the SSP becomes the ground state of the system. Thus the 
formation of a self-localized state in the 2 0  case is accompa- 
nied by the formation of a barrier that separates the self- 
localized and delocalized states. Note that the formation of 
the barrier is associated with a finite bandwidth. Numerical 
study of Eqs. (3) and (4)  in the effective mass approxima- 
tion indicates that self-localization occurs without barrier 
formation. This is attributed to the fact that as the polaron 
size decreases the kinetic energy and the strain energy in- 
crease in proportional to 1/R 2, where R is the radius of the 
self-localized state. l5 However,I ' self-localization takes 
place within the interatomic space, and the finite bandwidth 
(lattice discreteness) plays a major role. It means that the 
kinetic energy scaling15 is broken. The dependence of energy 
on the polaron radius is shown in Fig. 2. Forg,, < g  <gc, the 
SSP is metastable. For g > gc2 the SSP has lower energy than 
the delocalized state. Note that for 

gc, <g<gc, = Gm, 
the delocalized state is metastable. In the 3 0  case lattice 
discreteness has no qualitative effect on the results. Note 

FIG. 2. Energy versus polaron radius for various $a, value: I - 
gc, <g<gc*,2-g=gc2.3-g,2 <g<gc,. 
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that these results are in good agreement with the Monte- 
Carlo  calculation^.'^ These results show the region ofg value 
where the self-localized solution is metastable in the 2 0  and 
3 0  cases. 

The set ofequations (3) and (4) and their solutions (5) 
and (6) correspond to the adiabatic approximation in the 
polaron theory. The calculation of fluctuation corrections in 
the vicinity of the classical phonon vacuum results in nona- 
diabatic corrections to the SSP energy. As a result, new 
phonon frequencies will be present in the Lagrangian. 

For this purpose we expand the effective action S,, (4)  
in fluctuations 

Keeping in mind that the minimum of the action S,, (4) is 
realized in the phonon vacuum #,, we calculate the correc- 
tions to S,, corresponding to the one-loop approximation: 

where 

is the Green's function describing the motion of an electron 
in the vacuum field 4,(i), $o(i) is the wavefunction corre- 
sponding to the ground state energy E,, 

$k ( i )  is the wavefunction of an electron corresponding to 
the energy E, , and ( a )  is a fluctuation in the field 4,(i). 
Direct evaluation of (9) gives the expression for SS to lowest 
order in t /g2Ro: 

where the subscript 0 refers to the centre of the polaron. The 
additional contribution from ( 1 1 ) leads to the renormalized 
phonon mode (see Refs. 1 1, 17) : 

Also note that the expression ( 12) differs from the similar 
one obtained in Ref. 17 which is likely to be valid for no) t 
(antiadiabatic approximation). 

The evaluation of the functional integral over 64, ( a )  
yields a nonadiabatic correction to the ground-state energy 
of the SSP: 

In the region of the coupling g where the delocalized solution 
is the most favorable (#,(i) = 0) the corresponding non- 
adiabatic correction is well-known:'' 

AE = -&ih2t2. (14) 

To summarize, we have shown in the 2 0  case within the 
model of local electron-phonon interaction that the forma- 
tion of a polaron is accompanied by the formation of a bar- 
rier attributed to the finite electronic bandwidth (lattice dis- 
creteness). In addition, lattice discreteness has no influence 
on the qualitative picture of self-localized state formation in 
the 1D and 3 0  cases. 

In the 2 0  and 3 0  cases the criterion for the formation of 
a SSP has the following form in the notation of:17 

where D is the bandwidth (D = zt)  and A, =: 1. 
Note that within this model the discontinuous transi- 

tion to the delocalized state occurs at A = A,. The criterion 
( 15) differs from the similar one A $ =: l / G  obtained in 
Refs. 13, 18. This criterion determines a small value of the 
hopping corrections to the polaronic shift. However, the 
transition to the delocalized state occurs before these correc- 
tions become large. The self-trapped state is formed at 
A = A  r, but it is metastable. 

The 1D case is essentially different from the 2 0  and 3 0  
ones. The self-trapped state is the ground state of the system 
at any value of the electron-phonon coupling. ForA > A : the 
radius of this state is determined by the value of the lattice 
constant (SSP). The radius grows rapidly for A <A [r-a/ 
A if A 4 1; see Eq. (8)  1. Thus, unlike the 2 0  and 3 0  cases in 
the 1D case the transition from the polaron state to the delo- 
calized electronic state is continuous. 

The criterion ( 15 ) for the formation of SSP is rather 
strict. The estimate of g2 for D-0.5-1 eV and the most fa- 
vorable value of no-0. 1 eV is equal to 5-10. This value 
implies that the effective mass of the polaron is strongly re- 
normalized and means that it is practically localized. How- 
ever, correlation effects play a major role in high-T, super- 
conductors and lead to the effective narrowing of electronic 
bandwidth19 and even to the formation of magnetic polar- 
ons.5.6.20 These effects may change the criterion ( 15) sub- 
stantially. In addition, the formation of magnetic polarons 
must enhance the standard polaronic effects5 In this con- 
nection it is worth mentioning that the isotope effect has 
been observed in all high-T, superconductors.4 This fact in- 
dicates that the phonon subsystem is of great importance for 
the transition to superconducting state. 

It  is also interesting to note that intermediate-size po- 
larons are supposed to be formed in high-T, superconduc- 
t o r ~ . ~ '  In that case the increase of the radius of such a po- 
laron causes a decrease in its effective mass. Within our 
model the formation of an intermediate-size polaron is im- 
possible. For this reason in our case the only way to decrease 
the effective mass is to decrease the initial bandwidth and 
electron-phonon coupling simultaneously, keeping their ra- 
tio A constant. 

The authors are greatly indebted to A. S. Ioselevich, E. 
I. Rashba, A. S. Alexandrov and A. 0. Gogolin for helpful 
discussions and valuable comments. 
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