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A theory is developed of stationary and nonstationary optical bi- and multistability, optical 
switchovers, and self-pulsations in resonant excitation of coherent excitons and biexcitons in 
condensed media. 

Much attention is being paid of late to the study of coop- 
erative processes in the exciton region of the spectrum. 
Ivanov, Keldysh, and Tikh~deevl-~ were the first to treat 
self-consistently condensed modes of excitons and photons, 
jointly with kinetic equations describing scattering of exci- 
tons by phonons. The onset of an energy spectrum of the 
phonoriton type and of stimulated Brillouin scattering was 
predicted. Mis'ko et ~ 1 . ~  studied the statistical properties and 
the stimulated Bose-Einstein condensation of coherently ex- 
cite polaritons in crystallites of varying dimensionalities. 
Self-consistent stationary solutions were obtained of the 
Fokker-Planck equation for coherent polaritons and of the 
kinetic equations for the scattered quasiparticles. It was 
shown that the non-equilibrium distribution function of the 
latter has a real threshold of stimulated Raman scattering, 
and coherent polaritons possess bunching, antibunching, 
and squeezed-state properties. 

In Refs. 5-10, using generalized Keldysh equations that 
describe coherent excitons and photons that are weakly in- 
homogeneous in space and in time, a theory was constructed 
of optical bistability in the exciton region of the spectrum, 
and optical switchover between optical-bistability modes 
was investigated. It was shown, for the first time ever, that 
regular and stochastic self-pulsations can appear on the 
long-wave edge of the proper absorption of a crystal, the 
possibility was predicted of observing spatial turbulence in a 
system of coherent excitons and photons. Note that optical 
bistability (OB) in resonant excitation of excitons was first 
observed in experiment by Anderson and coworkers. I '  

OB has by now become the subject of many theoretical 
and experimental investigations and is in fact an indepen- 
dent branch of nonlinear optics. It attracts interest because it 
is one of the most striking examples of optical self-organiza- 
tion of a system, far from thermodynamic equilibrium, and 
offers tremendous prospects of practical application, pri- 
marily for optical information processing and for the devel- 
opment of ne computers with optical logic. 

Since optical nonlinearities in semiconductors are par- 
ticularly large in the exciton region of the spectrum, nonlin- 
ear interaction of light with matter is most strongly pro- 
nounced just in this frequency region. In addition, 
exciton-exciton quantum transitions are known to be char- 
acterized by giant oscillator strengths. ''-I3 Recognizing fur- 
thermore that the characteristic relaxation times of excitons 
and biexcitons are very short (7 = 10- lo-10- l2  s), it be- 
comes obvious that they will play a decisive role in the design 
of optoelectronic instruments, where ultrafast switchover is 
necessary. Owing to these properties, optical self-organiza- 

tion of excitons and biexcitons is extensively investigated. A 
theory of stationary and nonstationary lasing and of self- 
organization of regular and random time structures was de- 
veloped in Refs. 14-22 for exciton-biexciton transitions 
with one- and two-photon quantum transitions. The onset of 
ultrashort dynamic chaos of coherent excitons, photons, and 
biexcitons in solids was predicted in Ref. 23. 

The present paper is devoted to a theoretical study of 
stationary and nonstationary optical bi- and multistability, 
and also optical switchover and self-pulsation in resonant 
excitation of excitons and biexcitons in condensed media. 
We consider the case when photons from one and the same 
pulse can excite excitons from the ground state of a crystal 
and convert them into biexcitons. The giant oscillator 
strength inherent in optical generation of excitons and biex- 
citons contributes to the onset of nonlinear effects in this 
frequency region even at modern levels of optical excitation. 

HAMlLTONlAN OFTHE PROBLEM AND DYNAMIC 
EQUATIONS 

We use for simplicity a three-level model in which the 
energies of the ground state transitions of a crystal to an 
exciton and of an exciton to a biexciton differ by an amount 
equal to the biexciton binding energy. We consider only one 
macro-filled mode of coherent excitons, photons, and biexci- 
tons, each of which is characterized by a definite wave vec- 
tor. 

The Hamiltonian of the problem is the sum of the Ham- 
iltonians of the free excitons, biexcitons, and the field and of 
the Hamiltonian of the interaction between the field and a 
system of coherent excitons and biexcitons, which takes in 
the chosen model the form 

where a +  (b  + ) is the operator of exciton (biexciton) cre- 
ation, g is the exciton-biexciton interaction constant, G is the 
constant of optical conversion of an exciton into a biexciton, 
and E + (E - ) is the positive- (negative-) frequency com- 
ponent of the electric field of the electromagnetic wave. The 
energy scheme of the investigated process is shown in Fig. 1. 

The Heisenberg equations of motion for the amplitudes 
of the excitons and biexcitons are of the form 

ia = oexa - iye,a - gE+ - GgbE-, (2) 
ib = obiexb - iybiexb - G~E'U, (3) 

where ye, and y,,, are the damping constants of the excitons 
and biexcitons, respectively and determine the rate of depar- 
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FIG. 1 .  Energy and quantum-transition schemes of OB theory with 
allowance for exciton-photon interaction and for optical conversion of 
excitons into biexcitons: 0-ground state of the crystal, ex and biex- 
energy levels of exciton and biexciton states, o-electromagnetic-field 
frequency. 

- - - - - - - - - - - - - - - - e x + e x  

ture of the quasiparticles from coherent into incoherent 
modes; they were introduced into the equations of motion 
phenomenologically. Note that these equations can be de- 
rived rigorously in the framework of quantum theory of fluc- 
tuations and dampings from the flux part of the correspond- 
ing Fokker-Planck eq~ation.~'  

The equation of motion for the positive-frequency com- 
ponent of the electromagnetic field E + is equivalent to the 
wave equation 

We write the solution of Eqs. (2)-(4) in the form of a 
product of slowly varying envelopes and rapidly oscillating 

biex 
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W 

components: - 
a = A(z, i)exp(ikz - iwt), - 

b = B(z, t)exp(2ikz - 2iwi), - 
E+ = e+(z, t)exp(ikz - iwt), 

0 

A 

1 L  
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where w is the frequency of the electromagnetic wave. We 
continue the analysis in the approximation of slowly varying 
envelopes, which are valid under the condition 

This means that the A(z,t), B(z,t), and St (z,t) envelopes 
are sufficiently smooth functions compared with the rapidly 
oscillating part. They vary little over the wavelength and 
during one period of the light incident on the crystal. Substi- 
tuting (5)  in (2)-(4) in the approximation of slowly vary- 
ing amplitudes, and neglecting effects of spatial dispersion of 
excitons and biexcitons, which are negligible in the vital re- 
gion of the spectrum, we obtain the following truncated 
equations: - 

It is convenient next to change to dimensionless quanti- 
ties. We introduce 

where T and L are the cavity transmission coefficients and 
length, and will be introduced below. With ( 10) taken into 
account, the system (7)-(9) takes the form 

In the general case X + ,A and B are complex. Introduc- 
ing 

Al  = Re A, A, = Im A, XI = Re x', 
X2 = Im X+, B, = Re B, B2 = Irn B 

weobtain from (11)-(13) 

The system ( 14)-( 19) of nonlinear differential equa- 
tions describes the evolution of the coherent excitons, biexci- 
tons, and photons in condensed media in the approximation 
of smooth envelopes, and is the basis of the analysis that 
follows. 

I t  is impossible to obtain exact analytic solutions of a 
system of nonlinear partial differential equations. The main 
feature of the nonlinear passage of light can be revealed in 
the mean-field model which is widely used in the theory of 
optical bistability. It corresponds mathematically to re- 
placement of$E(z)dz by (E (L)  - E(0))L.  In this approxi- 
mation Eqs. ( 14) and ( 15) can be integrated over the coor- 
dinate: 
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They describe, together with Eqs. (16)-(19), the dynamic 
evolution of coherent excitons, photons, and biexcitons in 
the mean-field approximation. 

Since a feature of the present state of research into OB, 
optical switchover, and optical pulsations is that it is re- 
stricted to specific optical instruments with specific experi- 
mental geometry, we study here these phenomena in a sys- 
tem of coherent excitons and biexcitons with ring-cavity 
geometry. 

OPTICAL HYSTERESIS AND SWITCHOVER 

Let a sample of length L be placed between the entry 
and exit cavity mirrors having a transmission coefficient T. 
The two other mirrors are assumed to be ideally reflecting 
(see Fig. 2). The boundary conditions for the ring cavity are 

( I  - R ) ~ / ~ E ,  + RE(L, t - ~ t )  = E(O, i), 

E~ = (1 - R ) ~ / ~ E ( L ,  t) ,  (22) 

where EI is the pump amplitude, E ,  the field amplitude at 
the exit from the cavity, R = 1 - T the reflection coefficient 
of mirrors 1 and 2, At = (21 + L)/c,, and c, the speed of 
light in vacuum. Introducing dimensionless input and out- 
put field amplitudes, we obtain for the normalized ampli- 
tudes the boundary conditions 

TY + R [X,(L, t - At)cos F 

RIXl(L, t - At)sin F + X2(L, t - At)cos 4 = X2(0, t ) ,  

where 

FIG. 2. Diagram of ring cavity E,, E, and E,-amplitudes of incident, 
reflected, and transmitted fields, respectively. 

F =  kL + k0(21 + L )  is the field phase advance in a ring 
cavity, and ko is the wave vector in vacuum. 

Equations ( 16)-(21) are nonlinear differential equa- 
tions describing open resonant systems. The equation of 
state of the theory of stationary OB in a system of coherent 
excitons and biexcitons can be easily obtained from (16)- 
(2 1 ) by equating the corresponding derivatives to zero. 

Taking the boundary conditions (23) into account, the 
intensity of the incident field on the intensity of the field 
emerging from the cavity is given by 

Y = X(P~ + p y / 2 ,  (24) 

where 

1 - R cos F 
PI  = T 

P2 = - R 2 + - sin F T 

If the phase advance in the cavity is F = 2 ~ n ,  where n is 
an integer, under exact-resonance conditions (o = we,, 
So = 0, A = 0, ck = o, u#0)  the equation of state of the OB 
theory in a system of excitons and biexcitons is 

and differs from the analogous OB equation of state on the 
model of two-level atoms: 

The criterion for the existence of OB in the mean-field 
approximation and under conditions of exact resonance is 
the inequality C >  C,, = 54/17, whereas the criterion for the 
existence of OB in a system of two-level atoms is the inequal- 
ity C>4.  

One of the important and fundamental questions of OB 
is an investigation of the stability of the OB curve. Note that 
in the case of exact resonance the stationary states of the OB 
curve are stable and under these conditions no self-oscilla- 
tions can arise in the system. This fact can ensure reliable 
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FIG. 3. Stationary OB X (  Y )  in a ring cavity at various values 
of the parameters S =  a,, = 0, F =  2 r n ,  C =  2(a) ,  5 (b) ,  
10(c) ,  5 ( d ) .  

reconnections of OB modes and can be used to construct 
instruments for optical reduction of information and com- 
puters with optical logic. 

Figure 3 shows the dependences of the amplitudes X of 
the emerging radiation on the amplitudes Y of the incoming 
radiation, for different values of the bistability parameter. 
Inasmuch as under exact resonance conditions both the up- 
per and the lower parts of the OB curve are stable, it is of 
interest to study their switchover times. The investigation of 
the switchover times is the set of equations ( 16)-(21). At 
present there is no standard algorithm for the solution of 
general-form nonlinear differential equation, and obtaining 

analytic solutions of the system (16)-(21) is a difficult task. 
We have therefore performed a computer experiment. The 
initial conditions are chosen such that they correspond to 
the value of Y near the threshold of downward switchover. 
At the instant t = 0 we specify a jumplike change of the 
pump Y, such that Y + AYare on opposite sides of the corre- 
sponding switchover threshold. Figure 4 shows switchovers 
from the lower OB branch to the upper, of the exciton and 
biexciton amplitudes, and also the projection of the trajec- 
tories in phase space on a plane with the exciton and biexci- 
ton amplitudes as the coordinate axes, for the parameter val- 
ues C = 10, d = 0.1, and u = 0.1. It is seen from the figure 

X 
17 

~ ~ : ~ ~ o  3.4 6.8 :r/ 
0 

40 60 80 FIG. 4. Optical switchover from lower to upper branch, dy- 
7 

namic evolution of exciton ( A )  and biexciton (B)  ampli- 
tudes, and phase portrait of the trajectory at u = 0.1, d = 0.1, 

BXlOO C =  10. 
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FIG. 5. Optical switchovers from a lower to an upper branch 
atu=O.l ,d=O.l ,  C =  10. 
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FIG. 6. Stationary OB X( Y) in a ring cavity at different val- 
ues of the parameters C =  5, 6, = 2, F =  2 r n ,  6 = 2(a), 
5(b), 10(c). 
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FIG. 7. Stationary OB X( Y )  in a ring cavity at different val- - - .  ues of the parameters C = 5, 6,, = 2, F = i7/2 + 2 m ,  
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C 6 = 2(a) ,  5 (b) ,  10(c). 
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that the system goes over from the lower branch of curve B to 
the upper within a time on the order oft = (20-30) y&i. The 
worsening of the cavity Q shortens the switchover time, but 
self-oscillations with finite lifetimes appear in this case. Fig- 
ure 5 shows the optical switchovers and the corresponding 
phase portrait in the case of a transition from an upper OB 
mode to a lower at the same parameter values. In contrast to 
two-level systems, where the downward and upward swit- 
chover times differ substantially in the case of OB in a system 
of coherent excitons and biexcitons, as seen from the figure, 
they turn out to be of the same order. Since the exciton and 
biexciton relaxation times in semiconductors are 
(re, - T ~ , ~ ~  - 10- - 10- l 2  s),  the optical switchovers in a 
system of coherent excitons and biexcitons are of the order of 
picoseconds. 

When the electromagnetic field frequency is not equal 
to the exciton and biexciton transition frequencies, the equa- 
tion of state of the OB theory is described by Eq. (24), which 

differs substantially from the equation of state of two-level 
atoms. Note that the nonzero deviation from resonance al- 
ters in principle the character of the nonlinear passage of the 
light through the cavity in the case of coherent excitation of 
excitons and biexcitons. Thus, for example, increasing the 
detuning from resonance leads to a more pronounced onset 
of OB, which differs from the OB in a system of two-level 
atoms, where the increase of 6 contributes to poorer observa- 
tion of the OB. Figure 6 shows plots of the dependence for 
d = 0.1, 6, = 2, C = 5, and different values of the detuning 
from resonance. It is evident that the OB becomes more and 
more pronounced with increase of 6,. Moreover, for 
F = 17/2 + 2 m ,  C = 5 and certain values of 6 optical insta- 
bility can be observed in a system of coherent excitons and 
biexcitons (Fig. 7).  An investigation of the stability of the 
stationary states of the optical hysteresis to small perturba- 
tions is determined by the characteristic equation for the 
Jacobian of the system 
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whereQ, = a / T  - (aR /T)cos F, Q, = A + (aR /T)sin F, 
and E is a unit matrix. If the real parts of all the roots of the 
characteristic equation are negative, the corresponding sta- 
tionary states are stable to small perturbations. Using the 
Routh-Hurwitz criterion, we investigated the stability of 
stationary states for various values of the parameters. The 
result was that a nonzero detuning from resonance not only 
contributes to a better manifestation of OB and to the onset 
of optical multistability, but also causes parts of the station- 

FIG. 8. Optical switchovers from a lower to an upper first 
loop of optical hysteresis at points A and B of Fig. 7. 

ary optical hysteresis curve to become unstable and pro- 
duces nonlinear self-pulsations in the system. At the param- 
eter values C = 5, So = 2, S = 2, and a = 0.1 the upper 
branch of the OB curve is stable, whereas part of the lower 
branch becomes unstable, the instability section increasing 
with S (Fig. 6). As the representative points moves to the 
right side of the instability window, metastable nonlinear 
oscillations characterized by a definite lifetime are observed 
in the system, after which the system jumps over to a stable 

1 1 1 1 1 1  

0 10 20 r 30 40 50 

FIG. 9. Optical switchovers from an upper to a lower 
loop of optical hysteresis at points A and B of Fig. 7. 

first 
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FIG. 10. Evolution of system with time at F =  n/2 + 2m 
(interval CD of Fig. 7 ) .  

branch of the OB curve (point B ) .  At the point C the system 
switches over to the upper branch of the OB curve with prac- 
tically no onset of self-oscillations, and furthermore after 
time shorter by an order of magnitude than the transitions 
from the point B. The time of switchover from the upper OB 
branch to the lower stable part can be seen to be in this case 
of the same order as the time of switchover from the point C. 

Figures 8-10 show the switchover dynamics if the two- 
loop optical hysteresis shown in Fig. 7 is realized. Figures 8 
and 9 show switchovers from the lower to the upper and 
from the upper to the lower branches of the first optical hys- 

teresis loop, at the points A and B, respectively, as well as the 
corresponding projections of the phase trajectories. It is seen 
from the figure that the times of the "up" and "down" tran- 
sitions are of the same order, 20 T.  The CF section of the 
second optical-hysteresis loop is unstable, and self-oscilla- 
tions appear as a result. Figure 10 shows self-pulsations in a 
system of coherent excitons, photons, and biexcitons; they 
appear on the nonstable section CD of the lower branch of 
the second OB branch. Evidently, self pulsations comprising 
complicated nonlinear self-oscillations appear in the system. 

The onset of nonlinear oscillations in a system of coher- 
ent excitons, photons, and biexcitons can be used to convert 

20 40 60 80 100 0 100 200 300 400 500 

Y 
FIG. 1 1 .  Dynamic bistability from external parabolic 

I pulse of duration T = 500, F = 2m. 
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the radiation incident on the cavity into pulsations. 
Experimental investigations of OB frequently reveal 

not static but dynamic OB resulting from comparison of the 
time-dependent external pumping with the corresponding 
response of the system. 

OB of this type were first considered by Bischofsberger 
and Shen.24*25 They investigated theoretically and experi- 
mentally the behavior of a nonlinear Fabry-Perot interfer- 
ometer filled with a Kerr medium and acted upon by pulses 
of various shapes. They obtain excellent agreement of theory 
with experiment. 

As for dynamic OB in a system of excitons, photons, 
and biexcitons, it remains an unresolved problem to this day. 
We have performed a computer experiment in which the 
nonlinear differential-equations system (16)-(21) describ- 
ing the dynamics of coherent excitons, photons, and biexci- 
tons is solved numerically with allowance for the boundary 
conditions for a ring cavity, and with the external pump 
Y(r) a function of the time of barabolic form. The result of 
this experiment are shown in Figs. 11 and 12. At low values 
of the duration of the incident pulse, deformation in time is 
insignificant and the response is far from stationary. As r 
increases, the initial pulse is deformed and the system tends 
to a stationary behavior (Fig. 1 1 ). Figure 12 shows the dy- 
namic bistability as a function of the external pulse at 
F = ( ~ / 2 )  + 2 n ~ .  At these parameter values both the lower 
and the upper branches of the second hysteresis loop have 
sections with self-pulsations, owing to the unstabilities of the 
system. Note that the system of coherent excitons, photons, 
and biexcitons is much richer than the model two-level 
atoms. 

We discuss in conclusion the feasibility of observing the 
predicted effects in experiment. The model studied by us is 
most valid for crystals such as CdS and CdSe, in which the 
exciton-binding energy is low (Im < 3 meV), and if the spec- 
tral width of the radiation incident on the crystal is fiAw - I ,  
quantum transitions are possible both in the region of radia- 
tive recombination of the biexcitons, and transitions from 
the ground state of the crystal into a biexciton state. Photons 

FIG. 12. Dynamic instability from external parabolic 
pulse, T = 500, F = 7r/2 + 27rn. 

from one and the same pulse create excitons from the ground 
state of the crystal and convert them into biexcitons. By way 
of example we give the numerical estimates for crystals of the 
CdS type, where L = 750 , ye, = 10" s - I ,  

ybiex = 1012 s -  G = 1.25.108 cm-3'2 , g=5.10'3 s - I ,  
a,, = 4- 1015 s -2, c = 10. We find then that the critical 
power at which the investigated nonlinear phenomena can 
be observed are of the order of 150 kW/cm2, the upward and 
downward switchover times are r ,  = 20 ps and T, = 25 ps, 
respectively, and the switchover energies are of the order of - 50 fmJ. Our numerical estimates allow us to conclude that 
it is really possible to observe optical hysteresis, switchovers, 
and self-pulsations in a system of coherent excitons and biex- 
citons in condensed media. 
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