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We obtain simplified expressions for the photon-electron collision operators for interaction 
processes of weakly relativistic electrons with strong radiation under conditions when the relative 
change in the photon frequency during their elastic scattering is small. The collision operator in 
the kinetic equation for the electrons has then the form of a Fokker-Planck equation. The 
analogous collision operator in the kinetic equation for the photons generalizes the well known 
Kompaneets expression to the case of arbitrary optical thickness and arbitrary motion of the 
electron gas in an inhomogeneous medium. 

The interaction between plasma and radiation plays an 
important role in many astrophysical objects. The intensity 
of the radiation then often happens to be so large that it 
approaches the Eddington limit when the radiation pressure 
becomes so significant that it compensates gravitation and 
thanks to that restrains the accretion flux of matter. Such 
conditions are realized, for instance, in x-ray pulsars and y- 
bursters. A consistent description of the interaction between 
a plasma flow, accreting onto the object and the strong radi- 
ation appearing as a result of this accretion is therefore an 
important physical problem. 

The problem discussed here has been studied before by 
a number of authors using a hydrodynamic 
However, under conditions when the radiation makes an im- 
portant contribution to the total balance of forces one needs 
more detailed kinetic considerations. Indeed, estimates 
show that under such conditions the effective electric field E 
caused by the action of the radiation on an electron can be 
comparable with, or even exceed, the critical run-away field4 
Ec and this usually leads to an appreciable deformation of 
the electron distribution function. In a one-component plas- 
ma there occurs in the hydrodynamic limit a practically 
complete balance of forces between gravitation, electric 
fields, and radiation, but taking into account the energy- 
dependence of the interaction cross-sections shows that the 
balance relation for the forces is only satisfied on average 
and is violated for separate groups of particles. Such a viola- 
tion of the balance may lead to an appreciable deformation of 
the electron distribution function. Finally, only the use of a 
consistent kinetic approach makes it possible to obtain a 
complete set of macroscopic equations correctly describing 
the interaction processes between radiation and plasma in 
the hydrodynamic limit. 

We see thus that one needs a kinetic approach for a 
detailed study of the physical phenomena under the condi- 
tions which are of interest to us. The aim of the present paper 
is a consistent derivation of the kinetic equations describing 
the dynamics of the electrons and a strong photon flux tak- 
ing their interaction fully into account." 

In Sec. 1 of the present paper we derive, in covariant 
form, the kinetic equation for weakly relativistic electrons 
which takes into account their collisions both with other 
electrons and ions and with photons. We carry out possible 
simplifications of the kinetic equation for the conditions of 
interest to us. 

Section 2 is devoted to the derivation of the photon- 
electron collision integral. Such a collision integral was 
found by Kompaneetss for the case of strong angular scatter- 
ing of the photons. In the present paper we consider a 
broader class of conditions realized in actual astrophysical 
processes when the angular scattering of the photons may be 
arbitrary. As a result we obtain a new, more general expres- 
sion for the photon-electron collision operator which has an 
integro-differential nature and which generalizes the Kom- 
paneets expression to the case of arbitrary scattering of the 
photons. 

The kinetic equation obtained will be used in future pa- 
pers for a consistent description of physical processes in the 
vicinity of accretion centers in the presence of strong radi- 
ation. 

1. KINETIC EQUATION FOR ELECTRONS TAKING 
ELECTRON-PHOTON COLLISIONS INTO ACCOUNT 

The interaction of a plasma with radiation is in the pres- 
ent paper considered in a rather general form. However, 
bearing in mind well defined astrophysical applications we 
use a few simplifications taking into account actual circum- 
stances. First of all it follows from the many observations of 
the objects which are of interest to us (x-ray pulsars, qua- 
sars, y-bursters, and so on) that the main radiative flux con- 
sists of x-ray and y-quanta of a relatively high energy while 
their effective temperature T,, is of the order of the average 
temperature T, of the electrtons interacting with them 
which is of the order of a few or tens of keV. One sees there- 
fore easily that one may assume that for most photons and 
electrons the condition 

is satisfied, where p = Ipl is the electron momentum, m is 
their mass, and k = lkl is the photon momentum. Here and 
in most of the formulas which follow we use an abbreviated 
system of notation in which Dirac's constant f i  and the veloc- 
ity of light c are equal to unity; in those units the frequency of 
the radiation and the photon energy are the same as its mo- 
mentum k. Condition ( 1 ) means that, on the one hand, the 
photons are "light" particles in relation to the "heavy" elec- 
trons and, on the other hand, the electrons themselves are, in 
the main, weakly relativistic: y - 1 < 1 Here 
, y =  (1 - u 2 ) - l I 2  , u = Ivl, - p / m  is the electron velocity. In 
that case the electron momentum changes little when it col- 
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lides with a photon. The enables us to give a kinetic descrip- 
tion of the electron-photon collisions using a Fokker-Planck 
equation 

in which the electron-photon collision operator (6f/6t),,, , 
like the electron-electron and electron-ion collision opera- 
tors, (Sf /St) ,, and (Sf /St) e,i, can be written as divergences 
of a flux in momentum space. 

We obtain the appropriate expression for (Sf /St) ,,, 
under condition (1).  We shall start from the Boltzmann 
electron-photon collision integral2' 

Here $ and I? are the electron and photon four-mo- 
menta, respectively, and n (k )  and F(k)  are, respectively the 
quantum occupation number of the photon states and their 
distribution function, which are (in a complete notation sys- 
tem) connected by the simple relation 

(the factor 2 in the enumerator takes into account two possi- 
ble directions of the photon polarization; we assume that the 
radiation is on average unpolarized). The additional terms 
in ( 2 )  leading to a quadratically nonlinear n- or F-depend- 
ence are caused by the Bose quantum statistics for photons 
and are connected with their induced scattering. They are 
important only for a rather dense photon gas, close to the 
radiation of an absolutely black body. The primes indicate, 
as usual, the momenta of all the colliding particles after the 
scattering. The quantity w($',kl;$,k) =w($,k;$',kt) is the 
differential probability for a transition of photons from the 
range d 3k into the range d 3k ' and electrons from the range 
d 3p into the range d 3p'; it includes a S-function taking into 
account the energy and momentum conservation laws (see 
Sec. 2 below). We have taken into account in (2)  that the 
relative velocity of the colliding particles is constant and 
equal to the velocity of light c. 

We first of all consider the part (Sf /St) ti",, of the Boltz- 
mann collision integral (2)  which is linear in the photon 
distribution function. Introducing the notation 

we find 

Taking into account the momentum and energy conser- 

vation laws during the collision we find that the absolute 
magnitude of the momentum transfer q = Iql from the pho- 
tons to the electrons, 

is under the conditions ( 1 ) small as compared to p. This 
means that the quantity 3 ( p , q ) ,  as function of its second 
argument is entirely concentrated in a narrow q range. At 
the same time this quantity is a smooth function of its second 
argument. Making in the first term of the integrand in (3)  
the substitution q+ - q and expanding this expression up to 
second-order terms in q we get 

where the Greek indices denote the spatial components of 
the corresponding vectors and where it is understood that we 
sum over repeated indices. Carrying out a similar procedure 
with the part of (2)  which is nonlinear in n and afterwards 
again changing from an integration over d 3q to an integra- 
tion over d 3p' and further by standard methods changing to 
the differential scattering cross-section6 we get finally 

Here we have du  = (da/dR)dR where da/dR is the differ- 
ential cross-section for the scattering of photons into an ele- 
ment of solid angle dR (integration over d 3k is assumed, in 
particular, to include integration over all R) ;  the distribu- 
tion function F depends on the magnitude of k and on the 
direction of the momentum of the incident photon, n = k/k. 
The integration in (5 )  is over all momenta of the incident 
photons and it does not involve the electron distribution 
function f (p)  . 

It is convenient to obtain expressions for A, and BaB in 
the laboratory frame of reference by forming the contravar- 
iant four-vector U'  and four-tensor W'j, with spatial parts 
which are, respectively, equal to k%A, and kgBaB where 
8 = mc2y is the electron energy. The factor k%' is chosen 
starting from the relativistic invariance of the quantity7 
k 8 d a  and of the four-vector q', the spatial part of which is 
the same as q, . One must after that express the quantities U'  
and W v  in an invariant manner in terms of the four-vector 
momenta of the electron, p', and of the incident photon, k '. 
This can be most conveniently done in the frame of reference 
in which the electron is at rest before the collision. In that 
frame of reference the photon frequency remains unchanged 
in zeroth approximation in the small parameter k / m  of ( 1 ) 
and the differential scattering cross-section is by virture of 
the smallness of the same parameter described by the classi- 
cal Thomson expre~sion.~ The main relativistic corrections 
to the Thomson cross-section arise when we change to the 
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laboratory frame of reference in our case (1) due to the 
Doppler shift in the frequency. 

To first order in the expansion in k /m we must use the 
relativistic Klein-Nishina formula 

Z (1 + C O S ~ )  [l  - 2 - (1 - COS a)], 
m 

where i and ' are the photon momenta before and after the 
scattering, while 6 is the corresponding scattering angle in 
the rest frame of reference of the electron before the scatter- 
ing and ro = e2/mc2 is the classical electron radius. Using in 
that frame of reference the formula for the transformation of 
the photon frequency in the scattering,' 

we get the following expressions for the quantities U i  and 
w" 

where G q s  the metric tensor of the four-dimensional flat 
space ( G o O = l ,  G " = G 2 2 = G 3 3 =  -1, Gq=O when 
i#j),  and uTh = (8rr/3) 6 is the total Thomson cross-sec- 
tion. Changing to the laboratory frame of reference, using 
the formula for the frequency transformation, 

k = ky(1 - vn), 

we get after separating the spatial components ( i ,  j = 1,2,3) 

where 6a8 is the Kronecker 6-symbol (aa8 = 1 when a = P, 
S, = O  whena#P). 

Equations (4),  (5) ,  and (8)  determine the form of the 
required electron-photon collision integral under the condi- 
tions ( 1 ). 

We further consider the case one often encounters when 
in the usual space, characterized by the vector R, there is a 
single preferred direction. In that case the distribution func- 

tion in momentum space will depend only on the absolute 
magnitude of the electron velocity v and o n p  = cos 8, where 
8 is the angle between the velocity vector and the preferred 
direction. The electron-photon collision integral can then be 
simplified. Using the fact that it has the form (4)  of a diver- 
gence we get: 

where the quantities I  L ' '  and IF' describe the electron-pho- 
ton collisions; their actual form depends on the photon dis- 
tribution function F. Under the conditions of interest to us 
there is often strong angular scattering of the photons, i.e., 
the condition 

is satisfied where Iph is the photon mean free path, N, is the 
electron density, and Lph is a characteristic scale on which 
the photon distribution function changes. The photon distri- 
bution function is then nearly isotropic and, hence, can be 
written in the form: 

F(k, n, R) = Fo(k, R) - Iph(nV)Fo(k, R) = Fo(l + 2a cos 6), 

where 9 is the angle between the photon momentum and the 
gradient of the distribution function, while a is a small pa- 
rameter in ( 10) : 

One must substitute expression (11) into (5),  using 
(8 1, and integrate over the photon momenta, 

Restricting ourselves to the main corrections in the pa- 
rameters vzp/m of (1)  and a of (12) and to the zeroth 
approximation in the parameter k /m of ( 1 ) we get from (5)  
the following expressions for IS" and I F :  

Here vPh is the effective electron-photon collision frequency, 
U the photon energy density, and T,, the effective photon 
temperature (it is the same as the true photon temperature if 
their distribution function is a Planck one). 

For a complete kinetic description of the electrons we 
must add to the right-hand side of the kinetic equation (4)  
the Landau electron-electron and electron-ion collision inte- 
g r a l ~ . ~  Taking into account that significant deformations 
arise only in the tail of the distribution function we restrict 
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ourselves here to a consideration of only the superthermal 
electrons: 

vTe < u, (14) 

where uTe is the mean random electron velocity. This enables 
us to use the linearized collision operator (4).  The lineariza- 
tion takes into account that by virture of ( 14) the number of 
superthermal electrons is small so that only their collisions 
with the bulk of the thermal electrons and ions is important. 
In that case the terms in the formula which is the analog of 
(9)  take in the weakly relativistic limit the form:4 

Here Z is the charge number of the ions and In A is the Cou- 
lomb logarithm. 

Expressions (9), ( 13), and ( 15) completely describe 
the electron collision integral under the conditions (1) 
which are of interest to us. We note that the terms in (13) 
which are independent of a describe the relaxation of the 
electron distribution function caused by their collisions with 
the isotropic part of the photon distribution function. These 
terms are similar to the Coulomb collision operator ( 15). 
The difference consists in the energy dependence of the cor- 
responding coefficients. The frequency of the Coulomb colli- 
sions decreases with increasing velcotiy as v P 3  whereas the 
electron-photon collision frequency is independent of the ve- 
locity in the nonrelativistic approximation. 

2. PHOTON-ELECTRON SCATTERING INTEGRAL 

The kinetic equation for the photons describes the 
change in their occupation numbers n(k,R,t) due to the usu- 
al transfer in space and scattering. The determining factor is 
then the scattering of the photons by the electrons. The gen- 
eral expression for the Boltzmann collision operator 
(Gn/St),,,, which describes the scattering of photons by 
electrons has a form similar to (2):  

The probability w (if,i';fi,k) can be written in relativistically 
invariant form as follows (see, e.g., Ref. 8): 

e4 a(; + c - 6 1  - cl) w(pl, G'; p, ic) = 7j- R EE'kk' > 

Here e is the electron charge, 8 the total electron energy, 

and A and B are kinematic invariants differing from the stan- 
dard ones8 only by the normalization and constant correc- 
tions: 

.. 
A = = k(E - p cos t )  = k'p', (18) 

B = I;'; = kl(E - p cos t ' )  s I;;', 

where 6 is the angle between the vectors p and k and ', 
correspondingly, between the vectors p and kt. The delta- 
function in ( 17) describes the energy and momentum con- 
servation laws during the collision 

Writing the conservation laws in the form 

and multiplying both sides of that equation scalarly with 
themselves we get the relation: 

Here Cis yet another kinematic invariant 

where x is the angle between the vectors k and k'. 
We consider first the "departure" term, i.e., the second 

term in the curly brackets in ( 16). We integrate it over the 
momentap' of the scattered electrons. After this the energy 
of the scattered electrons becomes a function of the quanti- 
ties p, k, and k ': 

~ ' 2  = z2 + k2 + k12 + 2pk cos - 2pkfcos t' - 2kk'cos~. 

Using the fact that d 'k ' = k "dk 'dn'  (where fl' is the solid 
angle in the momentum space of the scattered photons) we 
integrate the expression obtained also over k ', removing the 
remaining 6-function. We then obtain 

where J = (ag l /ak  ' + 1) is the corresponding Jacobian of 
the transformation for the argument of the function 
6(  8 + k - g f ( k  ') - k '). From the energy conservation 
law and Eq. (20) we have 

E'J = E - p COS 5' + k(l - ~ s x ) .  

From ( 19) we have also the following relations: 

m2(1 - c o s ~ )  
(E - p cos t)(E - p cos t ')  1' 

(E - cos t ' j  
+ E - pcost '  + k(1 - c o s ~ )  

E - p cos t' + k(1 - cos X) + (E - cos 5') - 1, 

(22) 
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We now consider the arrival term, i.e., the first term in 
the curly brackets of ( 16). After changing the notationp to 
p' in ( 16), there remains in ( 16) everywhere only the func- 
tion f (p), rather than f (p'). However, in that case there 
occurs at the same time also a change in the expression for 
the probability ( 17 ) : 

NP', k'; P, k) -, w(p, k'; p', k), 

and, in particular, the form of the conservation laws and of 
the functional dependence (2 1 ) of k' on p, k, and a' also 
changes. To avoid confusion we introduce here for the mo- 
mentum of the scattered photon another notation, k, instead 
of k '. We note also that the kinematic invariants change also: 
A changes to ~ ( k )  = g  and B changes to A (k)  2 ,  while the 
invariant C remains unchanged. Instead of Eqs. ( 19) and 
(21 ) we now have: 

k(E - p cos 5') = k(E - p cos t )  + ki(l - cos 2). (23) 

After integration of the 6-function, similar to what was done 
before, the quantity J changes to 7 = agl/ak - 1 and, 
moreover, 

kt2 -+ E2 
kk'fE'J k2(f - p cos 6)' 

The probability kernel R of ( 17) and (22) changes into 
an expression differing from (22) only in the sign in front 
of k. As a result the collision operator takes the form: 

So far we have not made any approximations in all the 
transformations so that Eq. (24) is applicable for any ener- 
gy. We now use the fact that under the conditions ( 1 ) of 
interest to us one can expand in the small parameters p/m 
and k /m and we shall consider terms of order p/m to be of 
first order and those of order k /m and (p/m )*  to be of sec- 
ond order. It is clear from (22) that the quantities R and 

= R ( - k) are up to second-order terms independent of k 
and are thus the same. We then get instead of (24) the fol- 
lowing equation: 

2, = H2n(Z, a ' )  - kf2 n(k, a) 
(f - p cos t )  

' 

We first consider the expression for Z,. We use (23) to 
express the quantity k as function of k, a', and a, introduc- 
ing for that function the notation 3: 

(f - p cos t')k 
k = ~ ( i ,  a, a ) )  = 

E - pcos t  + k(l - COSX) 
. (27) 

It is clear from (2 1 ) that k ' can be expressed in terms of k 
similarly to (27), 

Moreover, we easily get from (23) the relation 

Using (27)-(29) we can rewrite 2, in the form: 

1 
z1 = C' - p cos 5' [%2(2, a ,  nt)n(Z, a t )  

- B2(k, nl, Q) 
E - p cos 5 n(k, Q). 

It is now convenient to carry out an expansion in 6k in the 
square brackets in Eq. (301, 

k = k [E (cos t r  - cos :)(I + cos t f )  + - (I - cos x) , 
m m I 

(32) 

As a result we have for 2 , :  

where we have introduced the notation: 

n = n(k, a), n' = n(k, 8'). 

We now turn to the quantity Z, and carry out a similar 
expansion with the required accuracy; as a result we get: 

2k2 a Z2 = 7 (1 - cos ~ ) n  - (k2n') 
m ak 

an' 
m3 

Similar to (3  1 ), the expansion of the quantities occurring in 
(25), (26), and (33) in thesmall parameters (p/m) and (k  / 
m ) has the form: 
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R = I + COS? - 2 5 cos ~ ( 1  - cos x)(cos I + 5') &(Q', Q) = A(Q,  0.1 + 3 $ (COS t1  - cos ()&(R, nr) .  

2 
+ % (1 - cos x)[(1 - 3 cosx)(cos2( + cos28') where the pointed brackets indicate averaging over angles, 

m 1 
+ 2 cos 6 cos ('(1 - 2 cos x) + 2 cos XI, (35)  (.. .)". = 4n l( ...) w'. 

Sk(k, Q, Q') The integration in Eq. (36)  over the electron momen- 

2 tump acts only on the coefficients depending onp, 6, and 6 ' 
= k ( 0 s  - 0 s  ) + c o  ( (cos (I - cos t )  and the averaging over fl' on the occupation number n' and 

m2 coefficients depending on 6 ' and X. Both these operations 

I can be carried out under the derivative sign. Equation (36) 
k + -(1 - cosx) , thus has the divergence Fokker-Planck part of the flux in 
m mommentum space connected with the weak change of the 

2~ 
photon frequency in the scattering by the "heavy" electrons 

W2(k, Q, Q1) = k2[1 + - (COS ( - cos 6') m [see ( 1) 1 and the integral part in the angular variables 
caused by the arbitrary angular scattering of the photons. 

2 The latter changes sign when we interchange the arguments 
+ m2 (3 c0s2t - ' " + cos2'1) - - 

fl and fll. Hence it is clear that Eq. (36) automatically satis- 
fies the conservation law for the number of photons. 

6x2 a diW2 + - - 912 Equations (36)-(38) are valid for any photon and elec- 
2 ak tron distributions over the solid angle fl. However, often 

there arise situations when there is a single preferred direc- 
k3 
- ~ ( C O S  ( I  - C O ~  F)(I + $ cos t f )  + *(I - cos I)}, tion. This enables us considerably to simplify the collision 
m operator (36) .  

1 1 2 We consider a spherical system of coordinates in mo- 
= - [I + cos E + (cos2t - I)]. mentum space with the axis along the preferred direction. 

E(E - p cos () m2 m2 
We then have: 

Substituting all these expansions into (25) we get the cos ( = cos 8 cos 6 + sin 8 sin 8 cos(p - q), 
final expression for the collision integral: 

cos (' = cos 8 cos 6' + sin 8 sin 8' cos(p - q'), 

cos x = cos 6 cos 8' + sin 79 sin b'cos(~ - q'), 

where 0, 9, and p, 4 are the polar and axial angles of the 
- cos t)&(Q, Q')nf electron and phiton distributions, respectively. Since the 

electron distribution function and the photon occupation 
k4 numbers are independent of the axial angles p, 4, and $' we 

(1 - cos~)n'(l  + n) can average over them in (36)-(33).  Introducing the nota- 
- .  tion 

p = cos 8, A = cos 8 ,  1' = cos a', 

+ Z ( Q ,  ~ ' ) n '  - 2(a1,  n)n to simplify the formulas we get 

k an' an + - (1 - cos x)(t + cos?) (n - n1 m 

- 
2 - 1 

+ P [2 cos2t(2 - 4 cos x + 5 cos?) 
m2 The coefficients a!, 97, 9, and are given by the relations 

+ cos2('(1 - 2 cos X + cos?) + 4 cos E cos E'cos ~ ( C O S  x - 2) 

2k m 
- (1 - 2 cos * + 3 cos?)] - ; (I - cosx)(l + cos?), 
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Moreover there are the relations: 

dl((dl, 1 )  ~ & ( d ,  A') + 3 4 ,  

For our further discussion we write the angular depend- 
ence of the photon distribution as a series of Legendre poly- 
nomials: 

( ,  k) = , A ,  = (Zi + l)(n(l,  k)PAd))*. 
i 

(41 
The collision integrals then also decompose into a chain 

of integrals corresponding to different n. We give the com- 
plete expansion in the Appendix, and here we restrict our- 
selves to the first two terms of the chain: 

and P,(p) is the second Legendre polynomial of the argu- 
ment p .  

It is clear from (42) and (43) that the expansion in the 
Legendre polynomials is rather efficient in the case when we 
have I,, gL,, for the parameters in ( 10). If we restrict our- 
selves solely to the zeroth term of the expansion (42) we get 

i.e., the well known Kompaneets equation.' The expansion 
up to the first polynomial corresponds to Eq. ( 1 1 ) . 

We have thus in this paper obtained a complete set of 
kinetic equations for the electrons and photons describing 
the interaction betwen plasma and radiation under the con- 
ditions ( 1 ). We note that the collision integrals for collisions 
of the electrons and the photons with each other, (4),  ( S ) ,  
(8 ) ,  and (36)-(39), possess all necessary properties; in par- 
ticular, they satisfy the energy and momentum conservation 
laws. 

APPENDIX 

The equation for the photon-electron collision operator 
as a chain of equations for the expansion coefficients n (/Z,k) 
in the series (40) in Legendre polynomials has the form: 

where 
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"Note that in this work only two-particle encounters involving elastic 
scattering of the interacting particles are considered. Collisions in which 
a larger number of particles participate and the various inelastic pro- 
cesses, including those in which particles are created or annihilated 
(bremsstrahlung and inverse bremsstrahlung, creation and annihilation 
of electron-positron pairs, etc. ), can be treated independently by includ- 
ing additional terms in the appropriate kinetic equations. 

''Here we use classical statistics for the electrons, assuming that the elec- 
tron gas is nondegenerate. Hence its density N, and temperature T,  
must satisfy the condition T, ,f~~N:'~/rn. 
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