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We consider the classical dynamics of the one-dimensional motion of a dipole molecule (a  rotator 
or a symmetric top) along the vector of an inhomogeneous electric (or magnetic) field. Assuming 
that the changes in the magnitude of the field are small during the periods of the rotational or 
orientational oscillations of the dipole moment vector relative to the field vector we construct an 
adiabatic theory which describes the dependence of the average translational kinetic energy of the 
molecule on the magnitude of a field of arbitrary shape. We determine the regions for the values of 
the initial parameters of the motion (in the absence of a field) corresponding to a molecule being 
ejected from the active zone of the field or to falling into a force center. We evaluate the fraction of 
molecules from a Maxwellian beam ejected by a strong field. 

1. INTRODUCTION other hand, contains all the advantages of an analytical ap- 

~h~ interest in the study ofbeams of polar molecules in proach which completely traces the effect of of 
electric fields is connected with the dependence of the sign of the int~altl~lecular degrees of freedom the 

the polarizability of a molecule on the rotational quantum the center inertia the 
numbers. For instance, the polarizability of a dipole rotator Indeed, the electric fields at the surfaces of crystals are 

with the dipole momentp and moment of inertia I in a state inhomogeneous both in magnitude and in direction and de- 

with orbital quantum numberj and magnetic quantum num- crease rapidly, exponentially with distance from the surface, 

ber rn is given by the relation:' so that the adiabatic approximation is hardly applicable to 
them. It is true that the surfaces of ferroelectrics5 or of oxides 

from which one can see that the action of an inhomogeneous 
field on a molecule can be different in its ground state and in 
its excited states. This is, in particular, used in lasers for 
selecting excited molecules by means of electric fields trans- 
verse to the axis of a beam2 and for the electrostatic confine- 
ment of polar molecules in Penning traps.3 

In the present paper we consider the dynamic action of 
a strong inhomogeneous field on the translational motion of 
a polar molecule along the field vector. Since the tempera- 
ture T (in energy units) satisfies the inequality Tsfi2/21 
over a broad range it is possible to restrict our considerations 
to the framework of classical mechanics. An important sim- 
plifying assumption which enables us to construct an analyt- 
ic theory valid for fields of arbitrary shape is the adiabatic 
approximation, which assumes that the magnitude of the 
field changes little over the periods of the rotational and 
orientational oscillations of the dipole moment vector of the 
molecule. The interaction of a molecule with the field is then 
satisfactorily described by the dipole approximation - pE 
and the results of the theory are invariant under a change of 
the electric dipole moments p and fields E by their magnetic 
counterparts. One further simplification consists in consid- 
ering an inhomogeneous field directed only along the veloc- 
ity vector of the translational motion of the molecule; this is, 
for instance, realized when a molecule falls centrally toward 
a point field source. 

From the point of view of existing theories of the inter- 
action of gases with surfaces4 the problem discussed here, on 
the one hand, strongly restricts the possible types of surface 
electric fields and the range of explainable effects but, on the 

with orientationally ordered dipole radicals6.' and also 
charged adsorption centers may be sources for rather strong 
and slowly decreasing electric fields, but the problem of in 
how far they can be comparable with the quantity T / p  can 
significantly change the nature of the translational motion 
remains open to discussion. 

Moreover, in almost all theories of scattering of a gas by 
a surface the gas consists of structureless point particles 
without internal degrees of f r e e d ~ m . ~  The quasiclassical 
scattering theory developed by Bogdanov (see the Appendix 
to Ref. 4) using action-angle variables for intramolecular 
motions contained an assumption that the dynamic picture 
of scattering is independent of perturbations of the intramo- 
lecular  motion^.^ The same limitation is also characteristic 
for nonstationary theories9, although attempts were made in 
Ref. 10 to introduce in such models the action of intramole- 
cular motions on the scattering dynamics. 

In contrast to the earlier approaches mentioned 
here4.8-'0 the possibility of the expulsion by a strong surface 
electric field of dipole molecules of the gas phase due to the 
perturbation of the rotational motion was discussed in Refs. 
11 and 12. An analytical expression was obtained in Ref. 13 
for the adiabatic invariant of the motion of a dipole rotator, 
which was generalized in Ref. 14 to the case of a symmetric 
top. 

A rather complete analysis of the dynamics of a dipole 
rotator with an estimate of the fraction of such molecules in a 
Maxwellian beam which are expelled from the region where 
a strong field acts was given in Refs. 13 and 15. Since these 
results are necessary for solving the more general problem, 
in the present paper we shall give a detailed summary of 
them. In Sec. 2 we shall pay special attention to the case of 
plane rotation; it is particularly illuminating, since it pro- 
vides a good illustration of the physical mechanism of the 
appearance of repulsive force, and it is the limiting case of 
the asymptotic solution obtained in Sec. 3 for symmetric 
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tops with any ratio of their principal moments of inertia 
(and, in particular, for rotators). Unfortunately, this 
asymptotic expression contained an error in Ref. 14 which 
made it impossible to explain the other limiting case of the 
strong ejection of a dipole top oriented antiparallel to the 
field vector. This important special case, which allows a sim- 
ple and exact solution, is also considered in Sec. 3. Finally, 
we find in Sec. 4 the fraction of dipole symmetric tops form- 
ing a Maxwellian beam outside the active region of the field, 
which are expelled by the field as a function of the ratio of 
their principal moments of inertia. In Sec. 5 we discuss the 
results of the adiabatic theory and their application to sys- 
tems studied experimentally. 

2. PLANE ROTATION OFTHE DIPOLE MOMENT VECTOR 

The plane rotation of the dipole moment vector p of a 
polar molecule in an electric field is the simplest case illus- 
trating both the appearance of a decelerating or accelerating 
effective force when the field gradient is nonvanishing and 
the classical nonlinear resonance in the field of circularly 
polarized radiation.I6 It is characteristic for rotators with an 
angular momentum oriented at right angles to the field vec- 
tor E, and can be realized for symmetric tops in the absence 
of rotation around an axis of symmetry which is coincident 
with the direction of p. 

We write down the Hamiltonian of the translational 
motion (along the z-axis) and the plane rotational motion of 
a molecule in an inhomogeneous field E(z): 

where 8 is the angle between the vectors p and E (Fig. 1 ). 
P, = m i  and M, = I8 are the total impulse. The force and 
the moment of the force are determined by the equations of 
motion: 

We shall assume that the function E(z) decreases with in- 
creasing distance z from the source of the field, situated at 
the point z = 0. For sharp angles 8 ( 18 1 < 90") the acting 
force will then be attractive and for obtuse angles it will be 
repulsive. At the same time for angles lying in the range 
0 < 8 < 180" the torque will decelerate the rotation, while for 
180" < 8 < 360" it will accelerate it. We show that the average 
force acting over a period r of the rotation or of the orienta- 

Y deceleration 

4 acceleration 

FIG. 1 .  Mechanism for the appearance of a repulsive force in the case of 
plane rotation of a dipole moment vector p in an inhomogeneous field 
E(z). 

tional oscillation of the vector p will be repulsive for fields of 
moderate strength. 

Using Eq. (2) to get an expression for e we can write 
down the average value of cos 8 over the period r :  

7 

1 ( a s  4, = 7 sax Bdt, 
0 

If the kinetic energy m2/2 changes little over a time T we can 
replace it by its average value (mz2/2), , and introducing the 
convenient dimensionless variables 

we can easily get the integrals in (4)  : 

emox 

cos 6dB 

A 

E-' [(1 + E ) E ( ~ - ' ) / K ( ~ - ' )  - 1 1 ,  E 5 1 

= [2E(k)/K(k)  - 1. ~ 2 1  , (6)  

Here K(k) and E (k )  are complete elliptic integrals of the 
first and second kind. In Fig. 2  we show f as function of E. 

The vector p performs complete revolutions (Om,, = 0, 
Om,, = 277) for E( 1 and the average force is repulsive. In 
sufficiently strong fields (E) 1 ) the rotational regime 
changes to an oscillatory one and the average force, which is 
proportional to (cos 8 ), , changes sign when the conditions 

are satisfied. 
The result obtained has a rather obvious physical mean- 

ing. A molecule which performs complete (or nearly com- 
plete) revolutions finds itself longer in states in which its 
dipole moment is oriented at obtuse angles with respect to 
the field vector and therefore is subject to the action of a 
repulsive force directed antiparallel to the field gradient. If 

FIG. 2. The cosine of the angle of the orientation of the dipole moment 
with respect to the field, averaged over the period of the rotational or the 
oscillatory motion (curve I )  and averaged over a Gibbs ensemble (curve 
2) as function ofpE/H andpE /T, respectively. 
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the values of the field are so large ( E  > E, ) that the molecule 
can only perform small angular oscillations about the field 
vector the acting force becomes an accelerating one. 

The dynamic mechanism considered is realized in low- 
density gases or in molecular beams of polar molecules for 
which the mean free path I  exceeds the average action range 
R  of the fields and the molecules do not exchange energy 
with one another in the field. In the opposite case 1<R, the 
thermodynamic average orientations of the molecular dipole 
moments determined for the planar rotation considered here 
by Gibbs averaging, 

[I,, (2) is a Bessel function of imaginary argument of the first 
kind and of order n ] ,  always make a sharp angle with the 
field vector (Fig. 2 )  which guarantees the well known in- 
crease in the density of dipole particles in the active region of 
a field. 

We turn to the consideration of the dynamics of the 
translational motion of a molecule. We shall be interested in 
the possibility of a regime of motion such that the acting 
force, before it changes its sign, manages to reverse the direc- 
tion of the motion of the molecule and to eject it from the 
action zone of the field. In terms of the variables introduced 
in (5)  we must find the function y  = y ( x ) .  The differential 
equation for this function follows directly from the first 
equation of motion in ( 3 ) :  

The determination of the adiabatic invariant for an ar- 
bitrary mechanical system performing a one-dimensional fi- 
nite motion and characterized by some parameter which 
changes slowly in time was carried out in Ref. 17. We show 
that the adiabatic invariant determined by the average value 
of the angular momentum M, = i9, 

[the parameter k was introduced in ( 6 )  ] is a constant of the 
differential equation ( 9 ) .  To do this we use the following 
identity which follows from ( 6 )  and ( 10 )  : 

and we find the total derivative of J (x ,y )  with respect to x :  

The vanishing of ( 12)  due to Eq. ( 9 )  means that the quanti- 
ty J (x ,y )  is conserved when the field parameter x  changes. 
The required function y ( x )  is thus implicitly determined by 
the following equation: 

where 

FIG. 3. The relative translational kinetic energy y as function of the di- 
mensionless field x acting on a molecule in the case of plane rotation 
(dashed lines). The continuous trace separates the xy diagram ( x  is the 
maximum value of the field) into regions where the molecule is "ejected" 
or where it "falls into" the force center. 

We show in Fig. 3  the function y  = y ( x )  for various 
initial values of the parameter yo which gives the redistribu- 
tion of the translational and rotational kinetic energies in 
zero field. In weak fields ( E  4 1  ) we have 

and the function y ( x )  decreases to its minimum values de- 
termined by condition ( 7 )  which in the x,y coordinate plane 
are situated on the line y  = 1 - x/E, .  An especially critical 
regime corresponds to the conditions dy/dx = 0 ,  y  = 0  
which are realized for 

If the molecule is initially decelerated by the field for 
yo > yo, and later when well defined field values are reached 
it starts to be accelerated, for yo =yo, and x  = x, the decel- 
eration leads to the turning point ( y  = 0 )  and a subsequent 
reversed translational motion. For sufficiently strong fields 
( X  > X ,  ) the electric field will thus eject plane-rotating di- 
pole molecules with initial parameter values y , e o c .  

The solid trace yo = y o ( f )  in Fig. 3  separates the values 
of the initial relative translational kinetic energies yo and of 
the maximal fields x  near the field source into two regions 
corresponding to the molecule falling into the force center or 
being expelled from the active region of the field. For f < x, 
the parameter f corresponds to the turning points of the 
molecule ( y  = 0 ) .  In sufficiently strong fields f > x ,  the 
fraction of molecules ejected by the field, which is character- 
ized by the quantity yo,, is independent of the magnitude of 
the field. 

3. DYNAMICS OF ROTATORS AND OF SYMMETRIC TOPS 

We consider a symmetric top with principal moments 
of inertia I, = I, = I and I, along the moving x, ,  x,, and x, 
axes, where we shall assume that the dipole moment vector p 
is oriented along the x, axis. The analysis of the dynamics of 
rotators will follow from the general relations for a top in the 
limit I, + 0. It is convenient to express the rotational part 
H,,, of the Hamiltonian H of (2) : 
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FIG. 4. Sketch of the orientations of the vectors and of the angular 
variables used to describe the dynamics ofa dipole top in an external 
field. 

(the Mi are the components of the angular momentum along 
the xi axes) in terms of the Euler angle variables 0, $, and q, 
in a fixed X, Y, Zcoordinate system with the Z axis oriented 
along the field vector E (see Fig. 4) and the generalized 
momenta M, = IB, M* = M,, M, = M, :I7 

Note that the absolute magnitude of the total angular 
momentum vector is equal to 

depends on the parameter y which changes with time. The 
parameters a, and a, are therefore not invariants, although 
they are convenient for giving the initial orientation (for 
E = 0) of the vector M. We shall use for the dimensionless 
invariants of the motion the parameters 

which are determined by the conserved part H ' of the Hamil- 
tonian H. The required adiabatic invariant then takes the 
form: 

where 

and its orientation in space can be given by the angles 0, and 
63, with the Z and x, axes which are determined by the rela- 
tion - - 

a1 3 COS = Mz 
a2 = cos 0' = M3 

(2IHiOt)l/" ( 2 1 ~ k ~ ) ' / ~ '  

(21 

The components M, and M, are invariants of the mo- - tion in an external field, whereas the quantity H :,, , deter- t ,  + 1 t1 + 1 '  
mined in the adiabatic approximation by the equations 

Here we have t = cos 8, tl>t,>t3 are the roots of the cubic 
polynomial in the integrand, and K ( k ) ,  E(k),  and II(n,k) 
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are complete elliptic integrals of, respectively, the first, sec- 
ond, and third kind. In the initial state x = 0, y = yo, 
a, = ( 1 -yo) - y, we have 

Equating expressions (24) and (25) (as in ( 13 ) ) we get the 
implicit function y(x)  for all initial values ofyo, a , ,  and a,. 
The average value of the force acting upon a molecule [see 
the first formula in (3) ] is as before determined by the func- 
tion f(x,y) r (cos 6 ), which is now equal to: 

aJ/ax 
f(x, y) = 2 = -- = a + t , .  (26) aJ/ay - t3) K(k) 

Equations (24) to (26), which determine the dynamics 
of a rotator for a, = 0 were obtained in Ref. 13. Equations 
(24) and (26) for a symmetric top can be found in Ref. 14, 
but Eq. (25) in Ref. 14 contained an error which made cor- 
rect analysis of the results impossible; we shall now turn to 
such an analysis. 

In the case of weak fields (x/( 1 -yo) 4 1 ) we have 

We note that when we neglect the translational degrees of 
freedom (y = yo = 0, y, = a, ), the asymptotic behavior 
(27) for a rotator ( y, = 0) is the same as the classical limit 
of Eq. ( 1 ) (for Im I q.) 1 we have: H,,, = fi2j2/21, a, = m/j,  

FIG. 5. The critical values of the parameters yo, and x, as functions of the 
component a, = cos 0, of the initial rotational axis of the rotator along 
the direction of the field vector. 

and x,,,, =: - (p2/4Hr,, ( 1 - 3a: ) ) and for comparatively 
small inclinations of the initial plane of rotation to the field 
vector ( la, 1 < 3 - ' I 2  ) a repulsive force acts on the rotator 
which leads to a deceleration of the translational motion 
[decrease in the function y(x)  1. In the case of a symmetric 
top deceleration occurs in the initial stage of the motion for 
a, < 0 and afterwards for somewhat larger values of x for 
a, < [ ( 1 - 3a: )/(3 - 5a: ) ] and also for 
a, = - a, = - 1 (top oriented antiparallel to the field vec- 
tor). 

We obtain the asymptotic parameter yo, of the critical 
regime of motion y(x, ) = 0, f(x, ,0) = 0 for the case where 
the initial state differs little from that of a plane rotation of 
the dipole moment vector (a: ,a: 4 1 ) considered in Sec. 2. 
For a, = a, = 0 the roots of the cubic polynomial in the 
integrand in (24) are t, = 1, t, = - E,- ' [see (7)  1, 
t, = - 1, and the corrections to these roots will be quadratic 
in a, and a,. The function f(x, ,0) of (26) in the linear ap- 
proximation in a, and a, is therefore the same as (6)  and we 
have x, Z E , .  In the same approximation, by taking in (24) 
the contribution which is linear in 1 y, - y,l to the function 

we find 

We denote the required linear asymptotic expression by 
yo, (a,,a,), where yo, =yo, (0,O) refers to the value ( 16). 
Using (23) to equate (29) withy =yo, (a,,a,) to expression 
(25) for JIO,yoc (a,,a,)],  we then get 

For the case of a rotator (a, = 0) the functions 
yo, ( la, 1 ) and x, ( la, 1 ) were tabulated in Ref. 13; they are 
shown in Fig. 5. Deviations of the exact function yo, ( la, 1 ) 
from the asymptotic expression yo, (a,,O) of (30) show up, 
starting with lal 1 2 0.3. By virtue of the invariance of Eqs. 
(24) to (30) under the substitution a,f-,a, the functions 
yo, (a,) and x, (a,) will have exactly the same form for 
a, = 0. It is interesting that for a, = - a, 4 1, when the 
limiting position of the precessing top is strictly oriented 
antiparallel to the field vector (0, + 0, = 180", 
0, - 0, - 90"), a regime of maximum repulsion is reached, 
as in the case of plane rotation. 

Expression (25) vanishes when lal 1 and (or) a, are 
equal to unity. The zero value of the adiabatic invariant dis- 
tinguishes a special class of exact solutions corresponding to 
the absence of oscillations of the angular variable 8. The 
values of cos 8 are then equal to the two coincident roots 
t, = t, of the cubic polynomial of the integrand in (24) and 
can change when we change the parameters x and y. 

Finding the conditions for which the equality t, = t, is 
realized is made easier because at that point the cubic poly- 
nomial has a local maximum and becomes equal to zero. In 
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the case of most interest to us, that of a top with a dipole 
moment vector oriented antiparallel to the field vector, these 
conditions lead to simple functions y (x) and 0(x)  : 

In Fig. 6 we show the functions y(x)  for different initial 
values yo. The line y = 1 - 3x splits the diagram into two 
regions in which there is no precession ( 0  = 180") and in 
which precession of the dipole moment about the field vector 
( 0  < 180") occurs, and thus corresponds to points where the 
top loses its stability in an external field. 

The critical trajectory y(x)  separating expulsive and 
attractive regimes of motion can be found from the condi- 
tions y(xc ) = 0, y1(xC ) = 0, and is characterized by the pa- 
rameters: 

The critical values of the field x, and of the initial transla- 
tional kinetic energy yo, ( - 1,l) found here turn out to be, 
respectively, less and larger than the analogous parameters 
( 16) of the plane rotation case, so that the largest expulsive 
action is felt by a top oriented antiparallel to the field vector. 
The solid curve in Fig. 6, determined by the equations y = x 
forx< 1/3andy = 1 - (1 +x12/(8x) for 1 /3<x< 1,sepa- 
rates the xy diagram into two regions of parameter values (x 
is the maximum field value in the force center and y is the 
initial value outside the field) which correspond to the ejec- 
tion of molecules from the action zone of the field and falling 
into the force center. 

4. STATISTICS OF A MAXWELLIAN BEAM OF MOLECULES 
INCIDENT UPON THE ACTIVE ZONE OF A STRONG FIELD 

We shall assume that outside the active zone of the field 
there is a gas of dipole molecules with number density n in 
thermodynamic equilibrium. The mean free path of the mol- 

ecules is assumed to be much longer than the linear dimen- 
sions of the active zone of the field, so that molecules in that 
zone do not suffer collisions and the action upon them by the 
field is purely dynamic. We calculate the fraction of mole- 
cules from a Maxwellian beam ejected by a strong field. To 
do this we need first of all obtain the equilibrium distribution 
function of the initial parameters H, yo, a , ,  and a, [see (2  1 ) 
and (22) 1 for the motion when there is no field. 

The fraction of molecules which have values of the 
original initial parameters of the motion in the vicinity of 
v, =i,M,,M$,M,,0,  $, andq,, 

is determined by the Hamiltonian (2) with H,,, from ( 18) 
for E ( z )  = 0. The original variables v, , M, , MJ, , and M, are 
connected with the new variables H, yo, a , ,  and a, through 
the relations 

where 

The corresponding Jacobian of the transformation has the 
form 

FIG. 6. Exact solutions of the problem of a symmetric top with a dipole 
moment oriented in its initial state antiparallel to the field vector. 

X 
H sin 6 

[ l  + (A - 1)(1 - yo)a$]2 ' 
(37) 

Integrating over the angular variables 0, *, and q, we get the 
following expression for the fraction of molecules in the vi- 
cinity of the parameters H, yo, a , ,  and a,, normalized to 
unity (for O(H< W ,  O e 0 < l ,  - l (a , ( l ,  O<a,(l): 
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We draw attention to the absence in the distribution 
function ( 3 9 )  of the symmetry between the variables a, and 
a, which occurred in Eqs. ( 2 4 )  to ( 3 0 ) .  This is connected 
with the fact that in the absence of an external field the total 
angular momentum vector can be oriented in any direction 
(the a, variable) whereas the precession angle (the a, vari- 
able) of the dipole moment vector relative to the total angu- 
lar momentum vector is distributed according to the law 

and has the average value 

which depends only on the ratio R of the principal moments 
of inertia. We show in Figs. 7 and 8 the function f ( a , )  for 
different I,/I = R - ' and (cos a,) as function of A - ' . 
The value R - ' = 0 corresponds to a rotator ( (a,) . = O), 
A =  1 toasphericaltop ( ( a , ) .  = 1/2) ,  andA-' = 2 t o a  
plane molecule ( (a,), = 2 - dl). The distribution func- 
tion for a rotator, which has one rotational degree of free- 
dom less, was obtained in Refs. 13 and 15 in the variables H ,  
yo, and a, and has the following form: 

The analogous plane rotation distribution function for a 
model with one rotational degree of freedom ( a ,  = a, = 0 )  
is given by the expression 

We now evaluate the average number of molecular 
collisions per unit time with a unit area positioned in the 
active zone of a strong field 1 = pg /H and oriented at right 
angles to the field vector: 

FIG. 7. Equilibrium distribution functions of the cosines of the precession 
angles of the dipole moment of a symmetric top for different ratios of the 
principal moments ofinertia: Z,/I= 0.2 ( I ) ;  0.5 ( 2 ) ;  1.0 (3); 1.5 ( 4 ) ;  2.0 
( 5 ) .  

FIG. 8. The thermodynamic averages of the cosine of the precession angle 
and of the fraction .i. of dipole molecules of a Maxwellian beam, ejected by 
the field, as functions of the ratio I,/Iof the principal moments of inertia. 

The factor 1/2 here takes into account the fact that only half 
of the molecules from the volume nu,dt dS can reach the 
area dS. The lower limit of the integration over yo follows 
from considering molecules which are ejected by the field. 
For instance, for the plane rotation case the function y o ( f )  is 
represented by the solid curve in Fig. 3 and is the same as yo, 
for f > x, = E, . In the general case for f > x, ( a , , a , )  the 
function y o ( f , a l , a 2 )  is the same asy,, ( a , , a , ) ,  for which we 
found the asymptotic behavior (30) and the particular value 
( 3 3 ) .  If the maximum values of the field are sufficiently 
large ( p E )  T )  the function y o ( f , a , , a 2 )  can be replaced by 
yo, ( a , , a , )  and we can integrate over H in ( 4 4 )  using the 
explicit expressions ( 3 9 )  for f (H ,yo ,a lya2)  and ( 3 5 )  for v, : 

Here 

is the standard expression for the average number of colli- 
sions per unit time with unit area by gas molecules when 
thereisnofield ( f o r y o c ( a l , a 2 )  =OEq. (45) givesv = vo,as 
should be the case). 

In the case of a rotator the function yo, (a , ,O)  is inde- 
pendent of a , ,  one can easily integrate over a, in ( 4 5 ) ,  and 
we find for the fraction of molecules which are ejected from 
the action zone of the field the result of Refs. 13 and 15: 

The required fraction of dipole rotators from a Maxwellian 
beam is thus determined by the area under the graph of the 
function yo, (a , ,O)  in .Fig. 5 and is approximately equal to 
6.3%. Just as Eq. ( 4 7 )  can be obtained from the general 
expression ( 4 4 )  (without integration over the absent vari- 
able a , )  with a distribution function of the form ( 4 2 ) ,  for the 
plane rotation case use of the corresponding distribution 
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function (43) gives 

9 = 1 - (1 - y o ~ 1 ' 2  = 15,6%. 

It is wdl known that powders of BaTiO, (Ref. 18) and 
SiO, (Ref. 19) do not absorb gas molecules at temperatures 

(48) corresponding to strong surface fields of - lo6-lo7 V/cm 

Note that if we use for the rotator the linear approxima- 
tion (30) (with a , = O )  we have Y=+y&/ ( l  -yo,) 
z 5.8%, which is somewhat less than the exact value 6.3%. 
In the case of a symmetric top one can therefore also use the 
approximation (30) for a lower estimate of the integrals in 
(45) in the range of parameter values la, + a, 1 < y- 
o,/( 1 -yo, ) ~ 0 . 4 0 4  and put yo, (a,,a,) = 0 in the remain- 
ing region of a , ,  a, values. The function 9 of the ratio of the 
principal moments of inertia 13/1 = A - ' obtained in this 
way is shown in Fig. 8. The values of Y change from 5.8% for 
rotators (I, = 0)  to 8.8% for plane molecules (I, = 21). Ex- 
act values of Y may be somewhat larger due to the nonvanish- 
ing values ofyo, (a, ,a,)  extending to points a, or a, equal to 
3-112- -0.577 (rather than 0.404, as in the linear approxi- 

mation) and also because of the increase of the values of 
yo= (a, ,a,)  from yo, ~ 0 . 2 8 7 9  to 0.5 [see (33) 1 along the 
intersection a, = - a,. 

5. DISCUSSION 

If the magnitude of an inhomogeneous electric field 
E(z) changes little as the angle 8 between the dipole moment 
and field vectors changes (adiabatic approximation), one 
can find a simple analytical description of the translational 
motion of a dipole molecule along the vector of this field in 
terms of the functional dependence of the translational ki- 
netic energy, y, measured in units of the total energy of the 
molecule, on the magnitude of the field, x. The function y(x)  
is characterized by two regions of monotonic behavior (see 
Figs. 3 and 6) : the deceleration region in weak fields, x < E, , 
with large amplitudes of the change in the angle 8 so that at 
the decisive times we have 8- 180", and an acceleration re- 
gion in strong fields, x > &,, with small oscillations of the 
angle 8 about the field vector. This last regime is realized 
only for sufficiently large initial values yo when the decelera- 
tion region does not reach the turning points y = 0, after 
which the direction of the motion is reversed and the mole- 
cule is ejected from the action zone of the strong field. 

The diagram of initial translational kinetic energy yo vs 
maximum field value x therefore splits into two regions, 
characterized by falling into the force center and ejection 
from the active zone of the field. For a Maxwellian beam the 
fraction of ejected molecules is a quantity of the order of 
10% and depends on the ratio of the principal moments of 
inertia. The strongest ejection is characteristic for the plane 
rotation of a rotator or for a symmetric top oriented with its 
dipole moment antiparallel to the field vector. 

Specially prepared beams of fast rotating polar mole- 
cules are of interest from the point of view of applying the 
results obtained; by means of them one can study the scatter- 
ing by regions with strong electric fields. Such regions are 
realized, e.g., near charged adsorption centers, or near the 
surfaces of ferroelectrics or oxides with orientationally or- 

( T < T, , where T, is the Curie temperature), whereas when 
there are no fields ( T >  T, ) the same molecules are ad- 
sorbed. A direct application of the results obtained in Sec. 4 
to such systems cannot explain the complete absence of ad- 
sorption for T <  T,, since even in much stronger electric 
fields the fraction of ejected molecules from a Maxwellian 
beam is less than 10%. Nonetheless, one must take into ac- 
count that a real molecular beam may differ from a Maxwel- 
lian one due to the multiple scattering by the grains of the 
powder with strong surface fields. Moreover, at distances 
from the field source (the surface) on the order of the molec- 
ular dimensions the adiabatic approximation used here must 
be replaced by the sudden perturbation approximation,8p20 
in which fast scattering or attraction occurs for a fixed orien- 
tation of the dipole moment. Since on the adiabatic portion 
of the motion with x <x, those average orientations of the 
dipole moments which correspond to a deceleration of the 
molecule in the field are depleted (see Figs. 2, 3, and 6),  one 
must expect that when the molecule approaches the field 
source it undergoes fast scattering. 

The considerations show that the results of the adiaba- 
tic approximation obtained in the present paper are useful 
also for interpreting actual experimental data. 
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