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Using the screened interaction approximation we study the high-temperature phase of the 
dislocation model of melting. We show that the system can be in two states characterized by an 
exponential (liquid) and a power-law (intermediate phase) decrease in the rigidity at large 
distances. 

1. INTRODUCTION 

The description of a condensed substance at high tem- 
peratures is a vital problem in theoretical physics. Different 
stages in our understanding of the phenomena which occur 
in a substance near the melting temperature are reflected in 
the books by Frenkel',' Fisher,' and Ubbel~hde .~  The con- 
cept of local order first used by Frenkel' without giving a 
clear specific definition makes it easier qualitatively to un- 
derstand the properties of a condensed substance. To make 
this approach more productive one must give a definition of 
local order and introduce parameters which characterize it. 
The volume in which one assumes this order to be present 
contains many atoms so that one must expect the description 
of the system in terms of the order parameter fields to be 
universal and independent of the details of the interatomic 
interactions. Experimental data support the local-order con- 
cept but do not give reliable information about its nature and 
the size of the ordered volume. 

The local order exists on the background of the thermal 
fluctuations of the atomic positions. These fluctuations are 
characterized by a parameter A = Af/d where A' is the 
square root of the mean square displacement of the atoms 
from their assumed ideal positions and d is the interatomic 
distance. At the melting point A = A, = 0.07-0.17 (Linde- 
mann criterion). Since A, is small, each configuration of N 
atoms can be considered as a small deviation from an ideal- 
ized one. For the latter, different investigators have chosen 
different geometric figures. For instance, in Refs. 4-7 the 
local structure of a melt was assumed to be equivalent to the 
local structure of the initial crystal, and the authors of Refs. 
8 and 9 assumed it to be icosahedric. Especially popular was 
the random close packing of Bernallo and the random bond 
grid of Zachariasen. " 

As a rule the melting temperature is so high that a clas- 
sical description of the system is possible (hydrogen and he- 
lium are exceptions), i.e., one can use the classical Gibbs 
probability distribution 

dw = Z-'exp [- F] dn, 

z = J exp [- F] dn. 

The set of parameters giving the state of the system are de- 
noted by [ n ]  . For a classical system the momenta are distrib- 
uted according to the universal Maxwell law so that one 
needs study only the configurational part of the energy H. 

The physical configuration of N atoms is a set of points 
with coordinates ra ,a = 1,2, ..., N. Its description in terms of 

spatial order means that the configuration T ( r a )  is a de- 
formed state of some ideal shape T (r,") and 

where the Sr" are small quantities. This statement must be 
considered to be the definition of local order. For a given 
configuration the problem of constructing an ideal shape 
may not have a unique solution. For a system of interacting 
particles one can use the principle of minimum interaction 
energy to construct a set of ideal shapes T, which may vie 
for the role of components of the structure. For instance, for 
close-packed systems with binary Lennard-Jones interac- 
tions the set consists of fcc and hcp lattices and icosahedra. 
After the base of ideal shapes has been formed the problem is 
reduced to choosing the "best" one. To do this one must use 
numerical characteristics of a real physical structure divid- 
ing the phase space of these characteristics into regions cor- 
responding to deformed states of the ideal shapes T, . It is 
clear that such a division is probabilistic in nature. In the 
general case the above mentioned regions may overlap. 

Numerical characteristics of a structure were intro- 
duced in the papers by Mitus' and Pata~hinskii .~*' '~ '~ The 
crystal structure of most elements near the melting point is 
close-packed so that in Ref. 12 clusters of fcc and hcp lattices 
and isosahedra were studied as the T, . A numerical simula- 
tion carried out in Ref. 12 showed that the overlap of the 
probability distributions corresponding to different T, is 
small up to temperatures T <  2Tm ( T, is the melting tem- 
perature). This means that for those temperatures the ther- 
mal fluctuations do not destroy the local order. The inequali- 
ty T <  2T, indicates the region where there exist substances 
with a local structure but it does not answer the question 
what this structure is. We assume that the local order is crys- 
tal-like. Such an assumption makes it possible to introduce a 
single parametrization of the states of the system for the melt 
and the crystal. 

2. PARAMETRIZATION OF THE STATES 

The above mentioned parametrization was carried out 
in Refs. 4, 19, and 20 and in the present section we shall 
follow these papers. The assumption of a crystal-like local 
order means that we must choose fragments of crystal lat- 
tices as the ideal components of the structure. For the phys- 
ical configuration of N points we define a one-to-one map- 
ping on the lattice points of an ideal crystal lattice: T +  To: 
(r" + r," ) . This mapping retains neighbor relations: images 
of nearest neighbors are again nearest neighbors. We define a 
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touching position with respect to a configuration of Natoms. 
It is reached, if: 

1 ) The image of the central atom is superposed upon its 
original. 

2) The whole lattice is rotated with respect to the cen- 
tral atom in such a way that the non-coincidence of the im- 
age and the pre-image is a minimum. 

Let us clarify the second requirement. Minimum coin- 
cidence means that the quantity 

is a minimum. A touching position of the lattice is described 
by a rotation matrix U which changes the lattice from its 
initial position into a touching one. We note that for separate 
atoms chosen as the center a touching position may not be 
realizable because the local order has been destroyed. The 
whole volume of the substance turns out to be split into two 
kinds: "good" and "bad" material. In an ideal crystal all 
atoms belong to the "good" material and one can at once 
map all atoms onto the lattice sites. In that case U(r) 
= const. A liquid is isotropic and must therefore contain 
"bad" material-structural defects producing the isotropy. 
The problem of the ratio of the volumes of "good" and "bad" 
material and of their geometrical shapes is an important one. 
The concept of local order implies that "good" material oc- 
cupies a large part of the volume. We assume that the region 
occupied by it is connected. One can substantiate this as- 
sumption by the following considerations. The definition of 
local order, given above, applies also to a two-dimensional 
system. Minimum disorder which one must introduce into a 
two-dimensional system to make it isotropic is described by 
a distribution of point defects. Considering arbitrary two- 
dimensional cross-sections of a three-dimensional system 
one can show that in that case the minimum defect of the 
order is described by a distribution of line defects. Hence 
follows the validity of our assumption. 

The next step is to map the whole of the "good" materi- 
al onto the lattice. We choose a cluster with its center at the 
point r ,  and find U(r, ) for it. After that we find for a cluster 
with its center at r, ( r ,  and r, are the coordinates of nearest 
neighbors) the minimum change in U(r) necessary to reach 
a new touching position. Repeating this procedure we con- 
struct U(r) along some path. Repeating it for all paths in the 
connected region of "good" material, we determine the field 
U(r). The mapping which is single-valued for each two con- 
secutive steps along the path may turn out not to be single- 
values for a closed contour. The procedure of mapping along 
a path is known as the Burgers-Frank pr~cedure.'".'~ A con- 
tour in the substance is here mapped upon a contour formed 
by bonds of an ideal lattice. The discrepancy of a closed con- 
tour is not changed when it is deformed provided the con- 
tour does not intersect a line of "bad" material. The problem 
of describing "bad" material is thus reduced to considering 
discrepancies of contours around separate defect lines. Local 
defects are equivalent to dislocations and disclinations. The 
difference consists in that in our case the Burgers vector b 
and the Frank vector R may change along the defect line: 

For a more precise description of the atomic coordi- 
nates of the chosen cluster of "good" material we must give 
not only the rotation, but also the deformation which is uni- 
form on the scale of the cluster and which is described by a 
symmetric tensor u(r) .  

It turned out that the atomic configurations of a con- 
densed substance can be parametrized as follows: 

1. "Good" material: the field of the deformation tensor 
u,. ( r )  and the rotation matrix U,. ( r ) .  

2. Defects: the fields of the dislocation density au ( r )  
and of the disclination density T,. ( r ) .  For isolated defects 
the a and T fields are defined in the standard way: 

where the Si ( r )  are the components of the delta-function on 
the defect line. 

3. STATEMENT OFTHE PROBLEM 

To describe the system in the framework of the pro- 
posed parametrization we must write down the Hamiltonian 
in terms of the a, r, U, and u fields and calculate the Gibbs 
partition function. The first steps to realize this program 
were taken in a paper by Obukhov.'' In it the fields T and U 
were assumed to be unimportant and were dropped. It was 
shown that in such an approximation at a temperature 
TD = ~ / l n ( n  ( E  is the average energy per unit length of the 
core of the dislocation and n the number of nearest neighbors 
in the crystal lattice) a system of dislocation lines with infi- 
nite length is formed in the crystal and this phase transition 
was identified with melting. 

It was noted in Ref. 4 that the main feature of melting is 
the loss of long-range orientational order, and in it the Uu (r)  
fields were taken into account. It was then assumed that 
disclinations which require for their generation large elastic 
deformations cannot exist as equilibrium defects without a 
mechanism for plastic relaxation, i.e., without dislocations. 
The disclinations can thus be represented as a system of dis- 
locations and thus do not require to be introduced explicitly. 
Considering the Gibbs statistics of the a ,  u, and U fields 
showed that the phase transition obtained in Ref. 16 is not, in 
general, melting. The orientational disordering is described 
by an effective Hamiltonian of the U fields which turned out 
to be identical with the Hamiltonian of the phenomenologi- 
cal theory of Ref. 5. According to Ref. 4 there can thus exist 
between the crystal and the liquid an intermediate phase 
which is characterized by the presence of a dislocation 
network of infinite length while at the same time retaining 
the orientational order. 

It was indicated in Ref. 17 that a liquid must be charac- 
terized by the loss of rigidity over scales larger than some 
characteristic one and there an attempt was undertaken to 
calculate one of the characteristics of the rigidity-the large- 
scale effective shear modulus. It was only possible to do this 
below TD where it turned out to be nonvanishing, as was 
expected. The aim of the present paper is a determination of 
the rigidity of the system above the dislocation transition. As 
in Ref. 4 we shall here assume that one needs not introduce 
the disclinations explicitly. In that case one can, provided 
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the deformations are small, introduce instead of the rotation 
and the deformation of a single distortion field P ( r )  : 

1 p.. = Uii + - (U. .  - Uii). 
IJ 2 11 (8 

Calculating the rigidity enables us to answer the ques- 
tion whether there is a high-temperature phase16 of the liq- 
uid and it also makes it possible to characterize the interme- 
diate phase, predicted in Ref. 4, in more detail. 

First of all we give a more precise definition of the quan- 
tity to be calculated. The rigidity of the system is defined by 
the Gibbs average 

It will become clear from what follows that it is convenient 
to use the quantity 

1 
"af3 = 4 ' a i j  ' f3kp i jk l r  (10) 

where the E ~ ,  are the Levi-Civita symbols. It is natural to 
name fl the rotational rigidity since 

where o is the rotation vector: Its direction is the same as the 
rotational axis, and its absolute value is equal to the sine of 
the rotational angle of the axes of the local anisotropy with 
respect to the global coordinate system. It is clear from Eqs. 
( 11 ) and (12) that the quantity fl characterizes also the 
orientational order in the system. 

4. HAMlLTONlAN AND CONSISTENCY CONDITION 

The Hamiltonian consists of two parts-the energy of 
the core of the dislocations and the energy of their interac- 
tions: 

The energy of the core can be written in the form: 

where E is the energy of the core of a dislocation per unit 
length, the integration is along the dislocation line, and the 
summation is over all dislocations. We can write the interac- 
tion energy down starting from the well known expres- 
s i o n ~ : ' ~ . ' ~  

where A is the elastic-constants matrix, 

( r )  = dGjn (r)/dxi, 

G,, is the Green tensor of the crystal, and a is the disloca- 
tion-density tensor. For simplicity we shall assume the sys- 
tem to be simple cubic and elastically isotropic so that 

where v is the Poisson coefficient and p and A are the Lam6 
coefficients. Calculations using Eqs. ( 15)-( 17) give: 

where the matrix D in the momentum representation is: 

Here 

ni =qi/q; Sij = S i j  -n,ni,  p =  -v / ( l  + v ) .  

Equation ( 19) is the same as the one used in Ref. 16 apart 
from the second term. In Ref. 16 this term was dropped since 
it gives zero for dislocation configurations of closed loops 
with a constant Burgers vector along the loop. We, however, 
assume that the rotation is not small and that the Burgers 
vector may change along the defect line: 

ali = aiLJis = 6,(r - rD)bYlIis(r), (20) 
D 

where the b are the components of the Burgers vector in the 
system of coordinates the axes of which coincide with the 
axes of the local anisotropy. Using Eq. (20) the interaction 
energy takes the form: 

Hit,, = ;J 'a0(r ) l I ( r )~(r  - r l ) o O ( r f ) ~ ( r f ) d v d v '  (21 

(to simplify the notation we have dropped the indices). 
When evaluating the partition function using the Hamilto- 
nian of (13), ( 14), and (21) and the fields a', U we must 
bear in mind that the above-mentioned fields are not inde- 
pendent but connected by a consistency ~ondi t ion .~  In our 
case this condition can easily be obtained from Eq. ( 16) : 

ma = ~J~at,l,l~pt,*~ijk~jn,i(r - rr)a:s(r~)uk(rl)dvl .  (22) 

The matrix Uis recovered from the vector o as follows: 
W W .  

u.. = G.cos + + (I - sin +)' + e j j k a k ,  
11 11 a 2  (23) 

where sin q5 = o. 

5. SCREENED INTERACTION APPROXIMATION 

Using condition (22) and (23) when evaluating the 
partition function requires the introduction of a nontrivial 
weight factor in the functional integral since this condition is 
not linear. To avoid this difficulty we shall use an approxi- 
mation similar to the Debye-Hiickel approximation in the 
theory of a rarefied plasma. We proceed as follows. We as- 
sume that we have succeeded in solving the problem and in 
calculating the average: 

If we replace in Eq. (2 1 ) the produce of the rotation matrices 
by A,  the expression obtained will serve as an approximation 
for the effective Hamiltonian of the dislocations: 
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We can interpret Eq. ( 2 5 )  as the change in the Green tensor 
in comparison with an ideal crystal: if in an ideal crystal with 
a small dislocation density we have a0 = a and 

after integration over the rotation fields Eq. ( 2 6 )  changes to 

Here 5 is calculated in terms of 8 in the same way as D is 
calculated in terms of G: 

The consistency condition is in the approximation ( 2 5 )  

It can be written in another, more convenient form if we take 
the average of the product o, ( r ) w B  ( r ' )  and change to the 
momentum representation: 

where 

L;(r - r') = 2 aOexp 
a0 

The summation is over the dislocation configurations. 
The obvious relation 

together with Eqs. ( 2 8 ) ,  (301, and (31 ) is the system of 
equations for SL. This system is rather complicated and we 
use simplifying assumptions. We shall assume that - 

D(q) = &f(q) [...I, ( 3 3 )  

where the expression in the square brackets is identical to 
Eq. ( 19).  This means that we assume the index form of the 
interaction to be the same as in an ideal crystal but the pow- 
er-law dependence, Doc l /r ,  is replaced by a screening. 
Moreover, we shall assume that the quantity A ( r  - r ' )  is 
independent of the choice of the global system of coordi- 
nates. Hence it follows that the average relative rotation ma- 
trix of the axes of the local anisotropy, gjr ( r )  = Agil ( r )  
= A,,,, (r),  is an isotropic tensor: 

gjh') = 6(r)aIp ( 3 4 )  

One can also show easily that in that case the trace Awl van- 
ishes: it is independent of the orientation of the global co- 
ordinates so that it can be averaged over these orientations 
without any changes. Interchanging that averaging with the 
statistical one we verify that Awl = 0 .  Starting from this we 
write down an expression for flu, : 

The function g ( r )  characterizes the rotational rigidity of the 
system. 

We consider the relation: - 
of: = D : A ~ ~ ~ ~  = $(r)g(r). ( 3 6 )  

Integrating this equation over the angles, which can be done 
in the momentum representation, and using Eq. ( 3 3 ) ,  we 
get: 

where f ( r )  is the Fourier transform of f ( q )  from Eq. ( 3 3 ) .  
Contracting condition ( 3 0 )  over the indices a and P we get 
the equation 

where we have denoted by P[ ... ] the operation of taking the 
spatial Fourier transform. It is now necessary to evaluate the 
correlator L, using Eqs. (25 ) and ( 3  1 ). 

6. EVALUATION OF THE DISLOCATION CORRELATOR 

We must evaluate the partition function 

HZf z,, = 2 exp - - T '  
a0 

where - 
1 = s D e d l  + T l a ~ ~ $ ' a ~ , ~ d v d u ' ,  ( 4 0 )  

LI 

and Bis  given by Eq. ( 3 3 ) .  For simplicity we assume that E is 
independent of the orientation of the Burgers vector and that 
with an appreciable probability dislocations are realized 
only with the minimum b O. We introduce the conjugate field: 

Changing from Eq. ( 3 9 )  to (41 ) raises a problem, since the 
matrix Z) is transverse, i.e., it does not have an inverse. To 
avoid this difficulty we note that in the continuum approxi- 
mation we can write the core energy in the form: 

Hc = e J ( a $ ) ~ v .  ( 4 2 )  

Using this relation we can redefine the quantities Z) and E in 
Eq. ( 3 9 ) :  

In the final expressions we put P-. 0 .  In Ref. 4  we proposed a 
transformation reducing the summation over the configura- 
tions of dislocation loops to a path integral over three com- 
plex local fields $" ( v  = 1,2,3) : 
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where n is the number of nearest neighbors in the crystal 
lattice, 

g  is a model constant taking into account the distortion of the 
dislocation interaction at small distances. Since the disloca- 
tions with minimum Burgers vectors are equally probable, 
the average ( R  ) for an arbitrary functional R  [$" ] is inde- 
pendent of the index v. We integrate over the IC, fields in the 
mean-field approximation: 

Adding in Eq. ( 4 1  ) a term with a source we see easily that 

Evaluating it and substituting it into Eq. ( 3 8 )  gives the fol- 
lowing expression for f ( r )  : 

where j = J = ( ). Equation ( 4 8 )  allows yet one more 
simplification. The concept of crystallike local order in a 
condensed substance assumes that the "bad" material, i.e., 
the dislocation cores, take up a small part of the whole vol- 
ume. Since ( I IC,' I ) is proportional to the density of the dislo- 
cation segments we may assume j to be a small quantity. We 
expand the right-hand side of Eq. ( 4 2 )  in j and retain the 
first nonvanishing term: 

7. SOLUTION OF (49) AND DISCUSSION OF THE RESULTS 

Before solving Eq. ( 4 9 )  we determine the limits of its 
applicability. The basis of its derivation was the approxima- 
tion (25  which is based upon the assumption that I ,  S I,, 
where I ,  and 1, are characteristic scales over which the 
fields U and a change. The dislocation interaction is thus 

distorted in Eq. ( 2 5 )  over scales of the order I,. This distor- 
tion does not affect the evaluation of L $ since it can be com- 
pensated by a suitable choice of the constant g  but it imposes 
a restriction on the applicability of Eq. ( 4 9 ) :  its solutions 
characterize the rigidity of the system only for scales r s I , .  

Equation ( 4 9 )  has two solutions: 

where a is a constant which is determined below. The func- 
tion g ( r )  corresponding to these solutions is: 

One of these functions must give the solution g ( r )  = const 
for a rigid crystal as I - 0 .  It is clear that this function is g, 
where we must have 

C a = const - . 2 ( 5 2 )  
The state in which g ,  is realized is clearly the liquid. 

Equation ( 5 2 )  enables us to estimate the scale over which 
the liquid does not lose its rigidity with respect to torsional 
deformations: r, = const X lo2 interatomic distances, where 
the constant is of order unity. 

The state withg, is the intermediate phase the existence 
of which was predicted in Ref. 4 .  It is clear from Eq. ( 5  1 ) 
that this phase is characterized by a power-law decrease of 
the rotational rigidity at large distances: a,, ( r )  cc l / r  as 
r -  W .  

An analysis of the thermodynamic advantages and sta- 
bilities of the solutions obtained is problematic in the frame- 
work of the approximations of the present paper: assump- 
tions ( 3 3 )  and ( 3 4 )  enable us only to talk about the 
qualitative form of R. 

Relations ( 5  1 ) are possible scenarios for the behavior of 
the rigidity of the system above T, . Although the solution of 
the problem of their realization and stability is impossible in 
the framework of the present paper, Eqs. ( 5 1 )  give us a 
chance to study this problem experimentally. 

We note that the liquid solution is most likely to be 
unstable: this is indicated by the nonphysical increase of r ,  
with temperature [see Eqs. ( 5 1 ) ,  ( 5 2 ) ,  and ( 4 9 )  1. In that 
case melting does not take place in the framework of the 
model considered here-it is necessary to introduce disclina- 
tions explicitly. A detailed consideration of this problem is 
the contents of a separate paper. 

APPENDIX 

The matrices met with in the text-the kernels of the 
quadratic forms in the momentum representation-have the 
form 
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The coefficients pi and the factor Q ' for the inverse matrix v2 = 
1 

can be calculated using the following relations: b + 2(1 + ' 

v7 
p 7 =  -- 

dl' 

Below we give the coefficients and the factors for the matri- 
ces encountered in the text. 

We show in Eqs. (55)-(57) only the nonvanishing v,.  The 
matrix L is written down in the limit as D+O. 
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