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We show that allowing for spatial dispersion (nonlocal interactions) in models described in the 
local case by the Klein-Gordon equation changes a number of important features, including the 
number of self-localized states with circular symmetry, and forces the solutions to lose their 
smoothness as the nonlocalization parameter increases. 

1. Since the well-known paper of Chiao et al. ' written in 
1964 there have been numerous studies concerned with the 
problem of time-independent self-localized states of nonlin- 
ear fields possessing circular ~ymmet ry .~ .~  It has been 
proved (see, e.g., Ref. 3 )  that the set of self-localized states 
with circular symmetry in the model with cubic nonlinear- 
ity, 

lim * = 0, lim qr = 0, 2 = 2 + ?, (x, y)  E R2, 
r-r = r-0 

lim cy = 0, lim npr = 0, r ,  r' E R ~ .  (2.2) 
r+m r--0 

Here the function U($) serves as the characteristic of the 
nonlinear properties of the scalar field $ and the kernel 
g(  lr - r'l ,A) as the characteristic of the nonlocal interac- 
tions. In the case of rapidly decreasing kernels satisfying the 
condition lim,_,g(p,A) = 6(p) ,  Eq. (2.1 ) can be consid- 
ered a natural generalization of the nonlinear Klein-Gordon 
wave equation to the case of nonlocal interactions. 

A simple example of a rapidly decreasing kernel of the 
integral operator in the two-dimensional case is 

of zeros (nodes) of the function $(r).  It is also kt~own that Here KO is the modified Bessel function of the second kind of 
the transition to models with polynomial nonlinearities of zeroth order,' and /Z the characteristic nonlocalization pa- 
higher order can lead to the appearance of a finite set of self- rameter. 
localized states with circular symmetry. For instance, in the The integro-differential equation (2.1 ) with kernel 
model (2.3) can be represented either as a system oflocally coupled 

( . 3 )  equations, 
A * - * + q 3 - w 5 = 0  

the number of N ( a )  self-localized states is finite for any 
small but finite value of the positive parameter a and vanish- 

(2.4) 

es as a-a, (see Ref. 4).  
Below we show that allowing for nonlocal interactions or as a single fourth-order differential equation, 

or a complex spatial dispersion of waves leads to a decrease 
in the number of self-localized states, with the solutions near 
the symmetry center ( r -0 )  losing their smoothness. This 
phenomenon is similar to the known loss of smoothness of 
the profile of nonlinear time-independent waves as the wave 
amplitude increases in the Whitham model5 and related 
modek6 

Notwithstanding the type of nonlocal interactions cho- 
sen below, the decrease in the number of self-localized states 
and the loss of the smoothness of solutions as the nonlocality 
parameter increases are, in our opinion, typical of a broad 
class of kernels of integral operators. Moreover, similar ef- 
fects can be established in analyzing nonlocal generaliza- 
tions of other models characteristic of the physics of non- 
linear phenomena (e.g., in analyzing the analogous 
generalization of the nonlinear Schrodinger equation). 

2. As one generalization of the problem of self-localized 
states of a nonlinear field to the case of nonlocal interactions 
(or complicated spatial dispersion) let us consider the fol- 
lowing: 

Both representations become quite obvious if we allow for 
the fact that K,(p/il) is the Green's function of the second 
equation in (2.4) for the auxiliary linear field q. The choice 
of the modified Bessel function as the nonlocal interaction 
kernel was hinted at by Whitham's a p p r ~ a c h , ~  who used as a 
simple nonlocal interaction kernel in the spatial one-dimen- 
sional case the Green's function of the equation 

In the limit of A '-0, Eq. (2.5) degenerates into the 
nonlinear Klein-Gordon equation, whose time-independent 
solutions for problem (2.2) have been studied by many re- 
searcher~.~ 

For a nonlinearity of the form 
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the problem of self-localized states of a field in the spatially 
one-dimensional case has the well-known solution 

which in R * corresponds to a planar self-localized layer. It is 
also known that in the case of circular symmetry 
[$(r,p) - $ ( r ) ]  and a nonlinearity of the form (2.7) there 
exists a denumerable set of self-localized solutions. 

Let us study the effect of nonlocal interactions in the 
model specified by Eqs. (2.1 )-(2.3) and (2.7) on the struc- 
ture of a flat time-independent self-localized layer. We will 
see that even in this case certain characteristic features 
emerge. Equation (2.5) assumes the form 

and admits of the following first integral 

Here Cis the constant of the first integral. For self-localized 
planar solutions we have C = 0, in view of the asymptotic 
boundary conditions limx- , , = 0. 

In thep=tC;, $phase plane the desired solution is rep- 
resented by a homoclinal loop of the saddle point 0 
(p = $=  0) :  

Here 

Figure 1 depicts the behavior of the integral curves (2.10) 
with O(C<20 at two values of the nonlocalization param- 
eter, A 2 <  1/8 and A 2z 1/8. Note that @+ -+ m and @- -2  
as A -0. Here the formulas (2.1 1) and (2.12) lead to the 
solution (2 .8) .  The homoclinal loop of the saddle point 0 
exists only for A < 1/8, and the corresponding solution 

FIG. 1 .  Transformation of phase trajectories as the nonlocaliza- 
tion parameter /2 varies: (a) *( 1/8, and (b) R *,-- 1/8. 
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$ ( x , A )  loses its smoothness as R * --+ 1/8. Indeed, with this 
limiting value of the nonlocalization parameter the solution 
has the form 

The derivative of the given solution has a kink at x = 0. 
Comparison of Figs. l a  and lb  shows the clear tendency 
toward the formation of this limiting solution. 

When the constant of the first integral vanishes and we 
have 0 <A < 1/8, the set of trajectories in the p, $ phase 
plane is represented by a homoclinal loop of the saddle point 
0 with max $ = $- and an open trajectory with min$ = $+ 
and with end points going to infinity as $+ co. AsR 2- 1/8, 

and the merging of these trajectories at A = 1/8 leads to the 
disappearance of the loop of the saddle point 0 for 2 > 1/8 
(i.e., to the absence of self-localized solutions for these val- 
ues of the nonlocality parameter). 

Thus, allowing for nonlocal interactions in our model 
leads to a situation in which self-localized planar solutions 
cannot be continued into the range of large values of the 
nonlocalization parameter (the region where R > 1/8 for 
the case of the rapidly decreasing kernel considered above). 

3. Let us now examine solutions self-localized in a plane 
and possessing circular symmetry. Expressions (2.2), (2.3), 
(2.5), and (2.7) in this case give rise to the following prob- 
lem: 

and since we have $- -. $, as 2 *+ 1/8, the self-localized so- 
lutions with circular symmetry disappear earlier (i.e., at 
smaller values of R 2, than does a self-localized planar solu- 
tion. 

Numerical calculations have shown that for 0 < il < 1/ 
8 there is a finite number of self-localized solutions with cir- 
cular symmetry, each of which can be continued in the non- 
localization parameter2 to a critical valueR,, (n ), where n is 
the number of nodes of function $, (r,A). Here the entire 
sequence of critical values 

corresponds to the values of $, ( r  = O,2) at which the coeffi- 
cient of the second derivative in Eq. (3.1 ) vanishes. Figure 2 
depicts 

as a function of the nonlocalization parameter2 for the first 
three self-localized solutions with circular symmetry. Exam- 
ples of solutions $, (r,R) and their images in the p = $, , $ 
plane at n = 1,2, and 3 are depicted, respectively, in Figs. 3, 
4, and 5 for R 4 2  :, ( n  and A 2<2 2r ( n  1. The reader can see 
that, as 2 +A,, (n) ,  the first derivative of a self-localized so- 
lution develops a finite discontinuity at the symmetry center 
r = 0. 

Thus, the simple model considered here suggests that 
allowing for nonlocal interactions severely restricts the 
number of self-localized states of the field, and the solutions 

(1 + a2 - 51+2)(~m + +qr) - + 4 - a+$ = 0, lose their smoothness and cannot be continued in the nonlo- 
cality parameter. - - 

lim ?# = 0, lim rqr = 0. (3.1) 4. We conclude this paper with a few remarks on the 
-03 -0 extent to which the spatially two-dimensional model consid- 

ered above is typical. 
We set In Ref. 9 it is shown that in both the spatially one-di- 

mensional case and the three-dimensional case the corre- 
sponding analogs of the integro-differential equation (2.1 ) 
can be reduced to systems of auxiliary fields q interacting 

1 locally with the initial nonlinear field y3 for a fairly broad 
+ (1 + 412)q4 - (3.2) class of kernelsg(1r - r1J,2).  One of the conditions for such 

a reduction is related to the existence of direct and inverse 
which coincides with the first integral (2.10) of the problem Laplace transformations of g (  Ir - rfl,2). For instance, for 
in the case of planar geometry, and examine its variation the spatially three-dimensional analog of Eq. (2.1) the cor- 

reponding system of equations has the form 

Since dVl/dr is nonpositive, Eq. (3.3) makes it possible to 
determine the general behavior of solutions to the problem 
(3.1 ) in thep = $, , $ plane. To do so we must examine the 
behavior of the integral curves of problem (3.1 ) with respect 
to the family of curves Y (p ,$ )  =eonst. For a fixed value of 
parameter R the problem of self-localized slab has two fam- 
ilies of integral curves separated by the straight line $ = $, , 
so in the case of self-localized solutions with circular symme- 
try the possible values of $(r = 0,R ) must obey the following 
inequalities: 

FIG. 2. The domain of definition of the first three modes; A,, (0) --0.180, 
(3.4) A,, (l)-O.llO, andLC, (2)-0.0.086. 
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FIG. 3. Fundamental mode r (a)  
A = 0.05<1,, (0) and (b) A-A,, (0). 

FIG. 5. Second mode $ > ( r ) ;  (a)  A = 0.01 <A,, (2)  
and (b) A-A,, (2 ) .  

Here A is the three-dimensional Laplace operator, and the 
initial nonlocal interaction kernel g(  1 r - r'l ,A) allows for 
direct and inverse Laplace transformations: 

y E (a - iw, a + iw), p2 r  - r 2 ,  r E R ~ .  
( 4 . 2 )  

The possibility of such a reduction can be related to the 
representation of the nonlocal interaction kernel g ( p )  in the 
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form of a Laplace integral of the function e-PP/p ,  which is 
the Green's function of the operator A - p2. Here the func- 
tiong(p) has the meaning of the density of states of the set of 
the introduced auxiliary fields q ( r , t ; p ) .  If the kernel g ( p )  is 
such that the density of states g ( p )  has, for instance, a finite 
number of poles, the system of equations represents a finite 
number of auxiliary fields locally interacting with the initial 
nonlinear field $ ( r , t ) .  

Unfortunately, in the spatially two-dimensional case we 
do not know the direct and inverse integral transformations 
related to the function K, (p ,p ) ,  which is the Green's func- 
tion of the operator A - p2. However, there is the possibility 
of generalizing the above simple spatially two-dimensional 
model to the case where the nonlocal interaction kernel can 
be represented by a convolution of a certain function with 
the simple kernel ( 2 . 3 ) .  Specifically, suppose that 



Then the nonlocal equations (2.1 ) can be represented as a 
system of locally interacting fields: 

scription of the initial nonlocal model may, as shown in Ref. 
6, open up new possibilities for analyzing nonlinear phenom- 
ena when the spatial dispersion (or nonlocal interactions) of 
the waves is taken into account. 

Thus, the transition to a local description of the states of 
the initial nonlocal, nonlinear field $ is generally related to 
the introduction of a continuum of auxiliary linear fields q 
whose source is the initial field. Here the function 
11-'G(l;l,il) is interpreted as the density of states of the con- 
tinuum. The assumption that the function G(7,A) has a fi- 
nite number of delta function singularities also yields the 
finite number of auxiliary fields necessary for describing the 
system in terms of locally interacting fields. 

With some assumptions concerning the functional be- 
havior of the density of states this transition to a local de- 
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