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Possible reasons for the anomalies of the properties of homeotropic FrCedericskz cell near 
threshold are studied and it is shown that for real cell dimensions defects can make the largest 
contribution. 

INTRODUCTION 

The foundations of the theory of the basic types of 
orientational structural transitions in a uniformly oriented 
plane-parallel slab of a uniaxial nematic liquid crystal 
(NLC) in an external electric E (or magnetic H )  field- 
referred to collectively as the Frtedericskz effect-were laid 
in the 1930s',' and the theory was finally completed in the 
1 9 6 0 ~ . ~ . ~  Later, cases of complex deformation of a liquid 
crystal-structures536 which include jumps in the order pa- 
rameter'' it, near the threshold field-were described. In 
the mid-1970s Guyon7 drew an analogy between the FrCe- 
dericskz effect in a planar NLC slab and a second-order 
phase transition. The analogy is based on the fact that the tilt 
angle of the director at the center of the cell and the order 
parameter in a phase transition exhibit the same square-root 
dependences 9, 2: (E - E, ) ' I 2  and 7 2: ( T - T, ) 'I2, re- 
spectively. It was recently shownxs9 that in the problem of 
the FrCedericskz effect with canted orientation of the NLC 
in crossed electric (E) and magnetic ( H )  fields it is possible 
to determine the conditions under which both a first-order 
structural transition, previously observed experimentally in 
Ref. 10, and an isostructural transition, which still has not 
been observed experimentally, appear. Thus the types of 
structural transitions obtained from Landau's theory for 
systems with a single-component order parameter have been 
exhausted. 

By analogy to phase transitions, it is of interest to inves- 
tigate how fluctuations of the order parameter affect the 
field dependence of the order parameter near threshold. This 
is an important question because, as far as we know, the 
question of the correctness of the phenomenological theory 
near threshold has never been discussed in theoretical works 
on the FrCedericskz effect while the experimental works3*" 
do not make it possible to compare the field dependence of 
the order parameter it, (E) near threshold with the square- 
root function ( E  - E, )'I2 implied by the phenomenologi- 
cal theory. In addition, experimental  observation^'^ of 
anomalies of the birefringence in NLCs near the FrCeder- 
icskz transition show that taking into account only a uni- 
form static canting of the director may be insufficient for 
explaining the experimental results correctly. 

In the case of phase transitions in three-dimensional 
crystals it is often f ~ u n d ' ~ . ' ~  that anomalies in the tempera- 
ture dependence of the order parameter, the intensity of light 
scattering, and so on are caused not so much by thermal 
fluctuations as by defects of the crystal lattice, which pro- 
duce near the transition point a nonuniform and strongly 

temperature-dependent distribution of the order parameter. 
A liquid-crystal cell can also contain defects-volume de- 
fects (topological-disclinations, hedgehog; mechanical- 
foreign inclusions) and surface defects (topological-boo- 
jums; mechanical-nonuniformity of boundary conditions 
at the surface). In this connection it is of interest to investi- 
gate the effect of defects on the field dependence of the order 
parameter near the Friedericskz threshold. 

Two possible mechanisms for the anomalous behavior 
of the physical characteristics of a liquid-crystal cell are 
thermal fluctuations of the director of the NLC and distor- 
tion of the uniform field of the director by defects. These 
anomalies are strongest near the FrCedericskz threshold. 
They include a change in the critical indices of the physical 
quantities (order parameter, correlation length, and so on), 
displacement of the FrCedericskz effect threshold, etc. The 
competition between these two mechanisms leads to a crite- 
rion for one of them to predominate. 

The object of the present work is to take into account 
the thermal fluctuations of the director and distortions of the 
uniform field of the director by defects of different types in 
the theory of Frtedericskz effect. 

THERMAL FLUCTUATIONS OFTHE DIRECTOR OF AN NLC 

Consider an infinite plane-parallel slab of a homeotro- 
pically oriented NLC in a uniform electric field E oriented in 
the plane of the liquid-crystal slab and with rigid anchoring 
of the director no at the boundaries. Without loss of gener- 
ality, we employ the single-constant approximation of 
Frank's theory, making the assumption that the stationary 
tilting a0(z)  is a function of z only, and we consider fluctu- 
ations S9(x, y, z)  of the tilt angle 9 .  

The free energy of the deformed liquid-crystal slab in an 
external field is 

where L is the thickness of the liquid-crystal slab and Sis  the 
surface area of the cell (S$ L '). The free-energy density is 

where X ,  is the anisotropy of the permittivity and K is 
Frank's elastic constant. 

Switching to the tilt angle 9(x ,  y, z )  of the director n 
away from the initial homeotropic orientation no and drop- 
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ping terms of order higher than a4 in the power series expan- 
sion we obtain 

where q = ?r/L and E, = q[ (4rK /E, ) ] ' I 2  is the threshold 
field of the Friedericskz effect. Expanding 9(x ,  y, z) in a 
Fourier series taking into account the boundary conditions 
we have 

where p = (x, y) .  In the quadratic approximation in 9,,, 

With the help of Eq. (5)  we find the mean-square fluc- 
tuation ( l a , ,  1 2, : 

In r space we have the correlation function 

where 

is the correlation length for the nth mode and K,,(x) is a 
modified Bessel function. 

Near the Friedericskz transition the mode n = 1, for 
which the correlation radius becomes infinite at E = E,, 
makes a significant contribution to G(r, r,). Confining our 
attention to this mode 9, = 9 ,  Landau's theory is applicable 
for ( ( 9  - ( 9  ) )2)  4 ( 9  )2, which can be written as 

At temperature T- 300 K and for a liquid crystal with the 
elastic constant K- lo-'* N and thickness L - m we 
have 

1 - (E/E*)' >> f (2T/KL) ,  (10) 

where f(x)  is the function inverse tox/lln XI. In thiscase the 
quantity f(2r/KL) plays the role of the Ginzburg number 
Gi, which for the chosen parameters of the liquid crystal is - 10-3-10-2. Thus the critical fluctuations of the director 
must be taken into account when 1 - (E/E, )'<Gi. In this 
range only the critical mode n = 1 need be included. For it 
Landau's potential, up to terms of order 9 4, has the form 

Introducing the normalization 9 = q5/Jm we have 
for H = F / T  the standard expression of the fluctuation the- 
ory 

where r = q 2 [ 1  - ( E / E * ) ~ ]  =(-* and g = q 2 ( E / E , ) 2  
(T/KL). In the first E approximation'5 we obtain the expo- 
nent Y = 2/3 for the correlation radius and 0 = 1/6 for the 
order parameter: 

We note that the fluctuation region for thin samples, 
even though it is narrow, may still be wide enough to be 
observed experimentally. 

DEFECTS 

The influence of defects is taken into account in the 
theory of phase transitions by introducing into the thermo- 
dynamic potential local terms (different from zero near a 
defect) which describe the interaction of a defect with the 
order parameter (OP) q5. Defects are usually divided into 
two classes depending on the character of this interaction:I6 

1. Defects ofthe type "local temperaturew-the interac- 
tion with the OP is described by the term A(r)?72, i.e., near a 
defect the local transition temperature IT, is different from 
the temperature T, in the bulk. For the Frkedericskz transi- 
tion the external electric field E or magnetic field H plays the 
role of the temperature T. 

2. A defect of the type "local field3'-the interaction 
with the OP is described by the term B(r)?;l or the value of 
the OP on a defect is given. In this case the value of the OP on 
a defect is different from zero at any temperature. 

In the case of FrCedericskz transitions local-tempera- 
ture defects are local changes in the interaction energy be- 
tween a molecule of the liquid crystal and the surface of the 
cell and local-field defects are regions where the boundary 
conditions differ from a uniform orientation at the surface of 
the liquid crystal (in the case of rigid anchoring to the sur- 
face) or disclinations and other defects, which disturb the 
distribution of the director in the volume of the liquid crys- 
tal. 

We consider first local-temperature defects. As in the 
preceding section, we are considering a FrCedericskz transi- 
tion in a homeotropically oriented slab of a NLC. The de- 
fects are taken into account by adding to the integrand in Eq. 
(11) the nonuniform term A ( p ) a 2 ,  where p = (x, y).  For 
definiteness, for a single defect at the point x = 0 we choose 
A(p)  = A,8(R -p ) ,  wherep = Ipl, R is the radius of the 
defect, A, is a factor characterizing the local "transition 
threshold" inside a defect, and 8 (x )  is the unit step function. 

Switching to dimensionless variables 

17 = 6(2/ 1 1 - ( E , / q 2  1)'12, 
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we obtain 

where 

rD =f2ADanda=R/{.The"+"signinEq. (13)corre- 
sponds to a subthreshold field and the " - " sign corre- 
sponds to a field above threshold. We note that near thresh- 
old 

where the quantity f characterizes the strength of the defect. 
Below threshold only defects with TD > 0 contribute to 
~ ( x ) ,  and it is these defects that are considered. Inside the 
defect (x  < a )  ( 15) the equation of equilibrium 

Arl - 711 - r,(x)l - 33 = 0 

assumes the form 

We consider below quite weak defects, so that a nonzero 
distribution ~ ( x )  arises for quite large f, i.e., for sufficiently 
large TD % 1. In this case, as will become evident below, not 
too close to threshold ~ ( x )  5; 1 and the term v3 in Eq. (16) 
can be neglected. In this approximation 

where J , ( x )  is a Bessel function. 
Outside the defect (x  > a )  the equation ( 15) assumes 

the form 

We solve Eq. (18) by the iteration method 77 = 7, 
+ v1 + ... . In the zeroth (linear) approximation 
v0 = UK,,(x), where U is a constant factor and Ko(x) is a 
modified Bessel function of second order. In the first approx- 
imation Eq. ( 18 ) assumes the form 

With the help of the Green's function of the left-hand side we 
have 

Matching ~ ( x )  and the derivative at the boundary of 
the defect we obtain from Eqs. ( 17) and (20) the following 
system of equations for the coefficients C and U: 

where 

The solution of Eqs. (22) is 

u2 = 4, - alp 
CIU = 

Brl - P l y  
ay' - aly' ayl - a ] ~ '  

Nonzero values of ~ ( x )  near a defect appear if ap, 
- a,fl<Oor, for weak defects (f<l),  i f f > R  exp(2 / ' .  

The solution obtained for Eq. (20) by the iteration 
method, which is applicable for v 5 1, gives the threshold for 
the appearance of nonzero threshold ~ ( x )  near the defect, 
but it does not permit investigating the behavior of (v2(x) )  
near the threshold field E, , i.e., in the limit f -+ 03 ,  where 
g (x )  > 1 near the boundary of the defect and Eq. (20) is 
strongly nonlinear. In this region the term 7 in Eq. (20) can 
be neglected compared with v3. The equation so obtained 
has the following asymptotic solutions ~ ( x ) :  

For x <a the function ~ ( x )  does not have any singularities, 
and for this reason when calculating (v2(x) )  =$," 
xdxV2 (x)  the region (a, 1 ), where the integral diverges log- 
arithmically, makes the main contribution to the integral. 
As a result, for noninteracting defects we have 

where N is the two-dimensional concentration of defects. 
Switching to the tilt angle 19 we obtain the same result 

Above the threshold E, the equation of equilibrium has 
the form 

A9 + 9 [1 + r,(x)] - 93 = 0. (27) 

An analysis, similar to the one performed above, for the case 
below threshold ( 16) also leads to a logarithmic correction 

( A ~ ~ ( x ) )  = N In(t/ R). (28) 

For local-field defects the value of the order parameter 
at the boundary of a defect is given. Outside the defect the 
distribution of the order parameter in dimensionless vari- 
ables is determined by Eq. (19). The distribution of the 
order parameter is given by the same equation (24) as for 
defects of the local-temperature type. Correspondingly, lo- 
cal-field defects make exactly the same contribution to the 

620 JETP 76 (4), April 1993 L. G. Fel and E. 6. Loginov 620 



temperaturedependenceof (8 (x) ) as do local-temperature 
defects. 

"In the Freedericskz effect, under symmetric boundary conditions, the 
tilt angle 9, of the director at the center of the slab is used as the order 
parameter for describing the deformed structure. 

CONCLUSIONS 

Comparing the fluctuation and defect-related contribu- 
tions to the anomalies shows that fluctuations are important 
only in a very narrow region near threshold, though they 
give a power-law anomaly. Defects give logarithmic anoma- 
lies, but the region where the corrections are significant de- 
pends on the strength of the defects and could be quite wide 
for sufficiently strong defects. The numerical values of the 
input parameters depend on the technology employed to 
prepare the cell. The corresponding data can be estimated 
from optical observations near the Frtedericskz threshold. 
Due to the large value of the correlation radius 
5 = L [ 1 - ( E  /E,  ) ] - 'I2 the defects can be seen under a 
microscope. In this sense the Frtedericskz cell can serve as a 
two-dimensional model system for investigating the influ- 
ence of defects on phase transitions. 

In conclusion we express our deep appreciation to V. L. 
Indenbom, E. I. Kats, A. P. Levanyuk, and E. B. Kolo- 
meiskii for a helpful discussion and a number of valuable 
remarks. 
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