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TheS-matrix approach and the Green's-functions technique are used to analyze the interaction of 
an electromagnetic field with a metallic particle. A diagram technique is developed for the 
description of electrodynamic phenomena in inhomogeneous media. The results of the classical 
Mie theory of light scattering and absorption by a sphere are duplicated. It is shown that the 
photon-photon interaction (term quadratic in the field in the Hamiltonian of the metallic 
specimen + electromagnetic field system) increases anomalously near the frequencies of the 
surface plasmons in the particle. This leads to renormalization of the wave functions of the 
photons interacting with the particle, transforming them into excitations of the polariton type 
with poles as functions of the frequency. As a result: a )  the cross sections for three-photon 
processes on the surfaces of small particles (e.g., second-harmonic generation) are anomalously 
large even in weak electromagnetic fields, b) the cross section for inelastic scattering of light by a 
small particle is of the same order as the elastic-scattering cross section. 

1. INTRODUCTION 

The interaction of an electromagnetic field with macro- 
scopic particles of a dispersed phase are usually described by 
classical electrodynamics. In some situations, however, this 
approach cannot be used. These include the calculation of 
the cross sections of a number of inelastic electromagnetic 
processes, such as Raman scattering of light, where one must 
resort to quantum-mechanical relations of the "golden rule" 
type. A quantum-mechanical approach is needed essentially 
also in the calculation of the photoeffect in small particles. 

There are also less known cases when the use of the 
classical approach can lead to errors. Thus, in the simplest 
multiphoton processes on the surfaces of small metallic par- 
ticles, the photon-photon interaction, which can certainly 
be neglected in a uniform medium, becomes extremely sub- 
stantial at frequencies close to those of the surface plasmons 
of a particle. This leads to a strong renormalization of the 
wave functions of the photons participating in the process: 
the plane electromagnetic wave indicative of the photon is 
transformed in the particle into an entirely different function 
having a pole dependence on the frequency. This gives rise to 
additional poles in the cross sections of many multiphoton 
processes. Similar phenomena are observed in certain two- 
photon processes-for example in inelastic scattering of 
light by a metallic particle. 

There exists in addition one more curious phenomenon, 
not accounted for at all in classical electrodynamics, and 
similarly connected with multiphoton processes. Even the 
simplest three-photon processes on the surface of a particle 
can be realized via different channels that are experimentally 
undistinguishable. Allowance for the interference of proba- 
bility amplitudes corresponding to all channels of the pro- 
cess is absolutely indispensable. None is made in the classical 
approach. 

We investigate in the present paper the interactions of 
an electromagnetic field with particles of a disperse phase by 
using the method of quantum Green's functions, which 
makes it possible to surmount the above difficulties. This 
method has by now given such good account of itself that it 
requires no promotion. We therefore skip the appropriate 

words and the tremendous bibliography devoted to its use 
for research into a great variety of physical phenomena. At 
the same time, we wish to point out that when the Green's 
function method is used to describe electrodynamic phe- 
nomena preference is given to the use of photon propaga- 
tions via Maxwell's equations rather than an initial Hamilto- 
nian followed by traditional construction of a diagram 
technique.' It seems to us that this is no accident but is con- 
nected with the fact that only the transverse part of the elec- 
tromagnetic field is quantized, while the Coulomb forces, 
which are wholly responsible for the existence of a con- 
densed medium, are introduced via an interaction potential. 
This circumstance does not raise serious difficulties in the 
study of processes in a homogenous medium, where the lon- 
gitudinal and transverse effects are completely separated 
and the choice of a gauge for the photon propagator is not 
decisive. In homogeneous media, however, the dielectric- 
constant gradients make it possible to transform a transverse 
field into a longitudinal and vice versa, leading to the so- 
called retardation effects characterized by a parameter OR /c  
( W  is the field frequency, R is the characteristic dimension of 
the inhomogeneity, and c the speed of light). This raises 
ultimately a number of difficulties in the development of a 
diagram technique. In the present paper we overcome these 
difficulties and show how to use a consistent quantum-me- 
chanical S-matrix approach to describe the electrodynamics 
of a metallic particle of a disperse phase. 

In the next section, starting from the known connection 
between the S-matrix and the Hamiltonian of the interaction 
of an electromagnetic field with a particle, we construct a 
diagram representation for the amplitude of elastic scatter- 
ing of light by a particle. With this as an example, we shall 
show how to find the photon propagator, the polarization 
operator of the particle, and an expression relating the scat- 
tering amplitude with the photon propagator. Furthermore, 
using the technique of expansion in vector spherical har- 
monics, we solve an integral equation for the photon propa- 
gator and calculate the differential cross section of elastic 
scattering of an optical photon by a particle, reproducing 
thereby the classical results of the Mie theory.' In Sec. 3, 
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using the technique of Lehmann expansions,' we show how 
to obtain a classical expression for the cross section of light 
absorption by a particle. We finally proceed then to solve 
problems in which quantum theory is indispensable: 1) cal- 
culate the probabilities of three-photon processes on the sur- 
face of a particle-Sec. 4,2) calculate the cross section of the 
inelastic scattering of light by a particle-Sec. 5, 3) analyze 
the photoeffect in a small metal particle-Sec. 6. 

In our entire discourse we use the jellium model to de- 
scribe the behavior of the particle, i.e., we assume that the 
particle is metallic, but its electrodynamic properties are due 
to a gas of conduction electrons contained in a self-consis- 
tent well produced by a positive ion background. All the 
calculations of the irreducible polarization operators are 
made in higher-order perturbation theory in electron-elec- 
tron interaction. The described limitations and the specific 
choice of the model simplify substantially and shorten the 
discourse, but are not of fundamental importance. 

Except in the final results, we use everywhere a system 
of units with f i  = c = 1. 

2. ELASTIC SCATTERING OF LIGHT BY A PARTICLE 

In this section we use the calculation of the differential 
cross section for light scattering by a particle as an example 
to show how to develop a diagram technique for the investi- 
gation of electromagnetic processes in an inhomogeneous 
metallic sample. 

It is assumed that the electromagnetic properties of the 
sample are due to a conduction-electron gas that interacts 
via a Coulomb potential and is located in a field u( r )  pro- 
duced by a uniform positive ion background. The electron 
density n( r )  of the sample is specified in the form 
n( r )  = noT(r), where n, is the average conduction-electron 
density, ~ ( r )  = 1 inside the sample and to zero outside. 

We represent the total Hamiltonian of the sample + 
electromagnetic field system in the form 

where the Hamiltonian 

describes the non-interacting conduction electrons con- 
tained in the field u( r )  and the free transverse electromag- 
netic field; p ( r )  + $ + ( r )  $( r )  is the electron-density oper- 
ator, p(r)  = i+ + (r)V$(r), is the electron-momentum 
density operator, where $+ ( r ) ,  and $(r) are the electron 
creation and annihilation operators; m is the electron mass; 
a,$ and a , ,  are the creation and annihilation operators for a 
photon with a wave vector k, a polarizationil (il = 1,2), and 
a frequency w = ck. The Hamiltonian of the electron inter- 
action with one another and with the electromagnetic field is 

- ~ J p ( r ) ~ ( r ) d r  m + &Jp(r)A2(r)dr, (1  

whereQ(r) = Irl- ' ,Sp(r) = p ( r )  - n(r),eistheelectron 
charge, and A is the vector-potential operator 

k, i 

V is the normalization volume, e , ~  is the polarization unit 
vector and satisfies the relations 

ek. Aek, A' = d ~ ' .  

The connection between the photon elastic scattering 
amplitude f ,  which determines the probability of the pro- 
cess 

w = 27c15'12s(oi - w,), 

with the S matrix is 

where i and f label the initial and final states, and the angle 
brackets denote averaging over the ground state of the Ham- 
iltonian H,. The Smatrix is defined in the standard manner' 

OD 

s = T eXp{-iJH'(T)d7) 
- w 

where T is the chronological-ordering operator and 
HI (T)  = exp(iH,~)H, exp( - iH,r). 

To calculate f we expand the S matrix in a perturba- 
tion-theory (PT) series in terms of HI. In first-order PT we 
have: 

where o = wi = wf, and Ycrg (r,rl)  is the potential of the 
photon-particle interaction 

eL P 4 (r, r') = - , d&(r - rl)n(r) 

We have used in (4)  the relation 

between the dielectric constant ~ ( w )  of the particle material 
and the polarizability a ( w )  with the classical plasma fre- 
quency w, = 4(nn,e2/m)"* of the electron gas. 

We set Eq. (4)  in correspondence with diagram a)  of 
Fig. 1, which shows in graphic form the PT series for f .  In 

FIG. 1 .  Perturbation-theory series for elastic-scatterings amplitude. 
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second-order PT there appear two terms. The first of them is 
connected with diagram b) . The corresponding analytic 
expression is: 

Simple estimates show that the contribution of this diagram 
contains the small parameter ( r d R ) ( o d o )  (r, is the 
Thomas-Fermi screening radius and R is the characteristic 
dimension of the sample) compared with the contribution of 
diagram a) .  We neglect hereafter the contribution made to 
the amplitude by diagrams containing a momentum-mo- 
mentum correlator. In second-order PT, there appears on 
top the diagram b) one more component o f f :  

will be derived in Appendix A. These operators make non- 
zero contributions to/ only in an inhomogeneous medium, 
and it is precisely they which describe the transformation of 
a longitudinal field into a transverse one and vice versa. Us- 
ing (6)  we can represent the diagrams f) of / in the form 

This term can be combined with (5)  by introducing into the 
problem a new propagator Recognizing that p ( r )  = n ( r )  + Sp(r), we can represent it 

as a sum of two diagrams: c )  and d).  Diagram c) corre- 
sponds to a contribution 

1 = (bas - -v V') 
@2 a B 

where 

is the free-photon propagator in a transverse gauge. Con- 
nected with the diagram d) ,  which contains an integrated 
propagator line, is a small parameter e2 which we shall omit. 
We shall also disregard analogous diagrams of higher orders 
of PT, of the type d )  containing the small parameter AF/A  
( A  is the wavelength of the incident radiation and RF is the 
Fermi wavelength of the electron). 

A very interesting term appears in third-order PT in the 
amplitude f and is represented by diagram e). Its contribu- 
tion to f is: 

in which, with some experience, it is easy to recognize a free- 
photon propagation in a gauge with a zero scalar potential. It 
is just a propagator in this gauge which will play the princi- 
pal role hereafter. 

In higher orders of PT there appear, beside the elements 
already considered, also diagrams describing an added com- 
plication of the Coulomb line. In particular, in fourth order 
there appears the diagram h) ,  which contains an irreducible 
density-density polarization operator 

m 

The explicit form of the correlator 9, will also be derived 
x du"'d~'ex~(-ik~r)ex~(zk~ rl)ebefSdrldrz. in Appendix A. 

The rules for decoding the elements of the diagrams of 
Fig. 2 will help us with the now feasible summation of the PT 

The explicit forms of the irreducible polarization operators series. It is easy to guess that to this end it suffices to replace 
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FIG. 2. Rules for interpreting the diagram elements. 

the internal lines in diagrams (f), (c),  (h) ,  and ( i )  of Fig. 1, 1 iWPm(r, r') - - VaPao(r, r') = 0, respectively, by the propagators G,, Gap, Go,, and Gao, m 
defined in Fig. 3. It is easy also to obtain from Fig. 3 the m 
system of four integral equations satisfied by these propaga- -iwPk(r, r') + 2 VpPk(r, r') = 0, 

e 
tors (the parentheses denote integration over the internal 
coordinates) 

which are obtained by using the continuity equation .. 
e' 

Gm = Q + e 2 ( ~  PmGm) - ; (Q p&Gd), % +  divj  = O  

The graphic forms of these equations are shown in Fig. 4. 
A fundamental simplification of the procedure for sum- 

ming the selected classes of diagrams is obtained by intro- 
ducing a new propagator Dap, which is connected with Go,, 
G, , Gap, and G,, , by the relation 

i DaS(r, r') = Gap@, r') - 73 V G (r, r') 
a OB 

i 1 - ; ViGao(r, r') - ; VaVjGm(r. r'). 

and the relations 

~ ( r )  = Jpk(ra(l. rl)Aa(rl)drl + S p m ( r ,  rl)V(rl)drl, 

which connect the charges and currents induced in the sam- 
ple with an electromagnetic field characterized by vector 
and scalar potentials A and V. Using (9)  and ( 10) it is easy 
to show that the sum of the diagrams of interest has the form 
shown in Fig. 5, or: 

'3 = e e x p ( - k )  4 (r, rl) exp(zkf r1)eB drdr, 

We establish first the identities 

FIG. 3. Determination of four auxiliary propagators. FIG. 4. System of equations for four auxiliary propagators. 
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FIG. 5. Connection between the elastic-scattering amplitude and the pro- 
pagator in a gauge with zero scalar potential and equation for this propa- 
gator. 

where Y a p  is defined by expression (4) ,  and D is the solu- 
tion of the equation (see also the last line of Fig. 5): 

Equation ( 12) coincides with the well-known (see, e.g., Ref. 
1 ) equation for the Green's function of the Maxwell equa- 
tions in a gauge with a zero scalar potential. We were able to 
derive (1 1) and (12) without introducing potentials quan- 
tized in this gauge. Were it possible to introduce properly 
such operators and to express correctly the Hamiltonian in 
their terms, our exposition would be noticeably shortened. 
We have heard of no one able to do this distinctly. Our at- 
tempts in this direction also ended in failure. 

Up to now, all the equations written by us depended in 
no way on the shape of the sample. Our task will now be to 
solve them for a spherical particle of radius a. We begin with 
Eq. ( 12). We use the technique of expanding in eigenfunc- 
tions a vector wave equation in a spherical coordinates- 
functions L, M, and N. These functions are introduced by 
the relations3 

Mfm(w, r) = rot [rzl(wr) Yh(n)l = ~ z l ( w r ) c l m ( n )  

1 
= w rot N~,(w, r), (13) 

where n = r/r and z, (x)  are spherical BesseI functions. The 
vector spherical harmonics P, B, and C are connected with 
the normalized scalar spherical harmonics Y,, (n )  as fol- 
lows: 

To start with, we obtain an expansion in the vector spherical 
harmonics for the free-photon propagator D $ contained in 
Eq. ( 12) and having the explicit form (7).  We use the well- 
known expansion3 

+ jl(wr1)h,(wr)8(r - r')] , (15) 

where a superior bar denotes that the corresponding func- 
tion is one of the complex-conjugate spherical harmonic 
Y L, j, is a spherical Bessel function, h, is a spherical Hankel 
function of the first kind, and O(x) is the Heaviside unit step 
function. To make the mathematics clearer and more lucid, 
we omit some of the arguments and indices in the intermedi- 
ate calculations and restore them in the final results. 

Differentiating ( 15) we obtain 

Substituting (16) in (7 )  and taking (14) into account, we 
see that the terms containing the products L , Z ~  in ( 16) are 
canceled out in analogy with the terms in ( 14). The remain- 
ing terms in ( 16) can be simplified by using the relations 

hI(x)jj(x) - h;(x)jl(x) = - i/x2 (17) 

and (13): 

i =- n 6(n - n'). 
a 

Taking (7),  ( 14), and ( 16) into account we obtain ultimate- 
ly (r<rl) :  
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In a uniform medium with dielectric constant E the frequen- 
cy w should be replaced byp = w&. The corresponding pho- 
ton propagator will be designated D P,, (r,rl). It satisfies the 
equation 

P4(r, rl) = DOp(r, r') + a w 2 J ~ g ( r ,  r l )q(II .  rl)drl. (19) 

We shall now demonstrate a simple and very effective 
method for instantaneously solving an equation such as ( 12) 
for a density distribution ~ ( r )  = 8(a  - r).  We do every- 
thing in symbolic form, without invoking a specific type of 
Green's function, and adhere only to definite rules according 
to which a free Green's function acts on functions in terms of 
which the exact solution is expanded. 

Assume that the free propagator can be represented as 
an expansion ( r  < r') 

@(r, r') = 2 A@)!Jw, r)g@, r'), 
1 

Equation (25) yields together with (21) the complete solu- 
tion of the problem. 

In the vector case of interest to us nothing changes as a 
whole. The properties (22) and (23) are obviously valid. 
Further, the function M contains only the harmonic C, 
which is perpendicular to the harmonics B and P contained 
in N. The Green's function can be divided into two indepen- 
dent parts, the equation for each being solved separately, 
literally as was done above. The Green's function satisfying 
Eq. (20) is therefore ( r  < r' <a) :  

D4(r, r') = q p ( r ,  r') - 
lm 

An integral type (24) is calculated in Appendix B. The re- wheref, and g, are regular and singular at r = 0 solutions of 
flection coefficients are: 

the free wave equations. These can be j, (wr) Y,, (n)  or 
h, (wr) Y,, (n )  in the case of a scalar propagator, or M', N' 

RY = WI(M:~M :,)I - hApa) [Wh(Pa) - @'#h(wa)l and Mh,  Nh in the vector case. We must solve Eq. (12),  - 
which we rewrite in the form w [ ( M ~ ~ M  {,)I jXpa) [PrUApa) - w'#h(wa)l ' 

h - h  
D(r, rf) =  DO(^, rl) + ~ U ~ J D O ( ~ ,  I ~ ) ~ ( T ~ ) D ( I ~ ,  rl)dll. (20) N - W[(N[mN [m)] - - hA~a) [*h@~) - N h ( ~ ~ ) ]  

R' - w [ ( N ~ ~ W  im)] /@a) [w'#,@a) - Wh(wQ)l ' 
Obviously, D must be sought in the form of a signal freely 
propagating in the medium and a sum of reflected waves where - - -  

whose defining functions must be regular at the origin 
Zl- I@) d - - ln t x z ~ x ) ~ .  1yz(x) = - - - - 

D(r, r') = Dp(r, r') - A@)R1f@, r)fLp, r'). (21) Z ~ X )  x dx 

We have obtained the Green's function for the case when 
We have to find the reflection coefficients R,. Let us formu- both arguments and r1 lie inside the sphere. is easy to 
late the rules according to which a free propagator acts on extend the results to other cases, for example r, r t%a.  We, 
each term from the right-hand side of Eq. (21) however, have no need for this. 

To calculate the elastic-scattering cross section it re- 
JD0(r9 rl)7(r1)P(rl, rl)drl mains to calculate the sum of the two integrals in ( 1 1  ) 

1 
= ( P  - DO) - ~ @ ) ~ ~ ( p y @ ,  ry@, r') ~ [ g g ]  , (eief)J8(a - r)exp [-lr(ki - kf)l dr 

a w  

where 

- 2 ~l(w)g@, r ) w [ a ,  (23) We begin with 4 transformation of the second integral, in 
which - we substitute DP and replace 8 by 1 - 8 (where 
8 =  1 - 8 ) :  

exp(- kir) 
and ?j = 1 - 7,  and agree to let henceforth the function con- = - 

aw2 (ei"/> taining w precede the function containing p. In the deriva- 
tion of (22) and (23) we used the relation 7 = 1 - ?j and Eq. 
( 19). Integration over all of space yields the first term on the - Je(r - a)eheflH4(r, rl)exp(-rkir)dr. (28) 
right-hand sides of (22) and (23),  while the second term 
results from integrating with respect to r with a factor q. The first term in the right-hand side of (28) is canceled by 

Substitution of (2  1 ) in (20) yields the first term of (27).  We have therefore for (27) 
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Owing to the factor 88 ', the 6-like term in DP makes no 
contribution to (29),  and the contributions from the M- and 
N- parts of the propagators can be calculated separately. 
Since the two calculations are alike, we carry out only one of 
them-for the part of D containing the functions M. Substi- 
tuting in (29) the part of D that depends on M, we obtain 

where ni and nf are unit vectors in the directions of ki and 
kf, respectively. In the derivation of (30) we used relations 
(B3 ) and (B7) of Appendix B. The D~ contribution is cal- 
culated similarly: 

Combining (30) and (31) we have 

In the derivation of this equation we used the relation 

which is a consequence of (B1 ) and ( 17). The contribution 
of the N-part of the photon propagator has a similar struc- 
ture 

Substitution of (32) and (33) in (11) yields 

We are now able to calculate the differential scattering 
cross section. The transition probability per unit time is 

dW = 2n19I2dp, 

where 

is the number of final states of the photon per unit energy. 
The scattering cross section is obtained from d Wby dividing 
it by the flux density 2rV- ' . The differential cross section 
takes ultimately the form 

This result is fully equivalent to the classical Mie theory of 
scattering of an electromagnetic wave by a sphere. 

3. LIGHT ABSORPTION 

We show now how to calculate in our approach the 
cross section for light absorption by a particle. 

The probability of absorbing a light photon of frequen- 
cy mi = w is determined by the golden rule 

w = I~0s12w - w 3 ,  
S 

where the connection of the amplitude f with the S matrix 
is 

(0 l aklS I s) = - (35) 

the summation is over all the excited states of the electron 
gas of the particle, and w, denotes the corresponding excita- 
tion energy. The contribution to Win first-order perturba- 
tion theory comes from the second term of the Hamiltonian 
HI : 

where 

Before summing the perturbation-theory series in (35) we 
change over in (36) from electron-momentum density oper- 
ator matrix element p to the electron-density operator ma- 
trix element p ( r )  = $ + ( r )  $(r).  To this end we consider 
the commutator matrix element of the Hamiltonian H with 
the plane wave exp(zlcr), where k is the wave vector of the 
incident photon. Obviously, 

(01 [H, dkl drls) = -os(Ol JP(r)&drl s). 

On the other hand, direct calculations yield 

+ $ (0 1 J dh(kp)dr 1 s). 

Equating the last two expressions and applying the operator 
e,,, Vk,= to both sides of the resultant identity, we have: 
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The second term in the right-hand side of (37) is made zero 
by symmetry. This can be easily verified by considering the 
identity 

where p, and q, are single-electron wave functions of the 
ground and excited states. Both integrals in the right-hand 
side of (38) are vector functions whose directions are speci- 
fied by the only vector k of the problem. Both terms of (38) 
are therefore zero, i.e., (ke, ) = 0. 

To sum the perturbation-theory series in (35) we intro- 
duced the density-density polarization operator of the sys- 
tem 

m 

n,(r.r1Iw)=iJ'(0l~p(r,r)p*(r',0)l0)@dr, (39) 
- w 

where p ( r , ~ )  = eiHTp(r)e - iHT and T is the chronological- 
ordering operator. It is easy to obtain for the Fourier trans- 
form of II, (r,rllw) 

a spectral representation of the Lehman type 

where (p, ), = (01 sp(r)e - "'drls). To this end, we consid- 
er the correlator 

p(k, 1) = J'vf (r, t)p(r. ~ e - ~ ~ d r ,  

v+(r, t )  = eiHtiy+(r)e-af. 

We expand II, in the eigenstates of the electron gas of the 
particles 

A transformation to Schrodinger operators yields 

where r = t - t ', w, = Es - E,, and H Is) = E, Is). For the 
Fourier transform of II, ( k , ~ )  with respect to T one readily 
obtains 

Expression (40) is obtained by taking the imaginary parts of 
both halves of (41 ), using the identity 

1 II 
Im- = -6(w - w,). 

w,2 - w2 b, 

Now, using expressions (40) and (37), we can write for the 
probability of absorption of a photon with allowance for all 
orders of perturbation theory: 

At frequencies w (2mc2 it is natural to neglect, as we shall, 
the second term in the parentheses in the right-hand side of 
(42). 

Changing from the Heisenberg operators in (39) to op- 
erators in the interaction representation, we readily obtain 
for II, (r,rllw) the expression 

where p' ( r , ~ )  = exp(iH,~)p(r)exp( - ~H,T) and the 
primed angle brackets indicates that only connected dia- 
grams need be taken into account in the perturbation-theory 
expansion of the Smatrix. The perturbation-theory series for 
KI, is shown in Fig. 6. Within the framework of the approxi- 
mations used in Sec. 2, summation of the series yields 

X Fp0(r2, rJ)drldr2. (43) 

Using the explicit form of the irreducible polarization opera- 
tors ?,, and ?,, obtained in Appendix A, as well as the 
procedures of the preceding section, the operator II, (k,w) 
can be readily rewritten in the form 

FIG. 6.  Perturbation theory series for density-density propagation opera- 
tor. 
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The integrals in (44) are again calculated by expanding the 
propagators in terms of the vector spherical harmonics ( 13 ) . 
The M-parts of the propagators make no contribution to 
II, (k,w). The contribution from the B-parts of the N-func- 
tions is likewise zero. The final result is quite compact: 

Equation (45) coincides with the results of the classical- 
electrodynamics calculation of the cross section for light ab- 
sorption by a sphere. In the dipole approximation, (45) 
leads to the known Rayleigh equation: 

4. SIMPLESTTHREE-PHOTON PROCESSES ON THE 
SURFACE OF A PARTICLE 

In this section we use our formalism to calculate elec- 
trodynamic processes which cannot be correctly described 
in the framework of classical electrodynamics. We shall deal 
with the simplest three-photon processes on surfaces of 
small metallic particles. Why is classical electrodynamics 
inadequate here? First, even processes such as mixing of two 
photons (including second-harmonic generation) can be ef- 
fected by various methods which are in principle indistin- 
guishable in experiment. We must use then the rules estab- 
lished by quantum mechanics-sum the probability 
amplitudes corresponding to each channel of the process, 
and calculate its probability as the squared modulus as the 
summary amplitude. The so-called cross terms that appear 
in this approach describe the interference of partial ampli- 
tudes and are lost in the classical calculation method. Sec- 
ond, no account is taken in classical electrodynamics of the 
mutual interaction, via the polarization of the medium, of 
the photons taking part in the process. Effects of this kind 
can be completely neglected in a homogeneous medium be- 
cause the photon-photon interaction constant e2 is small. 
These effects are no longer small on the surfaces of small 
metallic particles near the frequencies of the collective elec- 
tronic excitations. The photon is said to go off the mass 
shell-the wave functions of the photons participating in the 
process cease to be plane electromagnetic waves, and have a 
pole dependence on the frequency. Therefore the cross sec- 
tions of many electrodynamic processes near these poles are 
larger by many orders. 

We consider the transformation of two photons into one 
on the surface of a metallic particle, of two photons into one 
and the inverse process. It  is known that the Furry4 theorem 
denies such processes in a uniform medium. This hindrance 
is lifted here, owing to momentum nonconservation due to 
the absence of translational symmetry in the system. 

The amplitude f 1  + 2 , 3  which determines the proba- 
bility of transformation of the two photons (subscripts 1 and 
2)  into a third (subscript 3) in accordance the rule 

where a , ,  o,, and w, are respectively the energies of the 
photons incident on the particles and of the scattered one. To 
calculate f 1  + 2 - 3  we expand the S matrix in a perturba- 
tion-theory series. The first nonzero contribution to f ap- 
pears in second-order perturbation theory 

The diagrams corresponding to (46) are a ) ,  b) and c)  of Fig. 
7. The diagram d) ,  which appears in the third-order, con- 
tains the parameter (ro/a) (wo/o) which is small compared 
with a) ,  b),  and c) and we shall disregard it. The estimates of 
Sec. 2 allows us to neglect the processes described by dia- 
grams i), j), and k). Finally, the Ward identities, which es- 
tablish a correspondence between the form of the photon 
mass operator and the form of the vertex part, allow us to 
disregard diagrams of type l ) ,  which describe the renormal- 
ization of the photon vertex. The last fact is important, since 
it permits renormalization of the wave functions of the real 
photons involved in the process independently of one an- 
other. We shall use the devices of Sec. 2 to sum the perturba- 
tion-theory diagrams for the amplitude f .  The summation 
results are shown in Fig. 8 in two perfectly equivalent man- 
ners. The renormalized photon wave function Q, is defined in 
Fig. 9. Figure 10 shows the form of the mixed polarization 
operator no,. 

The physical cause of the renormalization of the wave 
functions of photons emerging from one and the same vertex 
(see Fig. 7) is the local interaction of the photons on the 
particle surface. In linear electrodynamics, where photon- 
photon interaction is neglected, the outer photon ends are 
not ren~rmalized.~ 

It remains now to write an analytic expression for the 

FIG. 7. Perturbation-theory series for the amplitude of transformation of 
two photons into one. is related to the S-matrix by 
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FIG. 8. Two equivalent expressions for the total amplitude of transforma- 
tion of two photons into one. 

amplitude of the process. For example, the contribution of 
the first diagram of Fig. 8 is 

The renormalized photon wave function Q, is determined, in 
accordance with Fig. 9, by the expression 

(48) 

where 

FIG. 10. Definition of mixed polarization density-momentum operator. 

x r ~ f ~ , ~ ( w , r ) f i  jm@(w, r l )  
is the free-photon polarization in a transverse gauge and 

The operator no, is given, according to Fig. 10, by 

The integrals in (48) and (49) are easy to calculate by 
using the representation (26) for the propagator D as well as 
the following expansions for a plane electromagnetic wave 
and for a free propagator in a transverse gauge GO,,: 

where n = r/r. As a result we can obtain for Q, the expres- 
sion: 

FIG. 9. Construction of renormalized wave function of a photon incident 
on a particle. 
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where Z = (wo/fi) ( 1 - 37) is the frequency of a dipole 
surface plasmon in a spherical particle and g = ?/3, where 
7 = w,a/d is the width of the dipole plasma resonance and 
is due to transfer of the plasmon energy into the transverse 
electromagnetic ,. field = (called_ the r_adiation width). Next 
w=J$wo( l -&y) ,g=&y5andy=f iw0aare thecor-  
responding values indicative of the quadrupole surface plas- 
mon. It is instructive to compare expression (5  1 ) with the 
expansion of a plane electromagnetic wave, to verify the 
strength of the photon wave-function renormalization used 
by us, especially near plasma-resonance frequencies in the 
particle. 

We shall not write down the unwieldy expressions for 
the amplitude for the general case, and confine ourselves to 
the results in the long-wave limit. Obviously, f has three 
poles due to the possibility of excitation of a surface plasmon 
by each of the photons participating in the process 

Here n = k/l k 1. The three poles cannot be realized simulta- 
neously. The maximum signal is observed if two plasmons 
are excited at once. Analysis of the expression for f shows 
that this occurs in the following cases: 1) The incident pho- 
tons excite dipole and quadrupole plasmons, while the emit- 
ted one excites no plasmon whatever; 2) one of the incident 

photons excites a dipole plasmon and the emitted a quadru- 
pole one, or vice versa. In the first case (w ,  z w ,  w,zZ),  for 
example, the power emitted by the particle in the direction of 
the unit vector n,, as a result of an elementary 1 + 2 - 3 act 
as determined by the expression 

where I, is the electron classical radius, while Q, and Q, are 
the energy densities in light beams with frequencies w, and 
w,, respectively. 

It is easy to perform similar calculations for the inverse 
of the above process-transformation of one photon of fre- 
quency w, into two emitted photons with frequencies o, and 
w, (a, = w2 + w 3 )  The maximum signal is observed if: 1) - - - - - - - 
w2zw, w3zw, 2) w2zw, w3zw, 3 )  w,zw,  w2zw, - 
4)w, zE,  w,=;w. The calculation shows, for example, that 

at w, ZW and a, z E  we have 

a3Z ;2 
X- 

2~ +Z 0;- W2(1 - i?) 

Integration over the states of one of the emitted photons (of 
frequency 01,) yields the following expression for the differ- 
ential cross section that determines the probability of ob- 
serving one of the photons of interest to us, incident in a 
direction specified by a unit vector nk, in an energy interval 
dE, near w, z Z  

1 1  =-- (ha) (5) I w 3  
mc :2 (W + q(G+ i7)2 

where /3. is the photon polarization index. 
The cross section of the process near w, ZZ and w, ZZ  

is determined by a similar equation 
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Numerical estimates show that for Ag or Au particles 
with a = 200 A the cross section of the process 1 + 2  -+ 3 
near the plasma resonances is of the cross section of 
elastic scattering of light by the particle, while the power of 
the signal connected with the transformation 1+2 + 3,  
drawn from one particle, is 10 - W if pulsed lasers are used. 
This permits complete observation of both effects in experi- 
ment. A curious feature of the considered processes is the 
total absence of scattering in the "forward" and "backward" 
scattering of the light polarized in the scattering plane. 

To conclude this section, we call attention once more to 
the existence of two three-photon mechanisms of processes 
on the surfaces of small metallic particles. The first was con- 
sidered above. The second is connected with diagram d )  of 
Fig. 7. In the former case the probability of the considered 
essentially nonlinear process, as seen above, is determined 
completely by the characteristics of the linear electromag- 
netic response of the particle. In the second there appears 
inevitably in the process a particle polarizability that de- 
pends on the external-field intensity, or a quadratic suscepti- 
bility. The mechanism realized depends on the value of the 
parameter ( r , /a )  ( w , / w ) .  For particles with a=: lo2-lo3 A 
in the optical range, the dominant mechanism is the one con- 
sidered by us. An alternate approach to the description of 
three-photon processes in small metallic particles, based on 
a combination of Maxwell's equations and the hydrodyna- 
mics of an electron gas of a particle, was developed in Refs. 5  
and 6.  

5. GIANT INELASTIC SCATTERING OF LIGHT BY A PARTICLE 

The renormalization of the wave functions of photons 
in an inhomogeneous metallic sample, a phenomenon con- 
sidered in Sec. 4, influences substantially the inelastic scat- 
tering of light by a metallic particle. It is known that the 
expression for the cross section of this process has a pole if 
the energy transferred to the particle coincides with energy 
of the surface plasmon in the particle.738 It is said then that a 
surface plasmon can be excited in the particle in the dumped- 
energy channel. Recognizing that the wave functions of the 
two photons participating in the process cease to be plane 
waves [see ( 5 0 )  or ( 5  1 ) 1, we see that plasmon excitation 
and the appearance of additional poles in the cross section of 
the process can occur also in the channels of both photons. 
In the situation of greatest interest two poles are realized 
simultaneously; for example, a quadrupole surface plasmon 
of frequency Z = : f i w ,  is excited in the incident-photon 
channel, while in the discarded-energy channel or in the 
emitted-photon channel the plasmon is dipole with frequen- 
cy Z=: w 0 / ~  <<in these cases the probability of elastic scat- 
tering of light by a particle is higher by several orders than 
customarily expected. 

In the present section we calculate the differential cross 

section for inelastic scattering of light by a small metallic 
particle with account taken of the renormalization of the 
photon wave functions. 

Let wi be the energy of the photon incident on the parti- 
cle, of that of the emitted, and w = wif = wi - wf the energy 
transferred to the electron gas of the particle. The probabili- 
ty of the process is determined by the golden rule 

where the summation is over all the excited states f the elec- 
trons and w,  is the excitation energy. The amplitude yo, is 
connected with the S matrix by the relation 

All the necessary preparations for the summation of the per- 
turbation theory series for f,, in ( 5 2 )  were in fact already 
made in the preceding sections. Obviously, 

e4 w = 2 - Im nw(ki ,  kf loif), 
m2 

where 

II, (r , r l lw)  is the density-density polarization operator of 
the system, with which we deal in Sec. 3, and Q, is the renor- 
malized wave function of a photon in a particle and has been 
investigated in Sec. 4. 

We confine ourselves next to consideration of a small 
particle, to shorten the calculations. Owing to the angular- 
momentum conservation law, the multipolarity of the wave 
functions of the surface plasmons excited either by photons 
or in the channel of energy transfer to the particles cannot be 
the same. The maximum elastic-scattering probability is re- 
alized if: 1 )  The incident and outgoing photons excite re- 

- 
spectively a quadrupole (mi =:Z) or a dipole (a,-zij) plas- 
mon, and no plasmon is excited at all in the ejected-energy 
channel ( w  = mi - wf =:< - i j ) ;  2 )  either the incident pho- 
ton excites a quadrupole plasmon, the emitted photon ex- 
cites nothing, and a dipole plasmon is excited in the momen- 
tum-transfer channel ( w  =:G). The probability of the second 
process is easier to calculate, for it suffices here to deal only 
with the pole part of the dipole photon propagator in the 
particle [cf. the general expression ( 2 6 )  for a propagator] : 

The explicit form of the function Q, is given by ( 5  1 ). After 
simple calculations the differential cross section of the in- 
elastic scattering in the second case can be written in the 
form - - 

d2a - 4 a2 AO(Z - W) $(o - i3) 
C 
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where n,, and n,, are unit vectors in the directions of the 
incident and scattered photons, and& is the Compton wave- 
length. The connection of the frequencies and the widths of 
the dipole and quadrupole surface plasmons with the param- 
eters of the particle is established by the relations of Sec. 4. 

The influence of renormalization of the photon wave 
functions on the cross section of the process is quite strong. 
Expression (53) contains, besides the well-known pole in 
the energy-transfer channel, a pole due to excitation of a 
dipole plasmon in the particle, also an additional quadrupole 
plasma resonance connected with the incident photon. In 
the case when both poles are realized simultaneously, the 
inelastic-scattering signal isg - times stronger than the sig- 
nal connected with the familiar pole in the energy-transfer 
channel. Since g = & (Z~/C)~ g 1 ( g z  10 - for particles 
with a z lo2 A),  the inelastic-scattering signal can become of 
the same order as the elastic light-scattering signal. 

In this connection, we wish to add the following. Tre- 
mendous interest had attracted in its time the surface-en- 
hanced Raman scattering of light by molecules adsorbed ei- 
ther by rough surfaces of a number of noble metals, or on 
surfaces of small metallic  particle^.^ The anomalous Raman- 
scattering signal was attributed in a number of models'0p" to 
amplification of the electromagnetic field near the particle 
or to a separate roughness of the surface on account of exci- 
tation of a surface plasmon in near the frequency of the di- 
pole surface plasmon. In practice this band is wider, ranging 
from the infrared to the ultraviolet. The results of the present 
section allow us to examine the problem from a different 
point of view-to relate the enhancement of the field near 
the particle not to excitation of a plasmon in the elastic scat- 
tering channel, but with an anomalously high intensity of 
inelastic scattering of light by the particle. In this case, as we 
have seen (see cases 1 and 2),  the enhancement of the field 
should be expected in a wide spectral band: a )  near the plas- 
ma frequency, corresponding to a small spill of the incident 
particle energy to the plasma and to excitation of plasmons 
by both photons; b)  far from the plasma frequencies, corre- 
sponding to excitation of plasmons in the channel of the 
spilled energy and the incident photon. 

6. PHOTOEFFECT 

Interest in the photoeffect in ultradispersed systems 
was initiated in Ref. 12, where experiment revealed an 
anomalous increase (compared with a planar surface) of the 
photoelectron yield from metallic aerosol particles. The 
characteristic of the photo-yield turned out to be very sensi- 
tive to the size of the particles and to the state of their sur- 
face, which provides a fair chance of using this effect for 
diagnostics of atmospheric aerosol. We shall show in the 
present section how this phenomenon can be described in the 
framework of our approach. 

Consider the absorption of a photon frequency w ,  ac- 
companied by excitation of a hole of energy w, in the particle 
and emission of an electron of energy w, = w ,  - w,. 

The probability of the process is determined by the 
golden rule 

In first-order perturbation theory, using (1)  and (2), we 
have 

where p,, and pk, are the wave functions of the photoelec- 
tron and hole. use relation (37) to eliminate, as before, 
the gradients of the wave functions under the integral sign in 
(54). Then, however, the second term in the right-hand side 
of (37) is no longer zero. The reason is that in this case, 
beside the vector k, there are other preferred directions 
specified, for example, by the wave vector of the incident 
photoelectrons. The direction of the vector integrals in the 
right-hand side of (38) is not the same as the direction k, and 
the relation 

which we have used in Sec. 3, does not hold in this case. It is 
easily seen, however, that the second term in the right-hand 
side of (37) contains a small parameter ka compared with 
the remaining ones. If we confine ourselves to small metallic 
particles, relation (55) can be used with accuracy up to 
terms of order ka. We shall deal hereafter just with such 
particles. 

Using (55), we have in first-order perturbation theory: 

The manner of taking the higher perturbation-theory orders 
into account is shown in Fig. 11. It is seen from this figure 
that the summation prescription is the following: the plane 
electromagnetic wave ek exp(zkr) in (56) must be replaced 
by the function f, (r) defined by Eq. (49) of Sec. 4. 

With allowance for all orders of perturbation theory, 
the amplitude takes the form 

where we have in the dipole approximation 

where the amplitude f is connected with the S-matrix by 
the relation FIG. 1 1 .  Perturbation-theory series for photoeffect amplitude. 
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Thus, with (57) and (58) taken into account, W is deter- 
mined by the square of the matrix element r: 

The idea of calculating Ir,, 1 dates back to Ref. 13. We 
represent the square of the matrix element r in the form 

where v2 is the density of the hole states in the particle, and 
W,, (r,t) is the probability of observing a hole at a point with 
coordinate r at an instant of time t if the hole position at t = 0 
is characterized by the vector r,. W,, (r,t) satisfies the diffu- 
sion equation 

a - W (r, t) = DAW (r, t )  
at r,, ' O  

with the boundary condition 

where D is the diffusion coefficient of the hole in the metal. 
We expand Wr<, (r,t) in a series of Legendre polynomials 

where $is the angle between r and r,, and integrate the equa- 
tion over t 

where u, = S," W, (r,t)dt. Introducing the function 

and integrating (61 ) over r, with a weight (r,r )/r  we readily 
obtain for $, the equation 

The solution of ( 62) for r < a takes the form 

qT(r) = rl+'. 

For r > a we have 

= Bl r-l. 

The boundary conditions for (62) are obtained by integrat- 
ing (62) over a vanishingly narrow spherical layer near the 
particle surface, and take the form 

*1<(r = a) = q?(r = a), 

1 1 [(vl>(r = a))' - (q;(r = a))'] = - - 4nD' (65) 
1 

Using (63)-(65), we rewrite (62) in the form 

We stipulate that 

whereas 

This makes it possible to confine ourselves in the expression 

1 r2,3 1 = 2 J v ~  ('Idr 
1 

to the dipole terms, since the sum of the terms discarded in 
this case is small in accordance with condition (66). Ulti- 
mately, 

Multiplying W bq the density of states of the emitted elec- 
tron and hole and integrating over their energies, we have for 
the differential flux density of the photoelectrons in the di- 
rection of the unit vector n, 

where Q, is the energy density of the incident light and E, is 
the photoelectron energy. The cross section of the process is 
resonant if the frequency of the incident photon is close to 
the frequency Z, of the dipole surface plasmon in the particle. 

An anomalously high photoyield of electrons from 
small metal particles is observed experimentally also at inci- 
dent-light frequencies lower than the frequency of the dipole 
surface plasmon.14 The photoelectron spectrum has a maxi- 
mum at frequencies =0.08wo even on a flat metallic sur- 
face.15 The cause of these anomalies is the abrupt change 
over distances I d F  of the electron density and of the elec- 
tromagnetic field near a particle boundary or a half-plane 
edge.'"16 The wave vector k of the incident photon inside 
the metal increases resonantly, owing to the renormalization 
near the electromagnetic eigenmodes of the transition layer, 
and can become comparable with I- ' . In this case the elec- 
tromagnetic response of the electron gas of the sample is 
described by two nonlocal dielectric constants-longitudi- 
nal E, (k,w) and transverse E, (k,w) (E, - E, - k/lF z/ZF/I) 
(Ref. 17). The anomalies of the electron photoyield are at- 
tributed to excitation, in the sample, of additional longitudi- 
nal modes characterized by the condition E, (k,w ) = 0 (Ref. 
16). In our approach, the effects of nonlocality of the elec- 
tromagnetic response of the sample are not manifested, since 
they involve allowance for the next terms of the expansion in 
the parameter (r,/a 1 (w,Jw) when the irreducible polariza- 
tion operators 9, , 9,, , 9, are calculated, and also with 
allowance for diagrams containing momentum-momentum 
correlators [e.g., diagram b) of Fig. 1 1. 

7. CONCLUSION 

Certain rules established by classical electrodynamics 
are violated when it comes to describing multiphoton pro- 
cesses near surfaces of metallic particles. The photon-pho- 
ton interaction, which is of low importance in a homoge- 
neous medium, is enhanced by several orders of magnitude 
near particle-gas collective-excitation frequencies. For par- 
ticles with radius 200 A, the gain is 10'. As a result, the 
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FIG. 12. Equivalent representation of the amplitude of elastic scattering 
of light by a particle as a transformation of a photon into a plasmon- 
polariton. 

photon goes off the mass shell near the particle surface in the 
region of the plasma resonances, or else its wave function is 
renormalized and ceases to be plane. Effects of this kind were 
not considered in the classical theory, yet we have seen that 
they are quite substantial. In addition to multiphoton pro- 
cesses, they are manifested also in inelastic scattering of light 
by metallic particles and enhance considerably the role of 
the inelastic channel in the dissipation of the incident-radi- 
ation energy. Incidentally, the photon wavefunction renor- 
malization (connected with the HI term quadratic in A)  we 
have considered is not the only one encountered in the con- 
sidered problems. Even elastic scattering of light (Sec. 2) 
can be described by another (perfectly different) method as 
a transformation of a photon into a plasmon-polariton-a 
photon renormalized by a particle. The amplitude of this 
process is shown in Fig. 12. The double wavy line shown 
there is the function P known from Sec. 4 or a plasmon- 
polariton wave function. The description to use is a matter of 
taste. Another feature of multiphoton processes, which does 
not fit the classical description, is interference of the proba- 
bility amplitudes corresponding to different methods of real- 
izing these processes. Examples of this kind increase in num- 
ber when the electrodynamics of multiparticle systems is 
considered. All this had prompted us to develop, as an alter- 
native to classical electrodynamics, the quantum approach, 
whose main features were demonstrated above, to a descrip- 
tion of electromagnetic processes in an inhomogeneous me- 
dium. 

In our approach it is possible to set the limits of validity 
of classical-electrodynamics equations, such as the Mie 
equations for elastic scattering and absorption of light by a 
sphere. We have used for irreducible polarization operators 
a representation based on expansion in the parameter 
E ~ / N  1'3w= (rO/a) (wO/w) (eF is the Fermi energy, N the 
total number of conduction electrons in a particle, ro the 
Thomas-Fermi screening radius, and wo the classical plasma 
frequency). If this parameter becomes comparable with uni- 
ty, the classical equations will no longer hold. It is easy to 
obtain an estimate of the limiting frequency w. For particles 
with a =  lo3 A we have N " ~  = lo2 and E ~ N -  ' I3  z lo-* eV, 
corresponding to frequencies o =: 1013 Hz or to wavelengths 
A= m. Violations of the Mie theory should therefore 
expected in the far infrared and in the microwave band. 

APPENDIX A 

We give here the explicit forms of the irreducible polar- 
ization operators, shown in Fig. 2, of an electron gas of parti- 
cles 

w 

P,,,,(r, rJ 1 cu) = i J ( ~ # ( r ,  r)p*'(rJ , 0))@dr, 
-m 

wherep' ( r , ~ )  andpi ( r , ~ )  are operators of the electron den- 
sity and the electron-momentum density in the interaction 
representation, and the averaging is over the ground state of 
the electron gas. 

In the random-phase approximation, the operator Pa, 
takes the form 

where PA, 77,, and E, are the single-electron wave functions, 
occupation numbers, and energies, respectively. In all the 
calculations we need not the polarization operators them- 
selves, but integrals which are the products of P with cer- 
tain functions V(r) of the coordinates. Such integrals are 
defined by matrix elements V(r) over the single-electron 
wave functions. Simple quasiclassical reasoning shows the 
matrix elements V,, , are proportional to the Fourier compo- 
nent V[r(t) ] 

where r ( t )  is determined by the classical equation of motion 
of the electrons. For sufficiently small particles (a  5 lo, I, is 
the mean free path of the electron in the metal) the charac- 
teristic time of variation of r ( t )  is estimated at t=:a/v,, 
where vF is the Fermi velocity, V,, , has a resonance at char- 
acteristic energies EA - E; =: v,/a=: ( E ~ / N  where E, is 
the Fermi energy and N is the total number of conduction 
electrons in the particle. At frequencies w %E,/N the en- 
ergy denominator in ( A l )  can be expanded in powers of 
(E, - E,. )/a. Retaining the first terms of this expansion, 
Pa, can be represented in the form 

Integration by parts and the completeness condition of the 
single-electron functions 

make it possible to express (A2) in the form 

Using the relation 
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d rz - 
1 dr '~11 *=a + p2f?zl yl dr. 

a 

we have finally: 
i Pd(r, r1 I W) = w VA [n(rl)d(r - r')] . The integral is taken here in the same manner as in (Bl ) .  

Calculating it and using the identity 

The operator Yo,  is obtained similarly d 5 v l  @'I = p q -  I @'I - lyl @'I' 
i 

Po&, r' I W) = ; V, [n(r)d(r - r')] . we obtain ultimately 
It is easiest to obtain the operator 9, by using Eq. (10): l(1 + 1) 

1 
w[(NZEY)] = - 

PO0(r, r' 1 w) = - V [n(r)V,G(r - r')] . Po 
ma2 a 

X- 
APPENDIX B [ptz2 Iwz1 (wa)yl- @a) 

We calculate here some integrals extensively used in the 
main text. 

The integral w[MM] is calculated as follows: 

We now calculate two integrals used in the determination of 
the cross section of elastic scattering of light [see Eq. (30) 1. 
To this end we need the following integral representations3 

where y and z are arbitrary spherical Bessel functions and hi1- ' 
v7n-T) 

Njm(r, k) = fdb~lm(n)dn. 

d z,-*(x) 1 qz(x) = - ln[xzl (x)] = - - - dx zl(x) X' We calculate the first integral 
a 

The last equality is a consequence of the recurrence relations s d w m @ ,  r)O(a - r)dr = &!?)J?drjl 
for spherical Bessel functions. The integrals in (B. 1 ) have o 
been tabulated.18 The calculation of W [ ( N ' N ~  ) ] is some- 
what more complicated: X @r)Jdnch(n)db 

OD The calculation of the second integral is more complicated 
d d + f 5 C ~ ) I  5 19 @r)l dr). a 

a J w m @ ,  r)O(a - r)dr = J?dr[l(l + I) 

Integrating by parts the second term on the right and using 
theidentity r (d  '/d?) (ry, ) = ( d  /dr) [?(d /dr)y, 1, wecan 
transform the expression in the braces into 

Using the equation for y, 

d d  
1(1 + l)yl - 5 2 5 Yl = p2?y1, 

1 d 
we rewrite (B2) in the form + - pr - dr (rjl @r))Nlm(r, k)l . (B4) 
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Expressing L and M in terms of P and B, we obtain the 
coefficient of P: 

- - 4xi1- ll(1 + 1) If (Pa)jl Ca)a. (B5 
pk 

The coefficient of B is 

4ni1- ' <m j 
?dr(l(l + 1) 

jl (kr)jl (pr) 

pk 
0 

2 

(B6) 
Combining expressions (B4)-(B6) we obtain ultimately 
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