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Under conditions of saturated gain in a layer of a resonant medium the excess noise (positive or 
negative) of the initial light is suppressed and the photons become Poissonian. If, however, the 
amplifying atoms are regularly excited into the working state, then, on the one hand, the light 
becomes sub-Poissonian in the entire observation band and, on the other, the initial picture of the 
photocurrent spectrum remains completely unchanged. The latter feature is also characteristic 
for saturated absorption under conditions such that the absorbing atoms undergo regular 
excitation. Two methodological results are obtained: It is shown how the normal (Glauber) 
diagonal representation for the density matrix can be used together with the kinetic equations 
when the electromagnetic field exhibits quantum features, and it is shown how the required 
averages can be constructed from the kinetic equations for the density matrix of the 
electromagnetic field. 

Two phenomena will be discussed in this paper. First, it 
will be shown that a quantum amplifier operating in the satu- 
ration regime, unlike a linear amplifier,' is capable of effec- 
tively suppressing excess noise in the initial radiation, trans- 
forming super-Poissonian light into Poissonian light. 
Second, by combining saturated gain with regular excitation 
of amplifying atoms it is also possible to suppress the shot 
noise, i.e., to regularize the photon flux. Since the predicted 
suppression can be complete, such a system could be a prom- 
ising source of quantum light. 

The first phenomenon can be understood qualitatively 
on the basis of quite simple arguments based on semiclassical 
phenomenology, according to which a Langevin equation of 
the following form can be written for the intensity of a single- 
mode field (written here for the number of photons): 

Here the stochastic source f( t )  determines the contribution 
of spontaneous emission to the mode. It is well known that at 
saturation the contribution of amplifying atoms to this 
source vanishes, and the contribution of the absorbing atoms 
saturates and becomes independent of the intensity of the 
field. We assume that the intensity fluctuates weakly around 
its average value: n = E + E ,  E 4 ii. Then we write the follow- 
ing equation: 

r = ~ ( 1  + pn)-2~ + f(t) with ;t = ~ ( 1  + pn)-ln. 

It is now easy to see that if only amplifying atoms are pres- 
ent, the intensity fluctuations do not change in magnitude 
E = 0, though the average intensity itself increases linearly in 
time. But this means that as the system evolves the excess 
noise, whose contribution is determined by the quantity E,  

becomes weaker than the Poisson shot noise. At the same 
time, the presence of absorbing atoms changes the picture, 
since then P = f( t ) .  

It is obvious that due to the fluctuation of the number of 
amplifying atoms, which stems from the stochastic charac- 
ter of the excitation of the medium, amplification should 
transform the initial, well-regulated (sub-Poissonian) pho- 
ton flux into a Poissonian flux. From this standpoint, it is 
also obvious that with saturated gain the noise cannot be- 

come weaker than shot noise. The obvious question arises: 
what happens if there are no fluctuations in the number of 
amplifying atoms? We can then expect quantum effects to 
appear, especially since this has already been observed in the 
case of a quantum generator. 

Great difficulties usually arise in attempts to describe 
the spatial evolution in quantum statistical theory. These 
difficulties can probably be overcome by different methods. 
For example, it is widely believed that the problem involving 
a layer of a medium can be solved as an intracavity problem, 
replacing the time variable by the spatial variable. In this 
approach the Lamb-Scully theoryZ for a laser can be used to 
formulate the problem of amplification in a layer. The draw- 
back is that since time completely vanishes from the theory, 
this theory does not permit constructing multitime averages, 
which are important for spectral analysis. The arbitrariness 
of the approach is also unsatisfactory. Obviously, such an 
approach is entirely valid in some problems. But, at the same 
time, we note that "forced" methods can distort subtle ef- 
fects, such as statistical effects. 

Here we employ the theory of the space-time density 
matrix for the electromagnetic field and the kinetic equation 
for this m a t r i ~ . ~  We have already employed this approach, in 
part, in Ref. 4 in order to describe the evolution of light 
passing through a layer of nonlinear medium with paramet- 
ric mixing of the waves. However, the specific nature of this 
problem allowed the Heisenberg representation to be used, 
which greatly simplified the calculations. In the present 
case, however, we are forced to work with the equations for 
the density matrix. Two basic methodological results will be 
obtained: First, the limits within which the normal 
(Glauber) diagonal representation can be employed in the 
diffusion approximation will be indicated for both classical 
and quantum (sub-Poissonian, squeezed, etc.) fields. This 
result is especially important precisely for the space-time 
theory, since it significantly simplifies the calculations. Sec- 
ond, we will show how to handle the kinetic equations in 
order to obtain the required averages. Incidentally, this ap- 
proach will also be correct in the standard, purely temporal 
theory of the Lamb-Scully type.2 

First, the fundamentals of the theory of transfer of 
quantized radiation will be presented. Next, some practical 
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recommendations and prescriptions will be considered. Fin- 
ally, on the basis of all this, the behavior of light interacting 
with a layer of matter in the saturation regime will be investi- 
gated. 

1. LOCAL OSCILLATORS OF THE ELECTROMAGNETIC 
FIELD 

The concept of local field oscillators (this term did not 
appear in Ref. 3) is central for transport theory. It can be 
introduced by different methods. Here a method based on 
the formal construction of operator packets will be present- 
ed. First, we discuss the free electromagnetic field. 

The quantized electromagnetic field in an auxiliary vol- 
ume V = L, L,L, can be represented in the form of the well- 
known superposition 

The operators a,+ and a, are creation and annihilation oper- 
ators for the kth photon and they satisfy the commutation 
relation [a,,a,t ] = a,,. . It is well known that for each of 
these operators the following equation can be written in the 
case of a free field: 

Forming packets of these operators, we construct new oper- 
ators of the form 

We divide the entire lattice of wave vectors k into cells, 
whose centers we designate by the set of vectors m, which are 
a subset of the set of wave vectors k. The summation in Eq. 
(3)  is limited to wave vectors in a single, distinguished cell. 
The distance between neighboring vectors Am, = 2n/l, is 
given by a new spatial parameter u = Z,Z,Z,. Thus the num- 
ber of terms in Eq. (3)  is V/v. In what follows, we assume 
that the spatial parameters I, are limited below by the wave- 
length of the radiation A< I,. In the case of a free field, no 
upper limits appear (neglecting the natural restriction asso- 
ciated with the size of the auxiliary volume V, which, how- 
ever, is set equal to infinity in the final results). In the pres- 
ence of a material medium, however, we must require I, gL,, 
where Lo is the distance over which variations of the field can 
no longer be neglected. 

It is easy to prove the following commutation relation: 

[am(r, t),  am,(rl, t ) ]  = dmm,v di3)(r - rr) , (4) 

where 

In what follows we interpret the function IS, (z) as a step 
function: IS, (z) = 1 for z < I and IS, (2) = 0 for z > I .  There 
exist other variants of the theory. It follows from these var- 
iants that this interpretation does not impose any restric- 
tions on this theory. But, then for the operators a,, a,+ with- 
in the spatial cells v commutation relations of the form 
[a, (r , t ) ,az (r,t) ] = a,,, arise (if we neglect the differ- 
ence between r and r' within the cell), which enables us to 
treat these operators as annihilation or creation operators. It 
is this latter fact that enables us to introduce into the analysis 
a field oscillator, having wave vector m and localized in the 
spatial cell with radius vector r. Here, it is important to note 
that since our conclusion that a local oscillator can be intro- 
duced depends on the character of a, ( t ) ,  it is valid for a free 
field (monochromatic dependence on t )  as well as any other 
field. 

In concluding this section we make a remark regarding 
the equation for a, (r,t) which can be easily derived with the 
help of Eq. (2): 

This equation is valid to the extent that the equality 

is valid and the approximation is associated with dropping 
the higher-order derivatives with respect to the spatial vari- 
ables. For example, in the one-dimensional approximation, 
in the case of plane waves traveling along some axis, when all 
diffraction phenomena are dropped at the outset, Eq. (6) is 
exact. 

2. KINETIC EQUATION FOR THE DENSITY MATRIX OF A 
LOCAL OSCILLATOR 

It is more convenient to switch from the Heisenberg 
form of the theory, in which the entire time dependence is 
contained in the operators and the state of the field is given 
initially and then remains constant in time, to an unusual 
interaction representation in order to describe the free elec- 
tromagnetic field and transfer the slow time dependence to 
the density matrix of the electromagnetic field. In order for 
this to be understandable, we formulate the Hamiltonian 
formalism for the field. We start with the energy operator of 
the field 

H = S d 3 r [ ~ + ( r ,  t)E(r, I) + E(r. t ) ~ + ( r .  t)] . (8 
('9 

Substituting an expansion of the form (1) into Eq. (8) we 
can easily show that the standard expression 

is obtained. Now we employ the expansion ( 3 )  in operator 
packets, which has the form 

and we obtain the following expression for the Hamiltonian, 
written in terms of the Heisenberg operators of the form (3)  : 
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where 

is the Hamiltonian of a free local oscillator, and the term 

determines the interaction of a local oscillator in neighbor- 
ing spatial cells. In this theory the interaction term deter- 
mines the radiation transfer in space and for this reason it 
can never be neglected. 

In calculating Eqs. (10)-(12) it is necessary to calcu- 
late a volume integral e.g., of the following expression: 

For this, we divide the auxiliary volume Vinto smaller cells 
of volume v, in which the field oscillators are localized, and 
in integrating over the cells we neglect the spatial depend- 
ence of the operators a, and a,f : 

Finally, we switch to a "coarse" spatial scale, replacing sum- 
mation over the cells by integration: 

Now, we can write the Heisenberg equation for any opera- 
tor. In particular, Eq. (6)  follows from the equation 

ia, = [a,, Horn + HI,] (13) 

As should be, the Hamiltonian Horn of a free local oscillator 
gives the fast time dependence with frequency om, and the 
interaction Hamiltonian causes the operator to change slow- 
ly, transforming the excitation of the local oscillator. At the 
same time, the state of the local oscillator, determined, for 
example, by the density matrix, remains constant in time: 
p, = 0. Time and space appear symmetrically in this theory 
(this refers to the slow change), so that we can treat them 
identically and require that the density matrix in the Heisen- 
berg representation remain constant in both time and space, 
i.e., we must add the requirement divp, = 0. We thereby 
assert that the entire space-time dependence in the Heisen- 
berg representation is concentrated in the operators, i.e., in 
equations of the type ( 6 )  and ( 13 ). In order to transfer the 
slow space-time dependence to the density matrix, we must 
perform the unitary transformation 

- 
lam = omam, div a, = 0 , 

The last equation is the desired kinetic equation, describing 
the state of the local oscillator. It is suitable for describing a 
free electromagnetic field, but it can be easily extended to the 
case when a medium with which the field can interact is 
present. Using the kinetic equation we can say that the state 
of a local oscillator can change for different reasons, for ex- 
ample, because of interaction with atoms present in the same 
spatial cell as the field oscillator and, of course, because of 
interaction with neighboring local oscillators, i.e., radiation 
transfer: 

The right-hand side of this equation must be calculated inde- 
pendently for each specific physical situation. In what fol- 
lows, we shall explain why in our case of a layer of resonant 
medium (amplifying or absorbing) the right-hand side can 
be taken from the Lamb-Scully theory2 for single-mode 
lasing. 

3. RADIATION TRANSFER THROUGH A LAYER OF A 
RESONANCE MEDIUM: BASIC KINETIC EQUATION 

We have in mind the following physical situation. Light 
from a known source or with known statistical properties 
passes through a layer of a resonant medium, in which atoms 
are somehow excited into active levels, and strikes a photo- 
cathode, whose photocurrent spectrum is then investigated. 
According to Refs. 5 and 6, the photocurrent spectrum is 
given by the following formula: 

P) a, = @o (51 Jd2@+(r, t)E(r, f)) + (9) 2 ~ ~ d 2 r , d 2 r 2  o o  
(3 

Here q is the quantum efficiency of a photocathode with 
surface area S ( q  is equal to unity, if each photon incident on 
the photocathode generates one photoelectron). 

We now expand the field in the local oscillators (9)  and 
rewrite Eq. ( 18) in the single-mode (in the sense of the m 
modes but not the k modes) and one-dimensional approxi- 
mation, making the assumption that we have only a single 
plane wave traveling in the positive direction along the z 
axis: 

(14) 
The quantity 

~ , ( t )  = s (t - ?) am(r, t ) ~ +  (r - z) , 
g(z, i) = (a+(z)a+(z, f)a(z, t)a(z)), a(z) = a(z, 0) (20) 

S(i) = exp(iH,,t) . 
characterizes the excess noise of the photocurrent (the index 

As a result, we obtain the following equations: m is dropped everywhere below). The quantity 
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is the average number of photons for the local oscillator at 
the point z, at the location of the photocathode. The length 1 
is the length of the spatial cell containing the local oscillator 
of the field. Along the z axis we have I = I,. 

The averages (20)-(21) can be calculated on the basis 
of a transport theory of the form ( 17). But, before writing 
down the basic equation, we note that the characteristics of a 
local oscillator of the form (20) and (21 ) are usually conve- 
nient for theoretical constructions, but they nonetheless are 
of an auxiliary character and cannot enter into the final re- 
sults. For example, instead of the average number of photons 
of the local oscillator, it is more reasonable to introduce the 
radiation power, which can be represented in the form 

The single-mode approximation, which was employed in or- 
der to write down Eq. ( 19), requires discussion. In order for 
this approximation to be correct it is sufficient to assume 
that a filter with spectral width Aw - l - ' is present in front 
of the photocathode. In the averages, however, the other 
modes can also play a very significant role. The single-mode 
approximation can be preserved, if it is assumed that we are 
interested in a single strong mode, which is not influenced by 
any other modes that are weak in our theory. 

We assume that the amplifying (or absorbing) medium 
consists of stationary atoms, whose energy structure is iden- 
tical to that of Lamb and S ~ u l l ~ : ~  They have two levels, from 
which spontaneous decay into auxiliary levels occurs and 
into which the atoms are excited. In what follows, we allow 
for both random and regular pumping of the working levels. 
We recall how the right-hand side of the kinetic equation in 
the Lamb-Scully theory was ~alculated.~ First, the system of 
equations for the matrix elements of the density matrix of the 
system consisting of "one atom + field oscillator" was 
written down. On the basis of this, the increment to the field 
density matrix due to interaction over a sufficiently long 
time with one atom was calculated. Next, summation over 
many atoms was performed. This made it possible to write 
out the time derivative explicitly (on the "coarse" time 
scale) of the field density matrix. The situation is essentially 
identical in our case. The only difference is that the oscillator 
enters into the theory not as a characteristic oscillation of a 
high-Q optical cavity but rather as a local oscillator, and 
when summing over atoms it is not necessary to include all 
atoms, but only those atoms which are present in the same 
spatial cell as the local oscillator. Thus, we can employ the 
results of Refs. 2 and 7 and write the basic kinetic equation in 
the form 

The operator 

determines the excitation of a field oscillator of the reso- 

nance me$um taking into acco5nt nonlinear processes. The 
operator 9, is obtained from 9: by interchanging all in- 
dices (~$6)  and operator combinations (aa+ - ) by (a+a) .  - A 7 

The arrows under the operators indicate where these opera- 
tors must be positioned with respect to the operators stand- 
ing farther to the right. Other notations are: 

ra and r ,  are the average rate of incoherent excitation of the 
top and bottom levels in the actual atomic transition; ya and 
y,  are the widths, due to decay into secondary levels, of the 
top and bottom levels in the actual transition; yab is the 
transverse relaxation constant; 

is the dipole interaction constant of the atom and the mth 
wave, 

are the saturation parameters characterizing the efficiency 
of nonlinear processes; and A, = rapa and A,  = r,P,. 

The linear (unsaturated) gain A = A a  - A ,  appears 
below. This gain, as we can see, is given by the difference of 
the populations of the active levels N = ( r a / y a  ) - ( r b / y b  ) . 

The equation (23) (even neglecting the spatial deriva- 
tive, which determines the radiation transfer) is a general- 
ization of the Lamb-Scully t h e ~ r y , ~  which is contained, for 
example, in Ref. 7. 

We now transform to the diagonal representation of the 
density matrix P(a,z,t), which following GlauberS we write 
in the form 

p(z. t )  = Jd2ap(a, z, t )  - laXa l , 

and we confine our attention to the approximation of small 
relative fluctuations in the number of photons: 

Then the density matrix can be factored in the form 

P(a,z,t) = R(E)@(P) 

and the following equation can be written down for R (~ ,z , t )  : 

The coefficient r can be expressed as follows in terms of the 
parameters of the problem: 

It is well known that in the purely temporal theory of the 
type given in Ref. 2 determines the spectral width of the 
photon fluctuations. The coefficient D is given by the rela- 
tion 
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This coefficient determines the intensity of the photon fluc- 
tuations. Explicit expressions for other coefficients D, in the 
equation are not important in this work, since they will not 
contribute to the observed photocurrent spectrum ( 19). 

In writing down Eqs. (24) and (25) we assumed that 
the quantity E satisfies the same equation as the semiclassical 
solution 

This restriction rules out, for example, studying the problem 
in the absence of the external field incident on the layer of 
medium or for not too high intensities of the incident field. 

4. CALCULATION OF AVERAGES USING THE KINETIC 
EQUATION 

We first discuss when the diffusion approximation is 
adequate in Eq. (24), i.e., up to second derivatives with re- 
spect to E. This is valid for classical fields, i.e., for fields 
which we describe on the basis of quantum theory, but which 
could also be described classically. The functions R (E) are 
then smooth functions and the higher-order derivatives are 
small. Another example, when the diffusion equation is sim- 
ply exact (higher-order derivatives do not arise), does not 
depend on whether or not the fields are quantum or classical, 
and it is associated with two-photon processes or three- and 
four-wave mixing processes (in the transmission zone or in 
the case of resonance, but in the "linear" approximation). In 
any case, it is obvious that a large class of physical situations 
is described very well by Eq. (24) with D, = 0. This is the 
Fokker-Planck equation for the probability (quasiprobabi- 
lity ) R (~ ,z , t ) ,  and the solution of the equation can be written 
down, imposing real boundary or initial conditions, if we are 
interested in the density matrix itself, or S-function condi- 
tions, if we are interested in the Green's function of the equa- 
tion. This program is entirely feasible, and this is exactly 
how we proceeded in the purely time-dependent variant of 
the theory. However, the presence of the spatial aspect 
makes this approach very cumbersome, which, of course, is 
not justified, since the solution obtained in this manner will 
contain all information about the field, whereas we are inter- 
ested only in a single average of the form (&( 1 ) ~ ( 2 ) ) .  

Gorbachev and Trubilko8 propose switching from the 
Fokker-Planck equation for the probability R (~ , z , t )  to the 
corresponding Langevin equation for the random quantity 
E (z ,~ ) .  In so doing, however, the formulation of the proper- 
ties of the random source becomes indeterminate due to the 
presence of an additional (spatial) degree of freedom. In 
order to eliminate this indeterminateness, the authors were 
forced to appeal to comparisons with solutions obtained by 
other methods4 The results of Ref. 8 are certainly correct, 
but the methodology remains unsatisfactory, since it is ob- 
vious apriori that an equation of the form (24) contains all 
required information about the field. Moreover, strictly 
speaking, derivatives of all orders with respect to E must be 
included in Eq. (24). For quantum fields this approach on 
the basis of the Glauber diagonal representation, strictly 
speaking, becomes incorrect. 

Here we propose a variant of the calculations of the 
averages that follows logically from the transport theory and 
is free of the drawbacks indicated above. 

We now discuss how to construct the average 
( E ( Z , ~ ~ ) E ( Z ~ ~ ~ ) ) .  This average can be represented in the 
form5 

Here G(E 1 ~ 1  t ,  JE~z,~,) is a conditional probability, 
which, as is well known, satisfies the same equation (24) 

and is different from zero for t, > t, and for z, = z, - t, + t,, 
due to the properties of the kinetic equation. The difference 
between z, and z, is connected only with the retardation and 
can be neglected. The solution of Eq. (29) must be sought 
with the boundary condition 

where G,,(E,~, l&,t2) is a known function, characterizing the 
light at the front boundary of the layer, and in addition 

From Eq. (29) and the formula (28) there follows an 
equation for the desired average in the form 

It is obvious that here higher-order derivatives do not 
contribute. We can now make the following quite general 
assertion: The normal (Glauber ) diagonal representation of 
the density matrix can be employed irrespective of whether 
the fields are classical or quantum, but it must be kept in 
mind that in order to calculate the averages ( E ~  ) (multitime 
or single-time) in Eq. (24) derivatives with respect to E 

through order k must be retained. For example, in our case, 
in order to calculate the photocurrent spectrum (19) it is 
necessary to know g(z,r), which in the diagonal representa- 
tion can be rewritten in the form 

Thus the photocurrent spectrum can be expressed in terms 
of the pair average (E'), i.e., in our theory we can confine our 
attention to the diffusion approximation, though we shall 
discuss a field with pronounced quantum properties. 

5. AMPLIFYING (ABSORBING) LAYER IN THE NONLINEAR- 
SATURATION REGIME 

The physical solution of Eq. (32) can be writen in the 
form 
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Substituting Eqs. (24) and (25) here and using Eq. (27) we 
can perform all required integrations and obtain the follow- 
ing: 

The dimensionless intensity I (z )  at the running point z in the 
layer is related to the intensity at the front boundary by the 
relation 

Thus, the excess noise at the exit from the medium consists 
of the excess starting noise (multiplied by some factor) and a 
spectral wide term (proportional to a 8-function of 7) deter- 
mined by the spontaneous emission of the medium into a 
preferred mode under conditions when a strong initial field 
acts on the medium. We can employ Eq. (35) for the case 
when this action is weak, I ,  I,& 1, but we cannot set I ,  I, 
equal to zero, since the condition that the photon fluctu- 
ations are small, E (E, was important. 

Thus far we have always assumed that the excitation of 
the atoms in the layer of medium into the working levels 
occurs entirely randomly, and thus the populations of the 
levels fluctuate in accordance with the Poisson law. The case 
when regular pumping maintains a nonfluctuating popula- 
tion of the levels should also be of interest. In principle, this 
can be done on the basis of the method proposed in Ref. 9 or 
as done in the experiment of Yamamoto et al.,1° who made 
use of the peculiarities of the electric current flow through a 
n-p junction. The realization of noise-free pumping made it 
possible to suppress shot noise in photodetection at low fre- 
quencie~.~. '~ As we shall see below, quantum features also 
appear in the case of light passing through a layer of amplify- 
ing medium. 

Regular excitation can be taken into account as done in 
Ref. 9: If for completely random pumping the eazation for 
the density matrix of the field has the form p = ra Lp, then in 
the case of regular pumping the equation becomes 
p = r, (La - +L 2 )p. As a result, the coefficient D in Eq. 
(24) changes, and the expression (35) will acquire an addi- 
tional negative term on the right-hand side: 

6. PHOTOCURRENT SPECTRUM IN THE SATURATED 
REGIME 

We now substitute Eqs. (33), (35), and (36) into the 
starting formula (19) for the photocurrent and obtain an 
explicit expression for the photocurrent in terms of the ini- 
tial physical parameters: for I, I,) 1 (w > 0) : 

Here the fourth negative term appears because the pumping 
is regularity and follows from the expression (21 ). We have 
assumed that the excess noise of the light at the front bound- 
ary of the medium can be expressed by the following formu- 
la: 

(~ (0 ,  tl)&(O, tZ)) = ~(0)~oex~(- ro( t2  - tl)lr t2 > tl . 
As we have already mentioned, 7i (0)  and E (z) as well as lo 
and To are auxiliary quantities, which must be replaced by 
the real characteristics. These are the power of the light Wo 
and W, to which we switch according to Eq. (22). In order to 
move away from the abstract quantities co and To, we as- 
sume that the light source is a laser. Then &, must be re- 
placed by {, (C, I), and when the lasing saturates To must be 
replaced by C,, where C, is the spectral width of the optical 
cavity of the laser and CL is the Mandel parameter for the 
intracavity lasing field.4 

Figure 1 illustrates schematically the case of saturated 
gain in the absence of absorbing atoms. As we can see from 
this figure, if the light is initially sub-Poissonian (Fig. la) ,  
i.e., lL = - 1/2, then due to saturated gain by randomly 
excited atoms the entire picture is shifted upward together 
with the shot noise (Fig. lb).  As a result, in the case of 
efficient amplification, Wo W, the dip now plays a negligi- 
ble role, and the light is virtually Poissonian. This fact does 
not depend on the type of the statistics of the initial field- 
sub-Poissonian, as in our figure, or some other statistics. The 

it"' C 12) 
shot level C shot level w,u: W - f ------  - ------ 

b FIG. 1. Photocurrent spectrum with saturated gain in the absence a c of absorbing atoms N, = 0 and with q = 1 and y, = 0: a )  for the 
initial light at the front boundary of the amplifier; b)  at the arnplifi- 
er exit with random excitation of amplifying atoms; and c )  at the 
amplifier exit with regular excitation of amplifying atoms. 
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role of super-Poissonian statistics also decreases in precisely 
the same manner. Thus such an amplifier could be em- 
ployed, for example, for preliminary "purification" of the 
light, i..e, for transforming super-Poissonian light into Pois- 
sonian light in order to employ it in existing devices for 
transforming it into quantum light. 

Figure l c  illustrates the situation with saturated gain by 
regularly excited atoms. The initial picture of the noise ap- 
pears to remain completely the same. Hence we can con- 
clude that such an amplifier can be employed for efficient 
amplification without destroying the quantum properties of 
the light. Moreover, in this sense the situation is improved, 
since the entire noise curve lies significantly below the shot 
noise level. Thus an amplifier with regplar pumping can be 
employed, on the one hand, for amplifying quantum light 
without running the risk of "spoiling" the light and on the 
other as a source of quantum light, since it transforms super- 
Poissonian light into sub-Poissonian light while suppressing 
noise in a wide frequency band. We underscore once again 
that thus far all projects on converting classical light into 
quantum light concerned only light which was initially Pois- 
sonian. In this paper we have discussed for the first time 
super-Poissonian light, which with the help of saturated gain 

FIG. 2. Photocurrent spectrum with saturated absorption in the 
absence of amplifying atoms No = 0 and with q = 1 and y, = 0: a )  
for the initial light at the front boundary of the absorber; b) at the 
absorber exit with random excitation of absorbing atoms; and, c )  at 
the absorber exit with regular excitation of absorbing atoms. 

by regularly excited atoms is transformed into sub-Poisson- 
ian light with complete suppression of noise. Figure 2 illus- 
trates saturated absorption. The most interesting point here 
is that in the case of regular excitation of absorbing atoms the 
noise picture remains the same as at the system entrance. 
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