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The leading logarithmic contributions to the hyperfine splitting and to the decay widths of 
positronium, of relative order a31n2 ( l / a ) ,  and to the hyperfine splitting in muonium, of relative 
order a41n2( l / a )  and a3 (m/M)ln2 ( l / a ) ,  are found. The contribution to the Lamb shift in 
hydrogen of order of magnitude a2 (Za) 6mc21n3 ( l /Za)  is also obtained. 

At present, the theoretical uncertainty in the hyperfine 
splitting in positronium and the decay width of orthoposi- 
tronium are due to the uncalculated corrections of relative 
order a', while the theoretical uncertainty in the hyperfine 
splitting in muonium is due to uncalculated corrections of 
order a3. However, contributions of higher order, contain- 
ing the squared logarithm ln2( l / a ) ,  may also turn out to be 
important. These corrections are of order a31n2( l / a )  for 
positronium and a41n2 ( l / a  ) and a3 (m/M) ln2 ( l / a  ) in 
muonium, and the present paper is devoted to calculating 
them. 

First we discuss the derivation of the familiar contribu- 
tions'.' of order a31n2(l/a) in hydrogen-like systems, and 
then proceed to a discussion of these corrections in positro- 
nium and of the a41n2 ( l / a  ), and a3 (m/M) ln2 ( l /a)  contri- 
butions in muonium. In conclusion, we consider the correc- 
tions to the Lamb shift that have order of magnitude 
a 2 ( Z a  I6mc21n3 ( 1/Za ) . 

LOGARITHMIC CONTRIBUTION OF ORDER a31n2(l /a) TO 
THE HYPERFINE SPLITTING IN HYDROGEN-LIKE ATOMS 

The contribution of relative order a ( Z a )  21n2( 1/Za) to 
the hyperfine splitting in the ground state of the hydrogen 
and muonium atoms has been found in the external-field 
limit (i.e., in leading order in relation to the masses) in Refs. 
1 and 2. It can be shown that it arises from the diagram of 
Fig. 1, in which the thick line denotes the electron Coulomb 
Green's function and the dashed line denotes Coulomb ex- 
change. This can be seen most explicitly in the Fried-Yennie 
gauge.3 At the same time, the contribution of this graph can 
also be calculated without performing an expansion in the 
ratio of the masses of the electron and nucleus: 

Here we have used the standard notation for the elec- 
tron mass (m), the reduced mass (m, ), the nuclear charge 
in units of the electron charge (Z ) ,  and the frequency corre- 
sponding to the energy of the Fermi hyperfine splitting:" 

The magnetic moment /I of the nucleus includes the 
Dirac and the anomalous magnetic moments, and the Ryd- 
berg constant, here and below, in in frequency units. In 

muonium, hydrogen, and positronium the constant Z is 
equal to unity, but its presence indicates the origin of the 
contributions and so it is traditionally retained. 

We shall discuss certain stages in the derivation of Eq. 
( 1 ). We represent the Coulomb Green's function of the elec- 
tron in the form of a sum over states: 

in which we shall be interested in the nonrelativistic range of 
momenta so that Jnlm) and 1 klm) are wave functions of the 
Schrodinger equation with the reduced mass, multiplied by 
free spinors of the electron and the nucleus. The Green's 
function is calculated with the energy equal to the value of 
the ground-state energy. We divide the total contribution 
into two terms, arising respectively from the continuous and 
discrete parts of the spectrum. The leading logarithmic con- 
tribution arises from the continuous part, and this is the part 
that we shall consider below. The discrete part of the spec- 
trum leads, as is easily seen, only to the first power of the 
logarithm. 

The correction to the energy of the splitting of the 
ground state has the form 

dv,,, = 2 1  J' (1 00 1 Ae 1 klm)(klm 1 T 1 1 OO), 
11n 

(3  
where A, is the contribution of the electric form factor of the 
electron to the vertex and T is the kernel of the transverse- 
photon exchange. It is not difficult to calculate the matrix 
elements in (3),  the first of which is analogous to the expres- 
sion for the Lamb shift while the second is analogous to the 
expression for the energy of the Fermi hyperfine splitting: 

FIG. 1 .  Graph leading to a correction of order a(Za)2vFln2(1/Za) to 
the hyperfine splitting in a hydrogen-like atom. 
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bution ( 1 ) arises from the product of the electric form factor 
(lOOlA,lkh)= ( -m-') and the contact interaction of the magnetic mo- 

ments [ - (mM) - ' I .  The second factor leads finally to the 
(4) Fermi energy, while the first gives an additional factor (m, / 

I@k(0) 1 ( 5 )  
m )', which corresponds to ( 1 ) . 

(klmJT1100)=v 6 6 - 
lo m0 1+*(0)1' Besides the purely radiative contribution of order 

a (Za)'ln2 ( l /Za)  there are corrections of relative order 

where q5k (0) is the value at zero of a wave function from the 
(Za)3(m/M)ln2( l /Za)  and Z 2a(Za)2(m/M)21n2( 1/ 
Z a ) ,  which appear when recoil effects are taken into ac- 

continuous spectrum: count. As is well known, corrections for recoil, unlike purely 
radiative contributions, are not universal. However, the 

7; ~ I Y ,  2n leading infrared logarithmic corrections of order ( 2 ~ ) ~  (m/ 
@:(O) = 'T I - cxp(-2xyRlk) c' M)ln2( l /Za)  and Z 2a(Za)2(m/M)21n2( l /Za)  neverthe- 

less have the same form for atoms with leptonic and ha- 
and #, (0) is the value at zero of the ground-state wave func- dronic nuclei. 
tion: Corrections of order (Za) (m/M) ln2( l /Za)  arise 

when one takes into account two-photon interaction (Fig. 
@:(o) = ril~. 3), which leads to corrections to the Lamb shifts of order 

Explicit substitution of these values, moderately large 
(Za)'(m2/M)ln( l /Za) .  The corresponding contribution 
to the hyperfine splitting can be calculated by making a sim- 

nonrelativistic momenta k, i.e., for 
ple substitution in the matrix element (4)  for the Lamb shift 

7 R = a m R  <c k cc m, (cf. Refs. 7 and 8):  

leads to the integral (100 ( A, 1 klm) -. (1 00 ( ~ecoill  klm) 

The first term, which arises upon expansion of the Cou- 
lomb Green's function in the integrand, corresponds to the 
free electron propagator, and to the familiar contribution of 
order a(Za)v,  (see Ref. 4). The second term, containing 
y, , arises from the inclusion of one Coulomb exchange in 
the Coulomb Green's function, and, after integration over 
the logarithmic region, leads to the result ( 1 ). Thus, one of 
the logarithms is the standard infrared logarithm in the elec- 
tric form factor while the other arises, upon logarithmic inte- 
gration, from the block represented graphically in Fig. 2, in 
which the heavy points denote a delta-function potential. 
Diagrams of this kind are responsible in positronium for 
logarithmic contributions of relative order a21n(l/a) 
(Refs. 5-7). 

The dependence of the contribution of order 
a(Za)21n2(1/Za) on the mass ratio m/M can be restored 
using dimensional considerations. In fact, the "normal" 
mass in the nonrelativistic problem, which, in particular, 
arises in the calculation of the leading infrared logarithms, is 
precisely the reduced mass m,, and powers of the electron 
mass m or nuclear mass M can be easily traced, as a rule. For 
example, the Fermi energy (2) explicitly contains the prod- 
uct of the magnetic moments of the electron and nucleus, 
and, consequently, is proportional to (mM) -'. The contri- 

after which it is not difficult to find the contribution to the 
hyperfine splitting: 

Corrections of order Z 'a (Za) (m/M) 'In2 ( l /Za)  ap- 
pear when one takes into account the simplest electrody- 
namic form-factor correction to the vertex function of the 
nucleus (Fig. 4). It is obvious that this contribution differs 
from ( 1 ) by the trivial replacement 

and, consequently 

The total contribution of relative order a31n2( l / a )  is 
obtained by summing the corrections ( I ) ,  (7),  and (8) 
found above: 

FIG. 2. Two-loop block leading to a lorgarithmic integration. 
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FIG. 3. Two-photon graphs for the Lamb shift. 
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FIG. 4. Electrodynamic correction to the form factor of the nucleus. 

FIG. 5. Annihilation diagram for the contribution of order a'ln2 ( l / a )  4 
to the hyperfine splitting in positronium. 

In fact, the integration over the nonrelativistic momen- 
(9) tum k in the derivation of the expressions (9),  ( lo ) ,  and 

( 13) has the same structure [see ( 3 )  1, and contains a prod- 

It is important to note that, since we have not per- 
formed expansions in the mass ratio, the results ( 1 ) and 
(7)-(9) obtained above are also valid for positronium, al- 
though the form of the diagrams is somewhat asymmetric 
when the electron is replaced by the positron. The point is 
that, in effect, the Coulomb Green's function corresponds to 
a certain effective particle (with the reduced mass) which, in 
an "ordinary" atom with a heavy nucleus, is "almost" an 
electron. Nevertheless, to emphasize the analogy between 
hydrogen and positronium, we shall use the asymmetric rep- 
resentation of the Coulomb Green's function. Henceforth, 
for brevity in discussing the corrections, we shall give only 
diagrams with form-factor contributions to the Lamb matrix 
element, and, for positronium, taking into account the equa- 
lity of the contributions ( l )  and (8) ,  we shall double the 
corresponding coefficient. 

POSlTRONlUM 

The radiative contributions for the ground state of posi- 
tronium are obtained from the expression (9)  by the substi- 
tution m = M. In this way the contributions of the exchange 
interaction are taken into account. In addition, it is neces- 
sary also to consider the annihilation diagrams. 

The contribution of the exchange graphs (see Fig. 1)  
leads in the case of positronium to the result 

The right-hand side of this equality is that part of the 
Fermi hyperfine splitting which arises from the exhange 
channel [cf. (2)  1 : 

It is easy to find the contribution of the annihilation 
diagrams (see Fig. 5). For this it is sufficient to replace the 
second matrix element in the expression (5)  for the magni- 
tude of the splitting by the contribution of the annihilation 
kernel to the Fermi energy of positronium 

and this leads quickly to the result 

3 a3 6.P = - - - l n 2  -Lp 
1 0  2 n ( a )  F .  

uct of two hard matrix elements, the first of which is the 
same in all three cases [see (4)  1. The second matrix element 
[see (5 ) ]  in the nonrelativistic approximation is a delta 
function. Replacement of the contact interaction of the mag- 
netic moments by the annihilation kernel, which is also a 
delta function in the nonrelativistic limit, does not change 
the logarithmic character of the integration over the mo- 
mentum k. We note also that the annihilation diagrams (see 
Fig. 5)  also make a contribution to the Lamb shift of the s- 
levels that differs from the quantity ( 13 ) only by the obvious 
factor 3/4n3. 

We now compare the radiative corrections for annihila- 
tion that are represented in the graphs of Fig. 5 and Figs. 6 
and 7. In the derivation of the contribution ( 13) from one- 
photon annihilation the matrix element from the hard anni- 
hilation kernel [see ( 12)] was not sensitive to the internal 
structure of this kernel, and so the relative magnitudes of the 
corrections for the diagrams with one-, two-, and three-pho- 
ton annihilation also coincide: 

where, in the right-hand sides of the expressions ( 14) and 
(15), we have introduced obvious notation for the leading 
contributions to the decay width of orthopositronium and 
parapositronium. 

Adding to the results (12)-(15) obtained above the 
well logarithmic contributions, we obtain expres- 
sions for the logarithmic terms: 

FIG. 6. Typical diagram with imaginary part corresponding to a contribu- 
tion to the decay width of parapositronium. 
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determination of the contribution of order a2(Za)'ln2( I/ 
Za) is related to the diagram of Fig. 8, the desired correction 
being picked up in the case when one of the vertex insertions 
is the electric form factor and the other is the anomalous 
magnetic moment. The correction differs only by the ob- 
vious factor a /2a  from the known contribution ( 1 ) . Sum- 
ming all the corrections with the logarithm squared, we ob- 
tain 

FIG. 7. Characteristic graph for the logarithmic correction of order 
a31n2( l/a) to the decay width of orthopositronium. 

in which the leading contributions are also written out expli- 
citly. 

The corrections of relative order a21n( l / a )  can also be 
calculated by the method developed above. As an example 
we shall discuss the derivation of the transverse-exchange 
correction of this order to the hyperfine splitting ( 16). In 
this case there are two somewhat different methods of calcu- 
lation. First, we can take both matrix elements, and, after 
this, the integral over the momentum. This calculation is 
completely analogous to those performed above for the cor- 
rections of order a31n2( l / a ) .  Second, it is possible to find 
first the second matrix element [see ( 3 ) and ( 5 ) ] and imme- 
diately take the integral over k: 

where S T # ,  (0)  is the effective correction made by the trans- 
verse exchange to #, (0)  (the value of the wave function at 
the coordinate origin). Calculation of the quantity a#, (0) 
with subsequent determination of the contribution to the en- 
ergy or width of the decay leads to the formalism developed 
in Refs. 5 and 7 for the logarithmic corrections of order 
a21n( l / a )  in positronium. 

The above-determined corrections ( lo),  ( 13)-( 15) of 
order a31n2(l/a) to the hyperfine splitting and the decay 
widths can be represented conveniently in units of (a/n-)'v, 
and ( a / ~ ) ~ r ( ~ ) ,  respectively. The corrections to the frequen- 
cy and to the widths amount in these units to - 0.83 ..., and 
are commensurate with the corrections of relative order (a/ 
P)' that have not been calculated to completion. 

HYPERFINE SPLITTING IN MUONIUM 

It is also possible to discuss the leading logarithmic cor- 
rections of relative order a2 (Za) 'ln2( l /Za) ,  a (Za)'(m/ 
M)ln2( l /Za) ,  and (Za)3(m/M)ln2( 1/Za) to the hyper- 
find splitting in muonium. The latter have already been 
found in the expression (9 ) ,  which it is now sufficient to 
expand in the ratio of the electron and muon masses. The 

At the present time the principal theoretical uncertain- 
ty is due to contributions of order a3/n- (Refs. 10-13), and, 
therefore, the corrections found can be usefully represented 
in units of (a3/?r)vF. The contributions of order 
a2 (~a )21n2(1 /Za ) ,  a ( Z a ) 2 ( m / ~ ) l n 2 ( 1 / Z a ) ,  and 
(Za)3(m/M)ln2( 1/Za) amount, in these units, to 
- 0.075 ..., 0.62 ..., and - 0.08 ..., respectively. We also give 

the values of these corrections to the hyperfine splitting di- 
rectly in kilohertz: 

BvMM = -0,04 kHz, dv,, = -0,04 kHz, 

where the last quantity exceeds the error in the numerical 
integration in the calculation of the contribution of relative 
ordera(Za)'  (see below) .lo We note also that, as well as the 
leading logarithmic contributions, containing low-energy 
logarithms In( l /Za)  ( 16) or mass-ratio logarithms ln(M/ 
m) (Ref. 14), nonlogarithmic corrections can also turn out 
to be important. For example, we can write an exact expres- 
sion for the magnitude of the splitting in the Dirac atoms 
(see, e.g., Ref. 15). The Fermi energy (2)  is multiplied by 
the factor 

in which the terms of order (Za)4 make a contribution com- 
mensurate with the leading logarithmic corrections of order 
a41n2( l / a )  ( 16) and of order a3(m/M)ln3(M/m) and 
a3(m/M)ln2(M/m) (Ref. 14). 

We shall examine briefly the theoretical and experimen- 
tal uncertainties for the hyperfine splitting of the ground 
state in muonium. The error in the measurement of the hy- 

FIG. 8. Leading logarithmic diagram for two-loop insertions into an elec- 
tron line. 
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perfine-splitting frequency amounts to 0.16 kHz (Ref. 16). 
More important is the error in the determination of the Fer- 
mi energy (2) ,  corresponding to measurement of the muon 
magnetic moment in Bohr magnetons; in frequency units 
this error is equal to 1.3 kHz (Refs. 16, 17). Both these 
errors will be reduced in the near future by an order of mag- 
nitude.'' The theoretical uncertainties also arise from sever- 
al sources. The error in the numerical integration in the cal- 
culation of the corrections of relative order a (Za ) amounts 
to 0.2 kHz (Ref. 10). The terms of order a 2 ( Z a )  have not 
been completely determined; the contributions of only five 
of the six gauge-invariant sets of diagrams have been calcu- 
lated."-l3 In the Appendix we give a preliminary estimate of 
the contribution of the sixth set of diagrams, which corre- 
sponds to two-loop insertions in the electron line (Fig. 9) :  

which, together with the contributions of order a(Za) ' (m/ 
M)ln2( 1/Za) and (Za) (m/M) ln2 ( 1/Za) found above 
[see ( 19) 1, leads to the following theoretical value of the 
frequency of the hyperfine splitting of the ground state in 
muonium: 

v,,, = 4463303,2(1,3)(0,3) kHz, (21 

where the first error relates to the measurement of the muon 
magnetic moment and the second relates to the theoretical 
calculations. 

It is also possible to estimate the uncertainty introduced 
by the corrections of order a(Za)2(m/M)ln(  1/Za) and 
a(Za)2(m/M).  Starting from the known values of the con- 
tributions of order a ( ~ a ) ~ l n ( l / ~ a )  (Refs. 1, 2), a ( z a 1 2  
(Ref. lo),  (ZaI2(m/M)ln( l /Za) ,  and (Za)2(m/M) 
(Ref. 19), we can conclude that these corrections amount to 
no more than 0.1 kHz. 

The experimental result16 

v = 4463302,88(0,16) kHz 
exp (22) 

is in excellent agreement with the theoretical result (21 ). 

THE LAMB SHIFT 

We convinced ourselves above that the square of the 
logarithm can compensate one power of the small parameter 
a or m/M. A similar situation also builds up in the Lamb 
shift. Using the spin-independent terms of the Breit Hamil- 
tonian (for I = 0) as a perturbation in the calculation of the 
second matrix element [cf. (3)  ] we can find the doubly loga- 
rithmic corrections. In particular, the contribution induced 
by the correction to the wave function (cf. Refs. 20 and 21 ) 
is, in the external-field limit, 

where v, (n)  is the coefficient of the logarithm In[ 1/(Za)2] 
in the leading contribution to the Lamb shift: 

This doubly logarithmic correction (23) to the Lamb 
shift is completely analogous to the correction (1) to the 
hyperfine splitting. In the same way it is easy to take account 
of the recoil [cf. ( 7 ) ]  and of the electrodynamic correction 
to the form factor of the nucleus [cf. (8)  1. In the case of the 
Lamb shift there is no further, more complicated contribu- 
tion,'' that does not reduce to graphs with a factorized block 
structure (cf. Fig. 1). It too can be calculated, although 
allowance for the ratio of the masses in the doubly logarith- 
mic corrections in the Lamb shift is less urgent than in the 
hyperfine splitting. The point is that the shifts in muonium 
and positronium have been measured insufficiently accu- 
rately, while in hydrogen the corrections are too small be- 
cause of the small mass ratio m, /m, . However, in the case of 
the Lamb shift there is a triply logarithmic contribution that 
is important for comparison with experiment. Thus, the 
graph depicted in Fig. 8, under the condition that both ver- 
tices are electric form factors, makes a logarithmic contribu- 
tion to the Lamb shift. In contrast to (3) ,  there is only one 
diagram, and the matrix elements coincide and are equal to 
(4).  After straightforward calculations, for the contribution 
to the Lamb shift of the s-level with principal quantun num- 
ber n we obtain 

16 a dv,,,(n) = - - v (n) - ( ~ a ) ~  ln3 
9 L  x 

It can be shown that there are no triply logarithmic 
contributions analogous to the doubly logarithmic correc- 
tions induced by the graphs with kernels M,,, MI, and M, 
(see Ref. 2 1 ) . 

The correction (25) found amounts numerically to 
- 0.49a2Sv, (n), or - 3.6 kHz (for n = 2), and is impor- 

tant for comparison of theory and experiment. 
We note also the following circumstance. The standard 

structure of the logarithmic corections for Coulomb systems 
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involves expressions proportional to the quantity [Za21n( 1/ 
Z a )  ] " . We could also consider here a series built from loga- 
rithmic corrections of the form 

the first term of which is the leading contribution to the 
Lamb shift, while the second was found above [see (25) 1. 
These logarithmic corrections arise from graphs consisting 
of electron form-factor blocks linked by Coulomb Green's 
functions. 

I am grateful to I. B. Khriplovich, V. A. Shelyuto, and 
M. I. Eides for useful discussions. 

APPENDIX: CONTRIBUTION OF DIAGRAMS WITH TWO- 
LOOP INSERTIONS IN AN ELECTRON LINE TO THE 
HYPERFINE SPLITTING IN MUONIUM 

The contribution of diagrams with two-loop insertions 
can be expressed in terms of the product of the square of the 
Coulomb wave function #,(0) and matrix elements (be- 
tween the large components of the spinors) of kernels corre- 
sponding to 30 diagrams for the two-loop virtual Compton 
amplitude for forward scattering of an electron with a spin 
flip (see Fig. 9).  All the radiative corrections should be re- 
normalized, and the contribution of the anomalous moment 
subtracted. The corresponding correction is equal to 

where F is the effective form factor, equal to unity in the 
absence of the radiative corrections, and k is the three-di- 
mensional momentum of integration. About the quantity 
F(k)  it is known that at large momenta it behaves as a con- 
stant while at small momenta it contains a logarithm: 

The coefficient of the logarithm is easily found: It can be 
shown that in the Fried-Yennie gauge it arises from the con- 
tribution of the first two graphs of Fig. 9. The low-energy 
asymptotic form of the first graph is proportional to the elec- 
tric form factor of the electron, while that of the second is 
proportional to the product of the Coulomb exhange and the 
form factor corresponding to the anomalous moment. We 
shall assume that the quantity F (k )  does not change sign 
and that the unknown constants have the same order of mag- 
nitude as the coefficient of the logarithm. In this case we can 
propose the following approximation for F (k )  : 

integration of which as in ( A l )  leads to the result 
- 1.47 (48 ) [a2 ( Z a )  T I  v, used in the text. We note that the 

analogously determined estimate for the known4 one-loop 

contribution of order a (Za )v ,  leads to the coefficient 
- 2.94(95) instead of - 2.56 ... . 

It is possible to obtain a preliminary estimate close to 
this from considerations based on the analogy between the 
effective one-loop and two-loop form factors as functions of 
the square k of the Euclidean momentum. These form fac- 
tors possess similar analytical properties and have two iden- 
tical branch points, at values of k * equal to zero and - 4m2. 
The asymptotic forms of the effective form factors are also 
analogous to each other in many respects: In both cases loga- 
rithmic terms are present at small momenta and absent at 
large momenta. The coefficients of the low-energy logarithm 
differ by the factor a / 2 ~ .  We shall assume that the charac- 
teristic behavior of these effective form factors is approxi- 
mately the same, and that, therefore, the two-loop contribu- 
tion is equal (to within 50%) to the one-loop form factor4 
with the factor a / 2 ~ ;  this leads to a numerical coefficient 
- 1.28(64) instead of the coefficient - 1.47(48) obtained 

above. 
The preliminary estimates obtained here have a some- 

what speculative character. Nevertheless, they look rather 
plausible, and, not unimportantly, they reinforce each other. 
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