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Critical relaxation of the magnetization in a three-dimensional Ising model with nonmagnetic 
impurity atoms frozen at the lattice sites is modeled on a computer. A 483 system with spin 
concentrationsp = 1.0,0.95,0.8,0.6, and 0.4 is studied. The dynamical critical exponentzis 
determined by the Monte Carlo method combined with the dynamical renormalization group 
method. The results were:z(p):z( 1.0) = 1.0 = 1.97 + 0.8, z(0.95) = 2.19 + 0.07, 
z(0.8) = 2.20 f 0.08,z(0.6) = 2.58 0.09,andz(0.4) = 2.65 f 0.12. We propose the 
hypothesis that the critical exponents of three-dimensional dilute magnetic materials exhibit 
stepped universality. 

In this work we check the results of our renormaliza- 
tion-group description of the critical dynamics of dilute 
magnetic materials1 by means of computer modeling of the 
critical relaxation of a disordered three-dimensional Ising 
model for a wide range of impurity concentrations 
c,,, = 0.05,0.2, 0.4, and 0.6. 

During the last two decades many investigators have 
been studying how impurities and other structural defects 
affect the behavior of different systems in the presence of 
phase transitions. The effect of frozen impurities is especial- 
ly interesting. These impurities are randomly distributed 
and their presence is manifested as a disturbance of the local 
temperature. Investigations have shown2 that frozen impur- 
ities change the properties of magnetic materials, whose heat 
capacity in the homogeneous state diverges at the critical 
point with exponent a > 0. Only systems whose effective 
Hamiltonian near the critical point is isomorphic to the Ising 
model satisfy this criterion. 

Renormalization group analysis using the E-expan- 
sion3s4 has revealed that the critical behavior of the dilute 
Ising model is characterized by a new set of critical expo- 
nents, whose values do not depend on the concentration of 
point impurities in the region q,, < 1 - pc , where p, is the 
spin-percolation threshold. The asymptotic convergence of 
the E-expansion series for dilute magnetic materials, how- 
ever, is even weaker than for homogeneous magnetic materi- 
als. The equilibrium and dynamical critical behavior of di- 
lute magnetic materials are studied in Refs. 5, 6 and Ref. 1, 
respectively, directly for three-dimensional systems. Birgen- 
eau et al.' confirmed experimentally that the statistical criti- 
cal exponents for impurity systems are different from their 
values for homogeneous magnetic materials, and the experi- 
mental results agree well with the theory. The critical dy- 
namics of dilute magnetic materials has not been studied 
experimentally. The questions of whether the critical expo- 
nents of impurity systems are universal, i.e., independent of 
the impurity concentration right up to the percolation 
threshold, or whether there exists a line of fixed points that 
determines the critical exponents as continuous functions of 
the concentration, remain unanswered. 

Computer modeling of critical phenomena is now be- 
coming an alternative to an actual physical experiment. In 
Refs. 8 and 9, which are devoted to the modeling of the dilute 
Ising model, it was observed that the effective critical expo- 

nent /3 for the magnetization is a continuous function of the 
impurity concentration, and the concept of universality of 
the critical exponents is confirmed in Ref. 10 within the un- 
certainties in the values obtained for the susceptibility expo- 
nent y and the correlation length exponent v for spin concen- 
t r a t i ons~  = 0.8, 0.6, and 0.4. 

In the present work the critical dynamics of the three- 
dimensional Ising model was modeled on a computer by the 
Monte Carlo method for both the homogeneous case and for 
spin concentrations p = 0.95, 0.8, 0.6, and 0.4. There are 
grounds for assuming that because of specific conservation 
laws the influence of frozen impurities will be more pro- 
nounced in the critical dynamics than in the case of the equi- 
librium properties. 

The Ising model consists of a system of spins S t ,  asso- 
ciated with N = Ld sites of a d-dimensional lattice, where L 
is the characteristic dimension of the lattice. A spin can as- 
sume the values Si = + 1. This gives 2N possible configura- 
tions {S} with energy 

where the first sum extends over all nearest-neighbor spin 
pairs, Jcharacterizes the spin interaction energy, and h is the 
external field coupled to the spins. We consider a ferromag- 
netic system with J >  0. 

Ising-model dynamics is customarily described by the 
conditional probability function P, ( t )  = P({S}, t )  , which 
satisfied Glauber's kinetic equation 

where W(S-S ') is the probability of a transition of the sys- 
tem from a microscopic state given by the spin configuration 
{ S )  to a state with the configuration {Sf). In order that the 
Markov process described by Eq. (2)  converge to the equi- 
librium state of a Gibbs ensemble with P, = exp( - E,/ 
kT) ,  the detailed-balancing condition must be satisfied: 
W(S-S ') P, = W(S1 -S) P,. . This relation does not deter- 
mine the function W uniquely. The function W is usually 
chosen in the form of Metropolis's function 

exp(-AEs,./kT) for AEss, > 0 
for AEss. 5 0 ( 3 )  

or Glauber's function 
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The relation ( A  ( t )  ) = &A, P, ( t )  determines the dynamical 
evolution of the quantity A, by means of the function 
P, (t)-the solution of Eq. (2).  

Metropolis's algorithm, which consists of choosing ran- 
domly the spin S, and flipping the spin with probability de- 
termined by the function Win Eq. (3  ), makes is possible to 
implement directly the Ising-model dynamics with relaxa- 
tion of the magnetization m, ( t )  = Xr S,/N to the equilibri- 
um value determined by the thermostat temperature T. The 
time scale t can be associated with the scale IS} of successive 
configurations, assuming that N system sites are chosen ran- 
domly per unit time. One time unit corresponds to one 
Monte Carlo step per spin. In modeling the critical dynamics 
the initial state of the system is chosen when all spins are 
parallel (m, = 1 ) and the temperature of the system is equal 
to the critical temperature. The critical temperature T, for 
dilute magnetic materials is a function of the impurity con- 
centration cimP , decreasing with increasing cimp and vanish- 
ing at the threshold concentration cim, = 1 - p,. For a cu- 
bic lattice of Ising spins p, E0.31 and T, (p) are equal to: 
T , (1)~4 .5108,  T,(0.95)~4.2571, T,(0.8)~3.4959, T, 
(0.6) ~2 .4178 ,  and T, (0.4) E 1.2066 (Ref. 10) inunitsofJ/ 
k. 

We have used here the Monte Carlo method, combined 
with the dynamical renormalization group method," to 
determine the dynamical exponent z characterizing the 
critical increase in the relaxation time of the system 
t, - I T - T, I - " . For this, the system was partitioned into 
blocks, where a block bd of neighboring spins was replaced 
by a single spin whose direction is determined by the direc- 
tion of most spins in the block. The redefined spin system 
forms a new lattice with magnetization m, . Let the magneti- 
zation of the initial lattice relax to some value m, over a time 
t,, and let the redefined system reach the same value m, over 
the time t, . Then by using two systems with block sizes b and 
b ' and determining the relaxation times t, and t,, of the 
block magnetizations m, and m,, to the same value m,, the 
dynamical exponent z can be determined from the relation 

in the limit of sufficiently large b and b '-. cu . 
We applied this algorithm to a homogeneous system 

and to impurity ones with dimensions 4g3 and with the fro- 
zen impurity concentrations presented above (the impuri- 
ties are empty lattice sites, distributed with probability 
cimp ). The size of the system made it possible to partition it 
into blocks with dimensions b = 2, 3, 4, 6, 8, and 12. The 
procedure of block partitioning of the initial spin and impu- 
rity configurations was implemented on the basis of the cri- 
terion of spin connectivity. Thus a bd -dimensional block was 
considered to be a spin block and replaced by an effective 
spin oriented in a direction determined by the direction of 
most spins in the block if the block contained a spin cluster 
connecting opposite faces of the block. Otherwise, the block 
was considered to be an impurity block and replaced by an 
empty site in the renormalized lattice. A relaxation model- 

ing procedure consisting of 1000 Monte Carlo steps per spin 
was performed for each system with 20-30 runs with differ- 
ent impurity configurations over which the functions m, ( t )  
were averaged. Figures 1 a-d show plots of the initial and 
renormalized magnetizations m, ( t ) ,  averaged over impuri- 
ty configurations, with spin concentrationsp = 1, 0.95, 0.8, 
and 0.4, respectively, as functions of time. 

The computer modeling of the relaxation properties of a 
three-dimensional homogeneous Ising model, performed in 
Ref. 12, showed that near the critical temperature the 
change in the magnetization is characterized by an effective 
exponential dependence. Our analysis of the relaxation 
curves m, ( t )  at the critical temperature T, (p) revealed a 
power-law dependence m , ( t )  - t - " . The following values 
were obtained for the exponent a (p)  with m ,  ranging from 
0.65 to 0.45: a (1)  =0.246 f 0.011, a(0.95) =0.236 

0.020, a(0.8) = 0.219 f 0.018, a(0.6) = 0.178 
0.017, and a(0.4) = 0.102 f 0.017. The well-known 

scaling relation for the magnetization 

where .r = ( T, - T)/T, is the reduced temperature, h is the 
external magnetic field, and P and A are the critical expo- 
nents, can be generalized for the time-dependent case in the 
form 

m(h, T, I) = r@M(h/rA, 111,) = r@M(h/zA, l/rN) 

using the asymptotic time dependence of the relaxation 
t, - 171 - " . Hence, for h = 0 and r = 0, the power-law char- 
acter of the relaxation is reflected in the form of the follow- 
ing asymptotic relation 

According to theoretical calculationsP~0.325, vE 0.630, l3  

z= 2.025,' and /zv E 0.255 for the homogeneous Ising 
model and /3-0.349, ~ ~ 0 . 6 7 8 , ~  ~ ~ 2 . 2 3 7 , '  and f l /  
z v ~ 0 . 2 3 0  for the dilute Ising model. Comparing these val- 
ues ofp/zv with the exponents a (p)  shows that good agree- 
ment is obtained for p = 1,0.95, and 0.8 but not forp = 0.6 
and 0.4. 

In order to determine the values of the exponent z inde- 
pendently it is better to employ the relation (5).  However, 
the power-law character found for the relaxation of the mag- 
netization at the critical temperature enabled us to employ, 
in contrast to Refs. 11 and 12, a different and, we believe, 
better-founded procedure for processing the curves for the 
renormalized magnetizations mb ( t)  . Thus the m, ( t)  curves 
plotted in a double logarithmic scale were approximated by 
the straight lines log m, = k, log t + n, by the least- 
squares method in intervals Am, corresponding best to a 
power-law variation of m,. Next, the coefficients k, were 
averaged and an average value k,, was determined, after 
which the parameters n, of the straight lines log m, = k,, 
log t + n, were determined by extending the lines through 
the point of intersection with log m, = k, log t + n, at the 
center of the intervals Am,. As a result, the formula for z 
becomes 

z = (nb, - n&/ [kaJg(blbl) I. ( 9 )  

Sets of values of the exponent z, corresponding to dif- 
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FIG. 1 .  Initial m ,  and renormalized m, magnetizations as functions of time for the homogeneous Ising model (a)  and for a dilute Ising model with spin 
concentrations p = 0.95 (b),  0.8 ( c ) ,  and 0.4 ( d ) .  

ferent values of b with b ' = 1 were obtained using the rela-. 
tions (9)  (Table I ) .  For impurity systems the renormaliza- 
tion-group-transformation procedure reaches the proven 
asymptote of m, as a function of the block-partition param- 
eter b at larger values of b than in the case of a homogeneous 
system, and for this reason we selected for the analysis the 
values of the exponent z, corresponding to b = 6, 8, and 12 
for impurity systems and b>3 for homogeneous systems. 
The obtained dependence of z on b made possible extrapola- 
tion to the case b-  co, assuming that z, = z,, , 
+ const b -'. The following results were obtained: for the 

homogeneous system z( 1 ) = 1.97 f 0.08 and for the impu- 
rity systems z(0.95) = 2.19 f 0.07, z(0.8) = 2.20 f 0.08, 
z(0.6) = 2.58 f 0.09, andz(0.4) = 2.65 f 0.12. Hence it is 
clear that the value of the dynamical exponent forp = 0.95 is 
virtually identical to the value forp = 0.8, while forp = 0.6 
and 0.4 they are equal to within the uncertainties in their 
values. Taking into consideration the exponent z for a homo- 

geneous system, the values obtained can be divided arbitrar- 
ily into three groups differing significantly in magnitude. We 
note that the value found for the exponent z for a homoge- 
neous system agrees with the value z = 1.99 + 0.03 obtained 
in Ref. 12 by Monte Carlo modeling of 1283-, 2653-, and 
5 123-dimensional systems. 

We now compare the computer results with the results 
obtained by the methods of the theory of crtical phenomena 
applied to homogeneous and impurity systems. In Ref. 1 we 
gave a field-theoretical description of the critical dynamics 
of dilute magnetic materials directly for the three-dimen- 
sional case. In the two-loop approximation, using the PadC- 
Bore1 summation technique, we obtained the critical expo- 
nent z(p) = 2.237, valid for impurity concentrations much 
less than the spin-percolation threshold. A similar calcula- 
tion performed in the three-loop approximation for the ho- 
mogeneous Ising system gave the value z( 1 ) = 2.014. Com- 
paring the theoretical results with the modeling results 

TABLE I. Values of the dynamical exponent z, obtained using the formula ( 9 )  and the extrapo- 
lated values z, = m for systems with different spin concentrationsp. 
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shows that they are in good agreement for a homogeneous 
system and for an impurity system with p = 0.95 and 0.8. 
Forp = 0.6 and 0.4 the modeling results give a much higher 
value of the dynamical exponent z. We attribute this to the 
fact that for a cubic lattice of Ising spins ~ i t h ~ < p ~ ' " ~ ' - - 0 . 6 9  
the impurities form a connecting cluster, which for T<T, 
coexists with a connecting spin cluster right up to the spin- 
percolation threshold p, = 1 - p:'",'. As a result, the spin 
correlation length in the regionp, <p<p:imp' is not the only 
scale determining the behavior of the system near the critical 
temperature T, (p).  The character of impurity scattering of 
long-wavelength fluctuations of the magnetization also 
changes. 

By analogy with Refs. 14 and 15 and the works of one of 
us, Refs. 16 and 17, where the influence of the correlation of 
the impurities and extended structural defects on the critical 
properties of disordered systems was investigated, there are 
grounds for believing that in the region p, < p  <p:'",' the 
existence of an extended impurity structure results in a 
change in the Harris criterion2 for the effect of frozen point 
defects. For this reason, the change in sign of the heat-capac- 
ity exponent a (from positive to negative) at a transition 
from homogeneous to impurity critical behavior in Ising 
magnetic materials does not limit the new type of critical 
behavior determined by extended impurity structure. 

On the basis of what was said above, we propose the 
hypothesis of stepped universality of critical exponents for 
three-dimensional dilute magnetic materials (for two-di- 
mensional magnetic materials such effects do not arise, since 
p, > 0.5 ) . According to this hypothesis, for dilution p>p, 
five types of different critical behavior can be observed: uni- 
form; impurity type-I for plimP' < p  < 1 with an influence of 
point impurities; impurity type-I1 with p, < p  <plimP' with 
extended-impurity-structure effects; percolation impurity 
behavior at p =plimP'; and, percolation spin behavior at 
p = p, . Critical behavior of these types are expected to ap- 
pear in dilute magnetic materials in the temperature range 

I T - T, (p) I/T, (p) < (AJ/J,) determined by the value 
of the corresponding "crossover" exponent g, and AJ-the 

measure of randomness in the exchange interaction, for spin 
concentrations far from threshold values and in the region 
IT- T , ( p ) l T , ( ~ ) < ~ l p - p , l / p ~ ~ ~ ~ ~  for Ip-p,l/p,<l. 
For Ising magnetic materials with p2imP' < p  < lg, 
- - a,,,, -- 0.1 1, and for this reason the impurity behavior 

with the corresponding universal exponents should be ob- 
served in a narrow temperature range near T, (p) with 
"crossover" to exponents for homogeneous systems. For 
pc < p  <p2imp) "crossover" can be observed near the percola- 
tion threshold values. Far from these values either "cross- 
over" is not observed or it can be manifested in the form of a 
transition between exponents for two types of impurity be- 
havior. The results obtained in Ref. 7, where the dilute mag- 
netic materials Fe, Zn, -, F, with p = 0.6 and 0.5 were in- 
vestigated precisely in the region p, < p  <plimP' with 
p, = 0.25, can be regarded as a unique experimental confir- 
mation of this hypothesis. Critical exponents different from 
the exponents of a homogeneous system were obtained, but, 
to our surprise, no "crossover" to exponents of homoge- 
neous critical behavior was observed. 
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