Maximum capacity of neutron network with four-color spins for uncorrelated images

D.B. Saakyan and R. Shagoyan

Erevan Physics Institute (Submitted 18 August 1992) Zh. Eksp. Teor. Fiz. 103, 1064–1069 (March 1993)

A model with Z_N type of interaction is considered. The equations obtained for any Q are solved for the case Q = 4.

It was established in Ref. 1 that a system of N binary spins interacting pairwise (through N^2-N constants J_{ij}) can recognize a maximum of 2N images. To generalize the model of Ref. 1 we consider Z_N types of interaction.

The model to be investigated is defined as follows; given N complex spins taking on Q possible values on the unit circle $\sigma_i = \exp(i2\pi k_i/Q)$, $k_i = 1,..,Q$. The local field H_i acting on the *i*th spin is defined as

$$H_i = \sum_{j \neq i}^{N} \frac{J_{ij}}{\sqrt{N}} (\sigma_i)^*, \tag{1}$$

where J_{ij} are complex interaction constants, $(\sigma_i)^*$ stands for complex conjugation; the constants J_{ij} are normalized to N, i.e.,

$$\sum_{j \neq i}^{N} |J_{ij}|^2 = N.$$
 (2)

The law of evolution of the spins σ_i is specified as follows: in each iteration step the spin σ_i assumes a direction such that its projection on the local field H_i is a maximum. This condition, obviously, is equivalent to the requirement that the projection of H_i on σ_i be larger than the projection on two possible neighboring orientations.

A spin ξ_i^{μ} from an image (μ numbers the images) is thus filled if

$$\operatorname{Re}(\xi_{i}^{\mu}\sum_{j\neq i}\frac{J_{ij}}{\sqrt{N}}(\xi_{j}^{\mu})^{*}) > \operatorname{Re}(\xi_{i}^{\mu}\eta\sum_{j\neq i}\frac{J_{ij}}{\sqrt{N}}(\xi_{j}^{\mu})^{*}) + k \qquad (3a)$$

and

$$\operatorname{Re}(\xi_{i}^{\mu}\sum_{j\neq i}\frac{J_{ij}}{\sqrt{N}}(\xi_{j}^{\mu})^{*}) > \operatorname{Re}(\xi_{i}^{\mu}\eta^{*}\sum_{j\neq i}\frac{J_{ij}}{\sqrt{N}}(\xi_{j}^{\mu})^{*}) + k, \quad (3b)$$

where $\eta = \exp(i2\varphi)$, $\varphi = \pi/Q$, $k \ge 0$, and k is the memorization-stability parameter. Imposing the additional condition k > 0 we obtain something by way of a "strength safety factor" for the memory, but of course at the expense of its volume.

Gardner's idea is to find that part of the phase-space volume T which satisfies the conditions (2) and (3) at which it is possible to recognize $P = \alpha N$ images.

Naturally, this fraction decreases with increase of α , since we impose on J ever more conditions of type (3). For α larger than a certain α_c this volume becomes equal to zero. This α_c is in fact the maximum capacity of the system.

The condition (3) for remembering a number P of Q-colored images can be written in the form

$$\prod_{\mu=1}^{P} \prod_{i=1}^{N} \theta \left(\operatorname{Re}[\xi_{i}^{\mu}H_{i}(1-\eta)] - k \right) \\ \times \theta \left(\operatorname{Re}[\xi_{i}^{\mu}H_{i}(1-\eta^{*})] - k \right) = 1,$$
(4)

where $\theta(x)$ is the step function.

The fraction of the phase space (of the quantities J_{ij}) can be represented in the form:

$$V_{T} = \frac{\int \prod_{j \neq i}^{N} dJ_{ij} \, dJ_{ij}^{*} \prod_{i \neq i=1}^{P} \theta(\psi(\eta)) \theta(\psi(\eta^{*})) \delta(\sum_{j \neq i}^{N} J_{ij} J_{ij}^{*} - N)}{\int \prod_{j \neq i} dJ_{ij} \, dJ_{ij}^{*} \delta(\sum_{j \neq i}^{N} J_{ij} J_{ij}^{*} - N)}, \quad (5)$$

where

$$\psi(\eta) = \operatorname{Re}[\xi_{i}^{\mu}H_{i}(1-\eta)] - k.$$
(6)

Since the choice of images is arbitrary, we must consider $\langle \ln V_T \rangle$, where $\langle \rangle$ denotes averaging over all possible configurations P of the image, and ln is chosen to separate the extensive part of V_T . From the form of V_T it follows that $\langle \ln V_T \rangle = N \langle \ln V \rangle$, where V is the effective phase volume per spin [there is no summation over i in (4), it is fixed, for example in this case it can be assumed that i = 1). To calculate $\langle \ln V \rangle$ we use the replica method.

We introduce *n* copies of our system at fixed $\{\xi_i^{\mu}\}$. That is to say, we consider in lieu of J_{ij} *n* copies of J_{ij}^{α} , $\alpha = 1...n$. The situation is the inverse of what is usually done in spin glasses, where J_{ij} are fixed and *n* copies of the spins are considered.

We obtain

 $\langle V^n \rangle$

$$= \frac{\prod_{\alpha=1}^{n} \int \prod_{j \neq i} dJ_{ij}^{\alpha} (dJ_{ij}^{\alpha})^{*} \prod_{\mu=1}^{P} \theta(\psi(\eta)) \theta(\psi(\eta^{*})) \delta(\prod_{j \neq i}^{N} J_{ij}^{\alpha} (J_{ij}^{\alpha})^{*} - N)}{\prod_{\alpha=1}^{n} \int \prod_{j \neq i} dJ_{ij}^{\alpha} (dJ_{ij}^{\alpha})^{*} \delta(\prod_{j \neq i}^{N} (J_{ij}^{\alpha}) (J_{ij}^{\alpha})^{*} - N)}$$
(7)

We use next the integral representation of the step function

$$\theta(x) = \int_{0}^{\infty} d\lambda \int_{-\infty}^{\infty} \frac{d\nu}{2\pi} \exp(i\nu(\lambda - x)).$$
(8)

We have to calculate

$$\begin{split} \langle \prod_{\alpha} \theta(\psi(\eta)) \theta(\psi(\eta^*)) \rangle &= \int_{k}^{\infty} d\lambda_{\alpha}^{\mu} d\nu_{\alpha}^{\mu} \int_{-\infty}^{\infty} \frac{dx_{\alpha}^{\mu} dy_{\alpha}^{\mu}}{(2\pi)^{2}} \\ \times \prod_{\alpha} \prod_{j \neq i} \langle \exp\{-i\sum_{\alpha} x_{\alpha}^{\mu} [\lambda_{\alpha}^{\mu} - \frac{1}{2\sqrt{N}} (\xi_{i}^{\mu} J_{ij}^{\alpha} (\xi_{j}^{\mu})^{*} (1 - \eta) \\ &+ (\xi_{i}^{\mu})^{*} (J_{ij}^{\alpha})^{*} \xi_{j}^{\mu} (1 - \eta^{*})] \\ -i\sum_{\alpha} y_{\alpha}^{\mu} [\nu_{\alpha}^{\mu} - \frac{1}{2\sqrt{N}} (\xi_{i}^{\mu} J_{ij}^{\alpha} (\xi_{j}^{\mu})^{*} (1 - \eta^{*}) \\ &+ (\xi_{i}^{\mu})^{*} (J_{ij}^{\alpha})^{*} \xi_{j}^{\mu} (1 - \eta)] \} \rangle. \end{split}$$
(9)

The products over j can be taken from under the averaging sign in view of the separation of the variables in i and j.

We expand next Eq. (9) in powers of $1/\sqrt{N}$ and discard all the terms of order 0(1/N). Averaging over ξ causes all linear terms to vanish, since $\langle \xi_i \rangle = 0$, and as a result we obtain the equation

$$\langle \prod_{\alpha} \theta(\psi(\eta)) \theta(\psi(\eta^*)) \rangle = \int_{k}^{\infty} d\lambda_{\alpha}^{\mu} d\nu_{\alpha}^{\mu} \int_{-\infty}^{\infty} \frac{dx_{\alpha}^{\mu} dy_{\alpha}^{\mu}}{(2\pi)^2} \prod_{\mu,\alpha}$$

$$\times \exp\left[i(x_{\alpha}^{\mu}\lambda_{\mu}^{\alpha} + y_{\alpha}^{\mu}\nu_{\alpha}^{\mu})\right]$$

$$\times \exp\{-(x_{\alpha}^{\mu2} + y_{\alpha}^{\mu2})\sin^{2}\varphi + 2\sin^{2}\varphi\cos 2\varphi \cdot x_{\alpha}^{\mu}y_{\alpha}^{\mu}$$

$$- \sum q_{\alpha\beta}(x_{\alpha}^{\mu}x_{\beta}^{\mu}$$

$$+ y^{\mu}_{\alpha} y^{\mu}_{\beta} \sin^2 \varphi + \sum_{\alpha \neq \beta} q_{\alpha\beta} x^{\mu}_{\alpha} y^{\mu}_{\beta} \}, \qquad (10)$$

Introducing the relations for E_{α} and $F_{\alpha\beta}$ for $\delta(\sum_{j\neq i} (|J_{ij}^{\alpha}|^2/N) - 1)$ and $\delta(\sum_{j\neq i} J_{ij}^{\alpha}(J_{ij}^{\beta})^* - q_{\alpha\beta})$ respectively, and summing over α , we can rewrite (10) in the form

$$\frac{\int_{-\infty}^{\infty} \prod_{\alpha=1}^{n} dE_{\alpha} dF_{\alpha\beta} dq_{\alpha\beta}/2\pi \exp\{N[\alpha G_{1}(q_{\alpha\beta}) + G_{2}(F_{\alpha\beta}, E_{\alpha}) - \sum_{\alpha\neq\beta} F_{\alpha\beta} q_{\alpha\beta} + \sum_{\alpha} E_{\alpha}/2\}}{\int_{-\infty}^{\infty} \prod_{\alpha=1}^{n} dE_{\alpha} \exp\{N[G_{2}(0, E_{\alpha}) + \sum_{\alpha} E_{\alpha}/2]\}},$$
(11)

where

$$G_{1}(q_{\alpha\beta}) = \ln \prod_{\alpha=1}^{n} \int_{k}^{\infty} d\lambda_{\alpha}^{\mu} d\nu_{\alpha}^{\mu} \int_{-\infty}^{\infty} \frac{dx_{\alpha}^{\mu} dy_{\alpha}^{\mu}}{(2\pi)^{2}} \prod_{\mu,\alpha} \exp[i(x_{\alpha}^{\mu}\lambda_{\alpha}^{\mu} + y_{\alpha}^{\mu}\nu_{\alpha}^{\mu})] \\ \times \exp\{-\sin^{2}\varphi \left[x_{\alpha}^{\mu2} + y_{\alpha}^{\mu2} - 2\cos\varphi \cdot x_{\alpha}^{\mu}y_{\alpha}^{\mu} + \sum_{\alpha\neq\beta} q_{\alpha\beta}(x_{\alpha}^{\mu}x_{\beta}^{\mu} + y_{\alpha}^{\mu}y_{\beta}^{\mu} - 2\cos\varphi \cdot x_{\alpha}^{\mu}y_{\beta}^{\mu})]\}, (12)$$

$$G_{2}(F_{\alpha\beta}, E_{\alpha}) = \ln \prod_{\alpha=1}^{n} \int dJ_{\alpha} dJ_{\alpha}^{*}$$
$$\times \exp\left\{-\frac{1}{2} \left[E_{\alpha}|J_{\alpha}|^{2} + \sum_{\alpha\neq\beta} J_{\alpha}J_{\beta}^{*}F_{\alpha\beta}\right]\right\}, (13)$$

where $\alpha = P/N$ is the capacity of the system.

In the limit as $N \to \infty$ we can obtain (13) by the saddlepoint method with respect to the parameters $F_{\alpha\beta}$, E_{α} , and $q_{\alpha\beta}$ over the function

$$G = \alpha G_1(q_{\alpha\beta}) + G_2(F_{\alpha\beta}, E_{\alpha}) - \sum_{\alpha \neq \beta} \frac{F_{\alpha\beta}q_{\alpha\beta}}{2} + \frac{1}{2}\sum_{\alpha} E_{\alpha}.$$
 (14)

We seek a solution in a replica-symmetric form

$$E_{\alpha\beta} = F, \quad E_{\alpha} = E, \quad q_{\alpha\beta} = q.$$
 (15)

We use this fact and the transformation

$$\exp\left(\frac{-a^2}{2}\right) = \int_{-\infty}^{\infty} Dt \exp(iat), \quad Dt = \frac{\exp(-t^2/2)}{\sqrt{2\pi}} dt. \quad (16)$$

We obtain

$$G_{1} = \ln \prod_{\alpha=1}^{n} \int_{-\infty}^{\infty} Dt Dp \int dx_{\alpha} dy_{\alpha} d\lambda_{\alpha} d\nu_{\alpha}$$

$$\times \exp \left[i(x_{\alpha}\lambda_{\alpha} + y_{\alpha}\nu_{\alpha}) \right] \exp\{-\sin^{2}\varphi$$

$$\times (1 - q) \left[\cos^{2}\varphi(x_{\alpha} - y_{\alpha})^{2} + \sin^{2}\varphi(x_{\alpha} + y_{\alpha})^{2} \right]$$

$$+ i \sin \varphi \cos \varphi \sqrt{2q} + (x_{\alpha} - y_{\alpha}) + i \sin^{2}\varphi \sqrt{2q} p(x_{\alpha} + y_{\alpha}) \}.$$
(17)

After diagonalizing the quadratic form in (17), integrating over $(x_{\alpha} + y_{\alpha})/2$ and $(x_{\alpha} - y_{\alpha})/2$ and letting $n \to 0$ we obtain

$$G_{1} = n \int_{-\infty}^{\infty} Dt Dp \ln \frac{1}{4 \sin^{3}\varphi \cos \varphi \cdot (1-q)}$$

$$\times \int_{k}^{\infty} d\lambda \int_{k}^{\infty} d\nu \exp \left\{-\frac{1}{8 \sin^{2}\varphi \cdot 4(1-q)}\right\}$$

$$\times \left[\frac{(2 \sin^{2}\varphi \cdot \sqrt{qt} + (\lambda + \nu)/\sqrt{2})^{2}}{\sin^{2}\varphi} + \frac{(2 \sin \varphi \cos \varphi \cdot p + (\lambda - \nu)/\sqrt{2})^{2}}{\cos^{2}\varphi}\right]. \quad (18)$$

To take Dt and Dp from under the logarithm sign, we use the fact that as $n \rightarrow 0$

$$\ln \int Dt f^{n}(t) = \ln \int Dt [1 + n \ln f(t)] = n \int Dt \ln f(t).$$
(19)

It is difficult to estimate G_1 for arbitrary Q. At Q = 4 the crossover terms of type λv in the exponential vanish and G_1 takes the form

$$G_{1} = \alpha n \int_{-\infty}^{\infty} Dt Dp \ln \frac{1}{(1-q)} \int_{k}^{\infty} d\lambda d\nu$$

$$\times \exp \left\{ -\frac{1}{2(1-q)} \left[q(t^{2}+p^{2}) + \lambda^{2} + \nu^{2} + \sqrt{2q}(t-p) + \sqrt{2q}(t+p) \right] \right\}.$$
(20)

Introducing $X = (t+p)/\sqrt{2}$ and $Y = (t-p)/\sqrt{2}$, we obtain

$$G_1 = \alpha n \int DXDY \ln H\left(\frac{\sqrt{q}X + k}{\sqrt{1 - q}}\right) H\left(\frac{\sqrt{q}Y + k}{\sqrt{1 - q}}\right), \quad (21)$$

where H_x is the supplementary error function:

$$H(x) = \int_{x}^{\infty} Dz.$$
 (22)

Using the transformation (16) and integrating over J, we obtain

$$G_{2} = n \int Dz Dz^{*} \ln \left\{ \frac{\exp \left[Fzz^{*}/2(E+F)\right]}{\sqrt{E+F}} \right\}$$
$$= \frac{F}{2(E+F)} - \frac{\ln(E+F)}{2}.$$
(23)

The final expression for G is

$$G = n \left[\alpha \int DXDY \ln \left\{ H\left(\frac{\sqrt{q}X + k}{\sqrt{1 - q}}\right) H\left(\frac{\sqrt{q}Y + k}{\sqrt{1 - q}}\right) \right\} + \frac{1}{2} \ln(1 - q) + \frac{q}{2(1 - q)} \right].$$
(24)

For the value of q at the saddle point we obtain

$$q = \alpha(1-q)\int DXDY \left\{ H^{-2} \left(\frac{X\sqrt{q}+k}{\sqrt{1-q}} \right) \exp\left[-\frac{(\sqrt{q}X+k)^2}{1-q} \right] + H^{-2} \left(\frac{\sqrt{q}Y+k}{\sqrt{1-q}} \right) \exp\left[-\frac{(\sqrt{q}Y+k)^2}{1-q} \right] \right\}.$$
 (25)

It is clear hence that $q \rightarrow 0$ as $\alpha \rightarrow 0$. As α increases, an instant sets in when the value of q from (25) reaches unity (further increase is impossible, since $|q| \leq 1$). As indicated by Gardner, it is this value which determines the critical value of α_c below which correct memorization of the images is impossible.

As $q \rightarrow 1$ we find, using an asymptotic expansion for H(x):

$$\alpha_c = \frac{1}{2\int DX(X+k)^2\theta(X+k)}.$$
(26)

Letting $k \rightarrow 0$, we obtain

$$\alpha_c = 1. \tag{27}$$

The iteration rule (1)-(3) has Z(Q) symmetry, one could therefore expect α_c to be equal to Q and not to 1, but this is as follows from (27). This, however, is an illusory symmetry.

Were we to choose H_i not in the form (1), but as

$$H_i = \sum_{j \neq i} \frac{J_{ij} \sigma_j}{\sqrt{N}},\tag{28}$$

we would obtain the old equations for the mean field, the same as for the local field given by expression (1).

The choice (28) corresponds to a symmetry Z(2) for even Q. The fact established by Gardner, that with the aid of N^2 real numbers it is possible to record by a simple algorithm $2N^2$ bits of information, is both beautiful and intriguing. If Q = 4 we see that we can already record only N^2 4-digit numbers (± 1 , $\pm i$). When next? it is possible that if Q = 5a phase transition can set in (with violation of the replica symmetry).

¹E. J. Gardner, J. Phys. A., Math. Gen. 21, 257 (1988).

Translated by J. G. Adashko