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A system of equations for treating the spatial and temporal dynamics of a superconductor is 
presented and unifies the order parameter, the free quasiparticles, the phonons and the applied 
electromagnetic field within a single dynamic complex. 

1. It has been shown'.2 that a superconductor may, in 
some sense, be thought of as a laser generating a Bose con- 
densate of Cooper pairs. There is a heuristic significance in 
viewing a superconductor in this way because the dynamic 
operating regimes of the laser are extremely diverse in char- 
acter and have been studied in great detail both theoretically 
and experimentally. Depending on the parameters, one can 
observe an aperiodic or pulsed transition to steady-state las- 
ing; undamped periodic pulsed operation; or chaotic 
strange-attractor lasing. In multimode operation, pulsed 
power radiation corresponding to locking of individual 
modes can be 

In superconductors, a gamut of regimes at least as wide 
as that may be expected. The theoretical treatment ofnonlin- 
ear superconductor dynamics requires a well-developed sys- 
tem of dynamic equations including those for the order pa- 
rameter, phonons, external electromagnetic field, and the 
density of quasiparticles. So far, however, no ab initio system 
of this kind has been obtained. 

In analyzing unsteady-state regimes, various quasi- 
steady approximations are used. One of these is based on a 
free-quasiparticle kinetic equationss9 of the form 

In this equation, n, is the concentration of quasiparti- 
cles of energy ~ ( p ) ;  S f  the recombination integral related to 
the creation or recombination of free quasiparticles due to 
the breaking or formation of Cooper pairs; Si the sum of 
collision integrals unrelated to the creation or recombina- 
tion of quasiparticles; Q, the external source of free quasi- 
particles. 

The recombination integral S f  plays an important role 
in unsteady dynamic processes. It has been s h ~ w n ~ . ~  that 

S; = Jun(r, r', ~ ' ) [ n ~ n ~ . ( ~  + I)q 

where U,, (&,&',Y2) is a function proportional to the coupling 
between the charged particles and phonons (see Refs. 8 and 
9); N, the density of phonons with momentum q; $ = Yeiq 
is the order parameter, with a modulus Y proportional to the 
width of the superconducting energy gap (Y2 being propor- 
tional to the Cooper-pair density). The first term in the 
bracket describes the process in which two quasiparticles 
recombine into a Cooper pair by emitting a phonon of energy 
fin; the second term represents the breaking of a Cooper pair 
and creation of two quasiparticles by absorbing a phonon of 

the same energy. In these processes, the following energy 
and momentum conservation laws must be obeyed: 

fiQ = E(P, Y) + r(pl, Y), &(PI, 'V) E E ' ,  (3)  

The quasiparticle energy &(p,Y) is measured from the Fermi 
energy E,. To determine the dependence of &(p,Y) on its 
arguments (the momentum of a quasiparticle and the modu- 
lus of the order parameter, respectively ), a microscopic the- 
ory is needed. The Bardeen-Cooper-Schrieffer (BCS) theo- 
ry gives, for example, 

Here v, and p, are the velocity and momentum of the Fermi 
surface electrons; A is the superconducting energy gap at 
nonzero temperature; A, is the same at absolute zero tem- 
perature. 

Now equation ( 1) is obviously an unclosed one and 
must be supplemented by a relation between Y and n, . For 
this purpose, it is c u s t ~ m a r ~ ~ . ~  to use the BCS equation9 

where A is the lattice-electron coupling constant. 
The BCS equation determines the steady-state value of 

the order parameter. For a time-dependent n, , this equation 
is only adequate if both n, and Y vary sufficiently slowly. 
This is why Eqs. ( 1 ) and (6)  represent a quasi-steady-state 
approximation to the dynamical description of a supercon- 
ductor. 

An alternative approach to the nonlinear dynamics of a 
superconductor is to write the order parameter equation 

known as the nonstationary Ginzburg-Landau equa- 
t i ~ n . ' ~ . "  In this equation a and 0 are $- and A-independent 
constants; A is the vector potential of the electromagnetic 
field; D is the diffusion coefficient of Cooper pairs. Although 
Eq. (7)  is closed and so cannot be used together with ( 1 ), we 
can regard it as a quasi-steady-state version of a more com- 
plete-but as yet unavailable-system of equations from 
which both quasiparticles and phonons are adiabatically ex- 
cluded as dynamic variables. Formally, such a system is ob- 
tainable by a microscopic approach similar to the one used in 
Ref. 11 to justify Eq. (7).  This, however is a difficult as yet 
unsurmountable task. 

In Ref. 12 the author employed the laser analogy to 
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postulate a system of equations permitting a unified dynamic 
description of Cooper pairs, quasiparticles, and phonons. It 
is the purpose of the present paper to provide a justification 
for that system. 

2. We use the law of conservation of the total number of 
particles as a basis for the unsteady-state system of equa- 
tions. 

The dynamics of a superconductor are determined by 
three major subsystems of charge particles: Cooper pairs, 
whose density proprotional to Y2; n, free quasiparticles of 
energy E >  A ('n' subsystem); and m, quasiparticles with 
energies near the Fermi energy E, ("m" subsystem). 

It is knownI3 that even at absolute zero temperature the 
conduction electrons do not all form Cooper pairs. We shall 
denote by n, the total number of the electrons paired at 
absolute zero. Now suppose that the temperature is close to 0 
K and that we apply a magnetic field to the superconductor. 
Suppose further that the magnetic field is increased adiabat- 
ically slowly. But then it is known14 that the field partially 
penetrates into the sample and that it decreases the modulus 
of the order parameter in the penetration region. As a result 
of this, the density of the paired electrons decreases and be- 
comes less than n,. Where have these Cooper pairs gone? 
Since T = 0, clearly these pairs cannot transform into free 
quasiparticles with E >  A. It follows then that they must go 
into the subsystem of unpaired electrons with energies close 
to E~ (subsystem "m" in our notation). Clearly for T >  0 the 
above three subsystems will all participate in the dynamical 
processes in the superconductor-but subject to the conser- 
vation law 

rn + n + nSw2 = n,, (8) 

where n is the total number of the free quasiparticles. 
Using the conservation of the number of particles we 

write 

aw2 -- 
at 

- Z , ,  + Z,, - 2DRe 

In this equation 2,  = 0.5 J S ;d 3p, and 2; is the recombi- 
nation integral for transitions between the Cooper-pair and 
m subsystems. The third term on the right accounts for the 
motion of the Cooper pairs and their interaction with the 
field. The form of this term is selected such as to fully corre- 
spond to its counterpart in the Ginzburg-Landau Eq. ( 7 ) .  

Although the integrals 2; and 2; should be analogous 
in form, there is a difference between then in that the mo- 
menta of the paired m particles are equal in magnitude and 
opposite in direction. Thus 

(10) 
The factor 0.5 arises from the fact that the recombination of 
two m or n particles produces only one Cooper pair. As in 
the integral (2) ,  the quantity Urn (p,Y2) is proportional to 
the square of the Cooper pair/m-particle interaction matrix 
element. In what follows, we will express Urn in terms of the 
phenomenological parameters of the superconductor, so 
that the specific form of Urn is of no importance here. Once 
should only recognize that Urn (p,Y2) is a function of V12 and 
that it tends to zero as Y -+O-as indeed it must because of 
the Y2 behavior of the square of the matrix element for the 

transition to the state with Y2 bosons. Thus we may write 
Urn (p,Y2) = Y2 Vm (p).  NOW since the integration region in 
( 10) is close to the Fermi momentum p,, we have 

The integral S(m, - 0.5)d 3p is equal to the total number m, 
of particles in the subsystem and from the conservation law 
(8) we have 

Substituting ( 12) into ( 11 ) we find that 

and hence Eq. (9)  may be rewritten as 

To determine the complex order parameter $, an equa- 
tion corresponding to the conservation law ( 14) may now be 
written. For this purpose we represent 2; as a product of two 
factors, 

The equation for the complex order parameter 1+4 then takes 
the form 

This equation forms a joint system with the free quasiparti- 
cle kinetic equation ( 1 ) . It should only be kept in mind that 
if fields are present, it is necessary to consider the energy E as 
dependent in a canonical fashion on the fields. l5 

As usual, the description of electromagnetic field dy- 
namics requires the Maxwell equations be used; these are 
related to Eqs. ( 1 ) and ( 16) through the superconducting- 
current density j, given by'' 

Both the recombination and collision integrals are de- 
pendent on the density of phonons in the superconducting 
sample. The nonequilibrium dynamics of phonons may be 
described by a kinetic phonon equation, for which one of the 
simplest possible forms is9 

Here Nq is the density of phonons of momentum q; N,,, the 
equilibrium distribution function for phonons; I, the inten- 
sity of the external source of phonons; S t  the recombination 
integral as expressed in terms of phonon momenta; S :  the 
free particle-phonon collision integral. 
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Substitution of the equilibrium quasiparticle distribu- 
tion function into ( 16) causes the recombination integral to 
vanish and the total concentration of quasiparticles, n, be- 
comes a function of temperature alone; Eq. ( 16) then goes 
over into the classical Ginzburg-Landau equation. 

By appropriately introducing a recombination integral, 
it is easy to extend the system (1 )  and (16) to incorporate 
the effects of the excitation and/or recombination of free 
quasiparticles due to the applied electromagnetic field. 
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