
Formation of extreme (squeezed) atates for laser pulses and beams In Bragg 
dlffractlon of llght in a apatlally perlodlc nonlinear medlum 

A. P. Alodrhants and S. M. Arakelyan 

Erevan State University 
(Submitted 23 March 1992; resubmitted 3 September 1992) 
Zh. Eksp. Teor. Fiz. 103,910-941 (March 1993) 

We solve for the Rrst time ever the problem of obtaining squeezed light for space-time wave 
packets in dynamic diffraction under Bragg resonance conditions. We consider the space-time 
behavior of the fluctuations of laser pulses and beams propagating in such a nonlinear medium. 
We obtain a complicated law for the redistribution of the fluctuations along the beam width and 
along the pulse length, which accounts for oscillations that depend on the control parameters of 
the problem, with a possibility to optimize noise and to obtain squeezed states. The use in the 
scheme considered of liquid crystals as the nonlinear inhomogeneous medium makes it possible to 
hope for an experimental observation of the quantum states of light in the field of relatively low- 
power lasers with high coherence properties and to obtain in this way laser pulses with extremal 
characteristics. 

INTRODUCTION 

At the present time the possibility of forming quantum 
bqueezed states of light during dynamic scattering of radi- 
ation in a spatially periodic medium under Bragg resonance 
conditions has been established in principle. ' The physics of 
this effect is determined by interference and energy ex- 
change between two coupled phase-conjugated waves. As 
the result there is a transfer (redistribution) of fluctuations 
between different components of the field, and for well de- 
Aned values of the control parameter of the problem (e.g., 
the parameters of the spatial lattice in the medium) it be- 
comes possible to suppress the fluctuations in one of the field 
quadratures when it leaves the system as compared to their 
level at the entrance. Of course, in this case the Heisenberg 
uncertainty relations are conserved2 so that the suppression 
of the fluctuations in one of the field quadratures is accom- 
panied by their growth in another one. 

Moreover, when frequency-modulated light (laser) 
pulses propagate in such a medium their duration changes; if 
it decreases one can speak of temporal squeezing-compres- 

which is usually considered to be a classical effect. The 
spatial periodicity of the medium then fulfills the role of a 
temporal delay line used in traditional schemes for obtaining 
ultrashort laser pulses. 

Both these processes take place simultaneously when 
light pulses propagate in a spatially periodic medium and 
they in fact affect each other; the wave aspect with its energy 
exchange is for them the determining factor. 

In the present paper we first solve the problem of ob- 
taining pulsed squeezed light for (as the result of phase mod- 
ulation) frequency-modulated laser pulses in a spatially pe- 
riodic nonlinear medium under Bragg resonance conditions. 
We show the conditions for the appearance of this effect and 
of the temporal compression effect. We consider the spec- 
tralvtemporal aspect of the problem. The analysis is carried 
out for the most convenient scattering geometry with two 
co-propagating waves (Laue scheme). The results obtained 
arc universal in nature for the pulsed wave process and are 
applicable, in particular, for diffraction of x-ray radiation by 
a solid crystalline lattice (cf. Ref. 3 3 Moreover, they are 

also applicable when laser beams of spatially limited trans- 
verse cross-section propagate in such a spatially periodic me- 
dium; thanks to the space-time analogy which occurs, one 
succeeds in describing in a single manner these nonlinear 
wave processes for light pulses and beams. 

Squeezed light for pulsed systems has often been stud- 
ied theoretically before (see, e.g., Ref. 4 and the literature 
given there). However, the case considered by us has two 
principal differences. 

Firstly, we have solved a new problem for an optical 
system under Bragg resonance conditions when it is neces- 
sary to take spatial (instead of temporal) dispersion into 
account. 

Secondly, one usually considers the propagation of soli- 
tons, i.e., the shape of the light pulse is assumed not to 
change when they interact. Nowhere do we introduce re- 
strictions on the shape of the propagating pulse (and, hence, 
its spectrum) which thanks to the nonlinearity of the medi- 
um undergoes considerable phase modulation (chirp )-the 
main features of the results obtained are just connected with 
this. Of course, to find the actual form of the solution the 
initial shape of the pulse incident upon the medium must be 
defined; we assume it to be Gaussian [see Sec. 3 below and 
Eq. (A2) in Appendix I ]  although this assumption is not a 
matter of principle in the general approach considered by us 
on the basis of a self-similar substitution. 

The spatially periodic structures discussed can occur in 
optics both when laser radiation in an (initially uniform) 
optical medium induces a lattice of the refractive index or- 
in the case of an amplifying medium-of the amplification 
coefficient,'-' and when one uses nonlinear media which ini- 
tially (when there is no laser radiation) have a spatial peri- 
odicity of the material parameter, i.e., of naturally nonuni- 
form medias9 Especially promising in this respect are liquid 
crystals (LC) and photorefractive materials with a large 
nonlinearity, which makes it possible to work with high- 
contrast lattices in the field of relatively low-power contin- 
uous lasers (including even He-Ne This is of 
principal importance from an experimental point of view 
since it enables us to form extreme states of light radiation 
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(in particular, squeezed light) in the field of highly stable 
coherent laser beams with a low level of characteristic 
noise. 

Both these cases (lattices induced by light and naturally 
periodic media) can be represented in a single way from the 
point of view of the physics of the phenomena considered. 

Indeed, when a refractive-index lattice is induced (by 
means of light) in a medium we are dealing with a degener- 
ate (in frequency) four-wave process of wave mixing.' The 
nonlinear polarization of the medium recorded for the wave 
E, which is produced in the interaction process is in that case 
determined by the equation 

 where^'^) and 2'3' are components of the cubic susceptibil- 
ity of the medium while the geometry of the interaction was 
chosen as follows: El,, are two counterpropagating (collin- 
ear-the direction of propagation is z)  waves and the wave 
E3 is directed at an angle 8' 4 1 toz, and the wave E, which is 
its conjugate is produced as the result of the nonlinear inter- 
action and propagates in the opposite direction. The first 
term on the right-hand side of ( 1 ) characterizes the distrib- 
uted feedback (DFB) in the system and the effective inter- 
action (the production of the wave E,) is determined by 
the Bragg resonance condition for the wave vectors 
k, = k3 - 2k1, where we have used the fact that k, = - k,; 
the second term is the generation of the phase-conjugate 
wave (the scheme of wavefront formation) for which the 
resonance (synchronism) condition k, = - k3 is always 
satisfied. It is convenient to regard both these cases as dif- 
fraction (scattering) of a wave (usually E, into E, or E l  into 
E,) by a periodic refractive-index lattice formed as the result 
of the interference in the nonlinear medium of two other 
waves (E l  and E3-lattice by "transmission," or E, and 
E3-by "reflection" I )  ).' One then assumes that no other 
waves appear in the nonlinear interaction, i.e., higher dif- 
fraction orders (propagating at different angles) which cor- 
respond to a thin lattice (Raman-Nath diffraction) are 
quenched by interference (bulk lattice, Bragg diffraction'). 

For initially spatially periodic lattices Eq. ( 1 ) for the 
wave E, generated in the diffraction process can also be re- 
tained, but in this case we have only one incident (propagat- 
ing) wave (E l  or E,) which is scattered (diffracted) in the 
medium with dielectric susceptibilities and 2::' which 
in (1 )  formally replace the combinations X'3'E2E, and 
k0)E2E: or X'3)EtE3 and j'3'E,E:, respectively, and 
which take into account the initial periodicity of the medium 
[we shall write down exact relations in Sec. 3-see ( 13),' 1. 
It is customary to denote the pumping wave E l  or E, in this 
case by E, and the generated (scattered) wave E, by E,- 
the two-wave approximation of the dynamic diffraction the- 
ory (neglecting the birefringence of each of these waves 
which is unimportant for the present problem). 

In the present paper we shall be interested in just this 
last case and only for a geometry with DFB-the first term 
in ( 1 ) where, e.g., a cholesteric LC (CLC) may serve as the 
initially periodic medium. 

The material of the present paper is distributed as fol- 
lows. 

In Sec. 1 we consider the approach to the problem and 
the procedure for considering quantum squeezed states of 
light in a spatially periodic medium. 

FIG. 1. Geometry of the dynamic scattering of laser pulses for copropa- 
gating waves in a DFB system. We show in the insert the Bragg ( a )  and 
the Laue (b)  schemes. G is a spatial lattice wave vector; the Bragg reso- 
nance condition is k, = k, + G where the k,,, are the wave vectors of the 
incident and the diffracted (scattered) waves, G = 2n/p,  and p is the 
lattice period. At the entrance into the medium a (temporally and spatial- 
ly) Gaussian wave packet propagates in the 0-channel and a vacuum 
mode (not shown in the figure) in the h-channel. 

In the following Secs. 2,3 we write down the basic equa- 
tions and solve the problem of the formation of squeezed 
light for space-time wave packets (in the Heisenberg repre- 
sentation). 

In Sec. 4 we consider the solution of the self-similar 
problem in the Schrodinger representation. 

In the Appendix we discuss a number of auxiliary prob- 
lems. 

1. PHYSICAL PICTURE AND CALCULATION METHOD 

In the case considered by us of Bragg diffraction-dy- 
namic scattering there are thus in an initially spatially peri- 
odic nonlinear medium two coupled waves-a transmitted 
one [with complex amplitude A,(r,t) and wave vector k,] 
and a scattered one-A, (r,t), k, (under Bragg resonance 
conditions k, = k, + G, where G is a reciprocal lattice vec- 
tor), between which there is an efficient exchange of energy 
(see Fig. 1).12 

The qualitative picture of the phenomena considered 
here is determined by the fact that owing to different scatter- 
ing angles for the different spectral components of the trans- 
mitted pulse (the distribution of which under its envelope is 
given by phase modulation) their optical path depends on 
the frequency. 

When we change to a quanta1 description the complex 
amplitudes A , ,  (r,t) and A$,Jr,t) are, respzctively, annihil- 
ation and creation operators, A , ,  ( 2 t )  and A + (r,t), satisfx- 
ing the^ commutation relation [A , ,  (r , t) ,A,,  (r,t) ] = C, 
where C in the general case is a positive-definite operator13 
the form of which must be specified in each problem which 
we con~ider .~)  Finding the interaction Hamiltonian for the 
operators of the wave packets in the medium enables us to 
solve the problem either in the S ~ h r o d i n g e r ' ~ ~ ' ~  or in the 
HeisenbergI5.l6 representation. 

The connection between the creation and annihilation 
operators for the usual case of photons (Go,, ,ii& ) and for the 
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wave packets (A, ,  (r,t),A& (r,t) is in such an approach 
established on the basis of the quantization procedure dis- 
cussed here, taking into account the specific features of the 
problem (see Sec. 2);I6,l8 in the case of wave packets it is 
customary to speak of the quantum properties of the macro- 
fields."s20 The spatially periodic medium is then also char- 
acterized by an averaged macroscopic quantity-the permit- 
tivity (cf. Ref. 18). 

In the framework of such an (essentially macroscopic 
and fluctuationless) model of the medium a simple change 
from the temporal problem to the spatial problem is possi- 
ble-it reduces to a formal substitution of the derivatives 
a/&+ ( w / k  2)kV in the Heisenberg equations of motion.'" 
We apply this procedure of deriving the spatial equations for 
propagating waves from the quantum-mechanical (tempo- 
ral) equations but for our case of optical pulses (beams). ' As 
a result we are led to a nonlinear Schrodinger equation2' the 
solution of which we shall look for in the self-similar substi- 
tution approximation (cf. Ref. 12). 

2. BASIC QUANTUM EQUATIONSAND THEIR SOLUTION 

The task of the present section is the derivatitn of the 
quanAum equations for the wave-packet operators A, ,  (r,t) 
and 47, (r,t). We do this in a rather general form for an 
arbitrary operator b(y,r) ( 2  + ( y , ~ )  ) which is simultaneous- 
ly a function of the space andihe time c%ordinates (in partic- 
ular, it may be the same as A, ,  (r,t) (A& (r,t) ) ); we shall 
here assume y to be a transverse and T to be a "traveling" 
longitudinal coordinate (it plays the role of time). The Hei- 
senberg equation of motion, 

T) i 
& = - I ~ ( Y ,  T); 2,",1 

[the partial derivative on the left defines the derivative of 
a(y,r) with respect to T] can be written in a rather universal 
standard form which in form is the same as the quantum 
nonlinear Schrodinger equation (cf. Ref. 2 1 ) : 

a - a2 - 
i ; i ~  a(y, T) = - - a(y, T) + 2r(i+(y, t); 2(y, t), (2)  

a? 
where x > 0 is the nonlinearity parameter, and the interac- 
tion Hamiltonian is (cf. Ref. 14) 

We have dropped in the Hamiltonian (3 )  Hermitian 
terms of the type b + '(Y,T) + b 2 ( ~ , r )  [see later (6)  and 
( 14)] which, however, lead to fast oscillating terms (they 
correspond, e.g., to emission at the doubled frequency); we 
shall return to this problem below. The following commuta- 
tion relations are then satisfied:, 

in which the operators 2(y,r), 2 + ( y , ~ )  must be associated 
with field operators (we drop in what follows the operator 
sign ) . 

We look for the solution of Eq. (2)  in the aberrationless 
approximation in the form of a self-similar sub~t i tu t ion :~~ 

where m = 1 for a three-dimensional spherical wavefront, 
and m = + for a two-dimensional cylindrical wave front (cf. 
Ref. 12), a=a(y,r) I ,=,; the operatorsf, F,, and 6,,, de- 
pend on x. The operators f(r) and Fl (r,y) determining the 
longitudinal and transverse distribution of the light emission 
depend also on the number of photons; the operators &,,, 
characterize the nonlinear phase distribution (only 6, ( y , ~ )  
corresponds to the transverse distribution). 

It is important to note that although in the general case 
the operatorsf, F,, and 6,,, are not Hermitian and them- 
selves satisfy some operator equations, in the self-consistent 
field approximation, however, and in the framework of per- 
turbation theory one can require Hermiticity properties and 
determine their explicit form by expanding these operators 
in series in the small nonlinearity parameter xa + a, neglect- 
ing terms of order higher than second. The required solution 
of Eq. (2) then reduces to the following: 

where Ki EK, (T) and xi =xi  ( y , ~ )  are, respectively, real 
and complex numerical functions; here K, and x ,  are inde- 
pendent of x, K,, and x, are proportional to x ,  and K ,  and x, 
ate proportional to x2. We emphasize that Eq. (6) is a conse- 
quence of the above-mentioned important assumptions de- 
fining the approximation in which the present problem is 
considered; it is obtained from (5)  just for this case (its form 
is not at all obvious a priori in the self-similar substitution 
method). Moreover, from this we might formulate addi- 
tional arguments which justify the absence of the already 
mentioned terms of the type a + ' ( y , ~ )  + a2(y,r) in the rela- 
tions given here. 

Indeed, the general expression (5 )  must in the limiting 
case of plane waves [i.e., for f(r) = 1, F,(y,r) 0 ,  and 
6 , ( Y , ~ )  "01 go over into the form describing the usual 
phase modulation determining the number of photons 
( -xu+ ( r ) a ( r ) ) ,  which is the only one considered by us in 
the present problem. This is guaranteed by (5)  just for 
&2 (7) -a + ( r ) a  (7) and when the above-mentioned addi- 
tional terms are not there. Similarly, in the classical limit the 
parametersf, Fl ,  and 6,,, in (5)  are functions only of the 
light intensity ( -aa* = laI2) and should not depend on the 
initial phases of the fields at the entrance into the medium 
[i.e., on the terms - ~ * ~ ( y , r ) ,  a2(y,r); cf. the quasiclassical 
limit in Sec. 41. 

On the basis of Eq. (6)  one easily obtains Hermitian 
quadratures Q(y,r) and P(y,r) from a combination of the 
operators a(y,r) and a + ( y , ~ )  : 

Q(Y, 7) = Q(Y, T) + a+(y, s), ( 7 )  

by means of which the squeezed-light states can be rea l i~ed .~  
To do this we determine the state vector (in the Heisenberg 
representation) when the wave functions are independent of 
T (i.e., for T = 0) .  It will correspond to the radiation enter- 
ing the medium in a coherent state: a=a(y,r) I ,=, so that 
(cf. Ref. 16) 
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ala(y, 0)) = a(y, 0) la(y, 0)), (8  

where Ia(y,O)) is the wave function of the initial (7 = 0 )  
state with eigenvalue (the envelope of the wave packet) 
a(y,O) =a .  

We introduce next the mean square fluctuations 

(AQ~(Y> 4) (Q~(Y, T I )  - (Q(Y, T ) ) ~ ,  

(Ap2(y* 7)) = (p2(y, 7)) - (P(y, 7))2. 
( 9 )  

We use here the normally ordered form of writing (we 
denote it by (: :) ) which fixes the constant noise level for the 
initial coherent state: 

In this formalism squeezed light corresponds to a nega- 
tive value (from - 1 to zero) of these fluctuations.' Using 
(6)  to (9) we then have 

where the Ci and Ui are functions of the xi, 
'If, = 28, + 2 U, + 2 la / U2, 8, is the phase of the quantity a 
(a- la1 exp(iB,), and we have neglected the contribution to 
the fluctuations from terms proportional to (a  + a)2.  

In the next section this calculation scheme planned by 
us will be applied for DFB systems. 

3. QUANTUM FLUCTUATIONS OF WAVE PACKETS AND 
BEAMS FOR NONLINEAR DYNAMICAL DIFFRACTION. 
HEISENBERG REPRESENTATION 

Turning to the actual problem considered by us of dy- 
namical diffraction in a DFB system we write the total field 
operator E inside the medium as a superposition of two 
modes i , ( r , t )  and A, (r,t) : 

where e ( w )  is a complex mode function (for a narrow-band 
signal it may be assumed in what follows to be constant4) 
and the lo,, are polarization unit vectors (1,1, = 1 ). 

We write the expression for the electrical induction vec- 
tor D of the light field in the case of a nonlinear (cubic sus- 
ceptibility x"'; we assume the response to be instantaneous) 
spatially periodic medium in the form (cf. Refs. 22 and 23): 

where X,  and xi:;,, are the components of, respectively, the 
linear and the nonlinear susceptibility, G = 2n-/p, and p is 
the lattice period. 

Using (4) ,  ( 12), and ( 13) we then have for the interac- 
tion Hamiltonian Hi,, [for exact Bragg resonance 
(k, = k, + G )  and dropping higher spatial harmonics] : 

+ 1kL4dhi3)(~;2(x, r ,  t)Af(x, i, t) 

+ ~A;(x, z, i)Ai(x, z, t)~i+(x, z, t)Ai(x, z, t)) 

+ x p ) ( 2 ~ ~ 2 ( x ,  z, i)Ai(x, z, t)A,(x, i, I) 

+ 2 4 ( x ,  z, t)$(x, z, t)A;(x, z, t)) 

+ XP)(A;'(X. Z, ~)A;(x. Z, ~ 1 1 .  (14) 

where Z. = ( h / 2 e & )  d is the thickness of the medium, 
and i, j = 0, h ( i #  j ) .  

Using ( 14) and the scheme of Sec. 2 we can easily ob- 
tain equations of motion which we write down at once for the 
case L,, > L,,, (the parameters L,, and L,,, are defined be- 
low) when the structure of the field in a linear RFB system is 
assumed to have been formed up to the point where the non- 
linearity starts to affect it (see Ref. 22):4' 

where ~ , , ~ = 8 ( 3 + 4 m , + m ~ ) ,  l = 2 8 ( 1 - m 4 ) ,  L,,, 
= (h cos 6 ) / ( 4 7 ~ 1 ~ 1 ~ ~ , k d )  is the exciton length charac- 

terizing the effective spatial length scale for energy exchange 
between the transmitted and scattered waves-the length of 
"pendulum" beats,12 p - I la1 - 'EL,, = (h cos 8)/24a 
X IZ.14~i3' laI2kd is the analogous parameter for taking non- 
linearity into account (nonlinear length); the normalized 
nonlinearity parameters are m , ,  x:;'~/x:~',x:~' $0, la 1 is 
the average number of photons in the mode (it is determined 
by the radiation intensity at the entrance into the medium), 
the scattering angle is 8 = n-/2 - 61, .I? and { are "running" 
coordinates connected with z and t through the transforma- 
tion: 7 = Z, 6 = t - z/v cos 6, and v is the propagation veloc- 
ity of the wave packet along thez axis. We have introduced in 
( 15) partial amplitudes a,,, ( ~ , g , x )  which determine the 
form of the solution: 

and the following commutation relations hold: 

[ai(q, 6, x); ai+(tI1, E', x1)1 = 6i/6(~ - r11)6(E - E1)6(x - x'), 

i, j =  1, 2. (17) 

We shall in what follows for the sake of simplicity as- 
sume that I = 0 (condition on the nonlinearity of the medi- 
um) and one can easily check that Eqs. ( 15) can be reduced 
to the dimensionless form (2).  To do this we must multiply 
both sides of ( 15) by the quantity 1/12L,,, tan2 8 where 
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6 = l / ( r L  :,, L,, ) ' I2 tan 8 while the parameter L :,, 
= 6 /LC,, sin2 S ro is the beam radius) determines the lin- 
ear spatial drift of the 0- and h-beams relative to one another, 
and also go over to new variables by the substitution 

The equations for a,,, (v ,g ,x)  can thus formally be ob- 
tained by means of the Hamiltonian ( 3 ) .  This means physi- 
cally that the propagation of wave packets and beams in a 
DFB system can be reduced to well known self-action pro- 
cesses (cf. Ref. 2 1 ). 

The solutions ( 15),  taking into account ( 16) to ( 18), 

are given in Appendix 1 (under the condition L,, -L :,, ) for 
two cases-for a quasistationary change in the transverse 
beam profile and for the variations of the temporal envelope 
of a pulse. This makes is possible to calculate the fluctuations 
of radiation under conditions when self-focusing (self-defo- 
cusing ) and self-compression (self-decompression ) effects 
develop, re~pectively.~' In this case we assume that at the 
entrance into the medium the mode A, is a vacuum mode 
and that A, has the eigenvalue a,. 

The results of the numerical calculations for the mean 
square fluctuations 2(:AQ ':) are shown in Figs. 2 and 3. The 
values of the necessary dimensionless parameters which are 
defined in Appendix 1 are given in the figure captions; they 

FIG. 2. Calculated three-dimensional figures for mean square fluctuations of light beams. (a) 2(:AQZ:) as function of the nonlinearity n, (for a 
normalized value of the number of photons Ia,I2) and of the normalized time to= t /n~ ,  (7, is the length of the light pulse). Light in a coherent state 
corresponds to (:AQ2:) = 0. The numerical values of the parameters are: m, = 1; m, = 0.1; p ,  = 4.4P; pZ = 3.6& 6! = 6; /a,( '  E L  :,,p1la,,1*/2 
= 2.2L:,,~la,/2 =2.2L:,,/Ln, =l.ln,;S, =6; la2/2  =0.9no; L:,, = 1 0 2 c m ; L , ,  = 2 x  10-2/n,,cm;d = 5 0 0 , ~ m ; 7 ~ ,  =d/L:,, = 5;6 = 86";r0 
= 0.3 x 10.. cm; x = 0.02 cm; 0, = 3?r/4; L,,, = 10 - -' cm. (b)  2(:AQ2:) as function of n,, and go. The values of_the parameters are: L :,, = 10 

cm;L,, = 2  ~ l O ~ / n , c m ; S ,  = l.ln,;S, = 0.9n";d = 500,um; 7, = 5;t0 =0.2; uO = x/(2L,,L:,, tan2 8)"2;6 = 86"; 0, = 31~/4; L,,, = 
cm. (c) 2(:AQ2:) as function ofu,,and t,. We assume that for o, = t,, = 0 thelight is already in the squeezed state ( - 1 < (:AQ 2:) 5 0) .  The numerical 
data are L :,, = 1 0 2 c m ;  L,, = 2 X 10 -2/no cm; LC,, = 10--' cm; d = 500pm; 6 ,  = 0.792; S2 = 0.648 (no = 0.72); v0 = 5; 6 = 860; 0, = 3?r/4. 
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FIG. 3. Fluctuations for light pulses. ( a )  2(:AQ ':) as function of n, and 7,/2r,. The values of the parameters are: L,, = 2 x 10 2/n0cm; L,,, = 10 ' 
cm; f i u r ,  = 0.06 cm; y, = 10 - cm; 6, = 1. In,; 6, = 0.9n,; d = 500pm; 7, = 5; x = 0.02 cm; 8 = 86"; 6, = 3?r/4; r0 = t - z/v cos 8 - x sin 8/v, and 
7, is the initial pulse length. (b)  2(:AQ2:) as function of &, and t0/20. The values of the parameters are: nu?, = 0.06cm; L,, = 2 X  10 -'/n,cm; 
y,=10-2cm;n,=0.65;6,=0.715;62=0.585;L,,,=103cm;~,=5;8=86";~,=3~/4;&,=xsin8/~~~,;and~,~--d/y,,. 

correspond to actual optical media-CLC-and do not go 
beyond the framework of the assumptions made in the theo- 
ry. 

It is clear from Fig. 2 (quasistationary transformation 
of a spatial beam profile) that there is a similarity in the 
behavior of the fluctuations as function of the time to 

(to= t /a.r, ) (a )  and of the transverse coordinateu, 
(ao = x/(2Le,,L :,, tan2 8)"*) (b)  when the control pa- 
rameter of the problem -the nonlinearity parameter n, (the 
normalized intensity: no- la,l - 1/L,, ) changes. The 
space-time transformation of the fluctuations of the wave 
packet show up most clearly in the simultaneous dependence 
of2(:AQ2:) ontoanduo (F ig .2~ ) .~ )Fo r t ,  = 0 (7, = C O )  we 
have a stationary problem-a deeper squeezing is reached 
when lao12 is increased. A characteristic property of quan- 
tum wave packets is the distribution of noise over their 
space-time profile. The minimum level of fluctuations oc- 
curs at the center of the beam (pulse), i.e., for to = 0 ( t  = 0)  
and uo = 0 (x  = 0).  In the other limit-to - co , a, - co 

(which in our case corresponds to t, x-  co )"-we see a 
degradation of the squeezing for the peripheral regions of the 
wave packet-(:AQ 2:) -0 (coherent level). 

We note that the effects listed above depend significant- 
ly on the phase relations between the components (the local 
modes) of the wave packet, which are determined by the to- 
and go-dependence of the nonlinear phase. In that case there 
appear oscillations in the temporal and spatial behavior of 
the fluctuations (in to and no). Moreover, such a behavior of 
the dispersion of the quadratures is similar to the results of 
the problem of pulsed squeezing of light when one neglects 
the dependence of the parameters on the transverse coordi- 
nate-plane-wave approximation (L :,, + m; cf. Ref. 24). 

The calculated curves for the temporal profile of a pulse 
(in the compression problem we are dealing with purely 
temporal behavior-the dependence on the effective time 
r0) are given in Fig. 3. They are on the whole the same as the 
functions of Fig. 2, i.e., one can speak of a similar behavior of 
the fluctuations for light beams and pulses (cf. Figs. 3a and 
2b for which the quantities ro/,,@rU and uo turn out to be the 
analogous parameters) although for the compression prob- 
lem one observes a deeper squeezing; its maximum level 
(7, = 0)  is shifted relative to the center of the pulse and 
corresponds to t = x sin 8/v. One can see the above men- 
tioned oscillations particularly clearly in Fig. 3b where the 
"true" time to figures as variable. 

The principal result appearing in the relations given 
here is the complex law for the redistribution of the fluctu- 
ations both along the length of a pulse and along the trans- 
verse profile of a beam which in the quantum case cannot at 
all be reduced to the monotonic "self-cleaning," from noise 
modulation, of the pulse (beam) during its nonlinear propa- 
gation (dumping of noise in an airfoil) as can normally oc- 
cur in the classical case (e.g., for solitons; cf. Ref. 4) ;  this is 
connected with the involvement of vacuum modes in the 
interaction process. We mentioned already that the choice of 
phase parameters in the problem is important here; they en- 
able us to localize the noise level in any part of a propagating 
space-time light packet and minimize it at its lowest value 
(see, e.g., Fig. 3b). These problems were analyzed in detail 
in Refs. 23 and 24 where it was shown that an effective con- 
trol of the noise level at the exit from the medium is possible 
in particular by an appropriate choice of the initial (prelimi- 
nary) chirp in the pulse incident on it. 

The effect of the finite space-time dimensions of the ra- 
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diation leads to a degradation of the squeezed states in com- 
parison to their level for plane-wave continuous radiation 
(cf. Refs. 23,24); this is connected not only with the obvious 
factor of the decrease in intensity at the peripheral parts of 
the packet (and thereby with the retaining for them of the 
initial coherent state) but also with the spatial and temporal 
drift of the packets (dephasing of the radiation components) 
for the 0- and the h-modes, the energy exchange between 
which is the cause of the effects discussed here. In particular, 
under the conditions when L,, > L :,, 2 L,,, the nonlinear- 
ity of the medium is not able at all to affect significantly the 
level of the  fluctuation^.^' By itself a large nonlinearity 
(Ln , /~-+O)  can also destroy a squeezed radiation state 
through a violation of the optimal phase relations between 
its different components-the local modes.25 However, this 
case cannot be analyzed in the framework of the approxima- 
tions made in the model considered by us (see the next sec- 
tion). 

4. SELF-SIMILAR SOLUTIONS IN THE FRAMEWORK OF THE 
SCHRODINGER FORMALISM 

It is natural to consider quantum fluctuations for space- 
time wave packets in the Schrodinger representation. Such 
an analysis has, however, up to the present time only been 
done for optical  soliton^.'^^'^^^^ Our considerations are free 
of this restriction and take into account the change both in 
the shape of the light packet and also in its temporal profile. 
We start from the approach developed in Ref. 26. 

We write the total state vector Ip ) in the form (cf. Eq. 
( A  13) in Appendix 1 ) : 

where the ( p I z 2 )  are the state vectors for the operators 
a,,, (y) which satisfy the Schrodinger equation 

d 
ifi 191,2) = H ~ ~ h l . 2  I P ~ , ~ ) ~  (20) 

Hsc,,,2 is the Hamiltonian (3)  of the system of bosons in the 
present representation; the following commutation relations 
hold: 

[ai(y); ai+(~')l= a1/6(y - Y'), 
(21) 

[ai(y); ai(yf)l = 0, i ,  j = 1, 2. 

We have for the lcp,,, ) states (in Fock space) : 

X~~,~(Y, . . .Y",  ')...at2(y1) .--- a;2(~n)d~l -... dY"l0). 

(22) 
where we can assume the gn1,2 to be symmetric weight func- 
tions;I4 the normalization conditions are: 

I I ~  = 1, JI~,~$Y,...Y ,. T ) I ~ ~ Y ~ . . . ~ Y ~  = 1. (23) 
"1 $2 

Using the above relations and writing the solution in the 
form (Hartree-Fock approximation) 

where Y;::22)(yi,~) describes the n,,,th state and can be 
found using the procedure of minimizing a functional (it is 
defined in Ref. 15 and reaches its minimum value when 
\I/::::' (yi,r) satisfies a classical nonlinear Schrodinger equa- 
tion), we can transform (20) into 

Equation (25) is formally the same as the classical Eq. 
(2)  under the substitution X - K ( ~ , , ~  - I ); we can therefore 
use the results of Sec. 3 [see Eq. ( IS), I = 01 and write down 
self-similar solutions for the wave functions for the two 
above-mentioned cases-of spatial and temporal  profile^.^' 

For brevity we write down the solutions only for the 
second case and directly for the modes A , ,  (17,~) [under the 
condition (A2) 1 : 

It is clear from (26) that a quantum pulse is a superpo- 
sition of quantum partial pulses [the first two terms in (26) ] 
and their products [the last two (cross-) terms]. In the qua- 
siclassical limit15 we have n = n o r  laOl2 % 1 and 

= Sn01,2 =L :XCpI,Z - 1) 9 1, i.e., when the number 

of photons is large and fixed (n = no)  this superposition is, 
in fact, replaced by a single phase-modulated pulse:'0' 

For 2 1, L L C  > 1 we may find (for 
$!,:: , > $:f !+ , that: 

We show in Fig. 4 the qualitative behavior of $:f;l; , as 
function of v/L L,, (cf. Ref. 22). 4;:: , thus describes the 
decompressed (self-defocused) wave packet a , (v,x)  and 
+!,:!+ , describes the periodic compression [ (self-focusing) 
of a,(v,x) I. 

An analysis of the problem shows (see Ref. 22) that we 
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FIG. 4. Qualitative behavior ofthe wave functions $!f !+ , (curve I: disper- 
sive spreading) and (curves 2 and 3: periodic compression, in the 
points L,,,, ) as functions of the spatial parameter v/L :,,. For p ,  = p ,  
(rn,,, = O ) ,  n,,, = &linear optics-we have: 6,, + , = 6": + I =6 = 0 
($!,: : , = $kf I )--curve 4: dispersive spreading. The curves 2 and 3 cor- 
respond, respectively, to the values 6 = 3 and 6 = 5 (m,,, = 0) of the 
nonlinear parameter. 

FIG. 5. Schematic picture of compression (b; for values of the parameter 
v/L :,, corresponding to the minima in the curves 2 and 3 of Fig. 4 )  and 
decompression (c; for v/L :,, values determining the maxima of the 
curves 2 and 3 in Fig. 4 )  for the incident pulse (a);  note that 1 shows the 
envelope of the A , ,  ( v j )  packet and 2 its filling-local modes, character- 
izing the phase modulation and determined by (26) and (A1 ); the prod- 
uct 7, $:: , dejermines the exit pulse length ( T, is the initial length), and 
ro = t - z cos S / u  - z sin 6/u is the running coordinate. 

can neglect in Eq. (27) the contribution from the last (inter- 
ference, cross) term in comparison to the contribution from 
one of the first two terms, owing to the dispersive spreading 
of the packet a ,  ( 7 , ~ ) .  This interference term produces only 
small oscillations in the overall envelope of the pulse. The 
component a ,  ( 7 , ~ )  with then determines a pedestal 
(which does not play a significant role for the shape of the 
packet for large v/L :,, ) while the component a, ( 7 , ~ )  with 
$::!+ , is responsible for the compression of the packet (it is 
just this one which determines its shape). This is shown 
schematically in Fig. 5. At the points (in the parameter 
q/L :,, ) where $:f $ , =$if$ , is a minimum we have a de- 
crease in the length of the transmitted 0- and the scattered h- 
pulses, i.e., compression appears (Fig. 5b) ; these lengths are 
approximately equal to T, $!,:)+ , (see Ref. 22) while at the 
points (in the parameter q/L :,, ) where $if: , is a maxi- 
mum ( - 1 ) the pulses undergo dispersive spreading (see 
Fig. 5c); their length is also approximately determined by 
the quantity T, $it!+ , [see Eq. (A20) in Appendix 21. 

In the quantum case the behavior of the envelope of the 
wave packet may differ considerably from the quasiclassical 
limit; this is connected with the need to take into account the 
infinite set of functions . ' I )  We discuss such a quan- 
tum theory of the compression of a pulse in Appendix 2, 
where we also give the main results. Here, however, we dwell 
briefly only on an analysis of the behavior of the fluctuations 
of the quadratures of the partial modes. 

A calculation of (:he:, :) and ( : A p t , : )  leads to the 
relations [cf. (A12)l:  

The behavior of the mean square fluctuations of the 
quadratures is determined in the framework of perturbation 
theory solely by the initial stage of the formation of the 
pulses (beams) in the DFB medium. Although the nonlin- 
earity leads to a phase modulation of the wave packets, it 
hardly affects the change of its shape at all. It is clear that 
just this makes it possible to achieve a significant squeezing 
for the fluctuations of the quadratures-see Fig. 2. [Here it 
is important that the analysis is correct also for large L :,, , 
i.e., small L,, (cf. Ref. 24). ] The situation here is analogous 
to the problem of quantum solitons. Since the effective phase 
modulation time is smaller than the time for the formation of 
a soliton while the characteristic time determining the effect 
of dispersion is larger than the latter (see Ref. 15 ) ; it is possi- 
ble to obtain deep squeezing in the initial stage of soliton 
formation and this is usually analyzed (see Refs. 4 and 16). 
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However, later on the interaction between nonlinearity and 
dispersion turns out to be essential and this leads to a change 
in the shape of the packet when it leaves the DFB system (we 
return to this problem in Appendix 2). 

For the partial pulse (beam) a ,  ( 7 , ~ )  the efficiency of 
the nonlinear interaction decreases since it is spread out so 
that the degree of squeezing for the corresponding quadra- 
ture will be small. However, for the self-focusing component 
a2(v,x) there will be squeezing. The magnitude of the mean 
square fluctuations of the quadratures for the resulting pack- 
ets (the 0- and h-modes) will thus mainly be determined by 
the dispersion of the quadrature for a,(v,x). We note that 
also here the effects considered are appreciable for 
v/L :,, > 1. Moreover, Eq. (29) is very sensitive to the pres- 
ence of phase relations between its terms which determine 
the local radiation modes; in particular, when they are de- 
phased the squeezed states may be destroyed (cf. Ref. 25). 

We emphasize also that in the quasiclassical limit there 
occur practically the same results as in the Heisenberg repre- 
sentation-see ( 1 1 ). One can easily check this by using per- 
turbation theory for finding $i1,2' and @i1.2'-see Appendix 
1-and neglecting the contribution from the terms K :  Jao14 
and ltc212/a,14 [see (6)  1. This means physically that quan- 
tum interference is taken into account in (26) only between 
two nearest neighbors (in the index n ,,, ). 

In conclusion it is useful to estimate the contribution of 
the different terms in the sums in (26). For small n ,,, 2 1 one 
can neglect the contribution from the terms corresponding 
to those indices; they therefore do not affect the development 
of fluctuations and (:AQ ':) ~ 0 .  Such a result is obvious- 
this condition corresponds to the inequality S,1,2+, 
-L :,,/L,, 9 1, i.e., the 0- and h-modes are able to separate 
before there is an effective energy exchange realized between 
them. 

When the n,,, increase, but under the condition that 
+ < 1, this result can still be retained, provided 

v/L :,, < 1 (in that case v/Ln, < 1).  
One sees easily that in the case + 2 1, v/L Lx, > 1, 

v/L,, > 1 ( 1 < 7/L,, < v/L :,, ) there may appear squeezed 
states. 

For terms of the sum in (26) with indices n,,, such that 
+ , 2 1 (i.e., L :,, > L,, ) the squeezed light may be 

formed for v/L :,, < 1 (independent of the value of the pa- 
rameter v/Ln,) although its efficiency is small for 
v/L :,, < v/Ln, < 1. 

We note that one can usually restrict oneself for nu- 
merical  calculation^'^ to summing only terms with n-n, 
where n, corresponds to the number of photons for which 

is a minimum (Fig. 5b)-compare the assumption in 
the derivation of (27). 

As a matter of principle one is also interested in the 
problem of the cross-correlation of the fluctuations of the 0- 
and h-wave packets. At first sight it seems that it is rigidly 
defined by the partial operators a,,, (17,~).  For the case 
( I  = 0 )  considered by us there is no intermode quantum in- 
terference of these operators [see ( 15) ] which, in particular, 
leads to independent equations for the wave functions $h1.2' 
-see(25). This, however, does not mean at all that the fluc- 
tuations of the quadratures for the a,,, (v,x) or A , ,  ( 7 , ~ )  
modes are independent in the general case also for 1 # O  for 
which the energy exchange and the transfer of fluctuations 

for the A , ,  ( 7 , ~ )  modes is a consequence of the quantum 
interference of the a,,, ( 7 , ~ )  operators. For I = 0 we have 
the appearance only of cross-terms for the packets \Vh192' in 
the compression problem [see (26) 1. Nonetheless our anal- 
ysis shows also for I # O  [the equations for the a,,, (v,x) are 
not decoupled-see ( 15 ) 1 that the physical picture of the 
behavior of the fluctuations does not change in principle.24 

One can give a clear picture of the description of the 
correlation properties for the fluctuations of the 0- and h- 
modes by introducing the radius R of the quantum correla- 
tion (e.g., for the numbers of photons n , ,  of these modes) 
taking into account their anticommutator (cf. Refs. 18 and 
19): 

where An,,, = no,, - (no,, ). 
The qualitative discussions given here of the interde- 

pendence of the fluctuations in the quadratures of the 
A , ,  ( 7 , ~ )  modes give for them, indeed, a value of R which is 
different from zero. 

We note that the presence of an explicit correlation be- 
tween the 0- and h-modes (and their fluctuations) and there- 
fore the existence of energy exchange in the system is, none- 
theless, compatible with the condition that their 
commutator vanish. Indeed, in our case one checks easily 
that [n,,n, ] = 0. This is connected with the possibility of a 
simultaneous experimental measurement (by macroscopic 
apparatus) of two quantities-the numbers of photons in the 
given two modes [cf. ( 19) 1. 

The introduction of a parameter R in the form (30) 
such that it describes the quantum correlation of the two 
modes is most expedient when one considers light which is 
squeezed in amplitude, i.e., in the number of photons (but 
not in the quadratures), e.g., in the problem of the fluctu- 
ations of a two-mode field.29 However, this analysis goes 
beyond the framework of the present paper and we shall not 
discuss it (see Ref. 30). 

In the present section we have thus shown that for the 
problem considered here the results of the analysis in the 
Schrodinger representation describing the process of chang- 
ing the shape of the pulse (beam) are the most general ones; 
in the quasiclassical limit they go over into the correspond- 
ing approximate solutions in the Heisenberg representation. 
The physics of the effect consists in that a quantum wave 
packet in a DFB system is a superposition of a denumerable 
set of classical pulses (beams)-with different phase ad- 
vances and different shapes-entering into the sum with dif- 
ferent weight factors. As a result the initial pulse can when 
leaving the system undergo compression or decompression. 
We note in Appendix 2 that in contrast to the classical case 
where a complete cancellation of the chirp formed in the 
nonlinear medium is possible due to the spatial dispersion of 
the medium, no such cancellation occurs here. Taking the 
change in the shape of the wave packet into account leads to 
the necessity of analyzing the quantum relation between the 
pulse length T and the width Aw of its spectrum: 
Am7 = ~ 2 0 . 5  [see Eq. (A19) in Appendix 21. For a spec- 
trally bounded pulse necessarily in a coherent state23s24 the 
value of s is a minimum (for a Gaussian profile S =  0.5). 
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The decompression of the wave packet does not make it pos- 
sible that there exists a deep suppression of the mean square 
fluctuations of the quadratures, the behavior of which de- 
pends in principle on the nonlinear phase advances of the 
different terms of the pulses in (26) which are determined by 
the local radiation modes. 

CONCLUSION 

In the present paper we have thus been the first to con- 
sider the principal problem of the formation of squeezed 
states of light for space-time light packets propagating in a 
nonlinear DFB system under Bragg resonance conditions. 

It is shown in Ref. 3 1 that the effective length and de- 
gree of squeezing depend on a parameter proportional to the 
nonlinearity constant of the medium and to the pumping 
strength and inversely proportional to its spectral width. For 
LC the nonlinearity constant is very large which makes it 
possible to reach a high degree of squeezing for a low radi- 
ation strength. 

Especially efficient are LC in the form of thin oriented 
100pm thick layers. Simple estimates show (see Ref. 1 ) that 
the use of such layers makes it possible to carry out experi- 
ments for observing nonclassical states of light in the field of 
relatively low-power lasers with high coherence properties. 

Most promising here are hybrid schemes with two ele- 
ments in series, the first a strongly nonlinear medium (a  
nematic LC) in which the light induces an effective lattice- 
the second term in Eq. ( 1 ) is operative-and for the second a 
DFB system (CLC). Such schemes are traditional when we 
have compression (nonlinear fibers and dispersive delay 
lines). For specially prepared nematic LC cells (see Ref. 9) 
it turns out to be possible to induce a refractive-index lattice 
and then to obtain quantum states of the field in a He-Ne 
laser field of milliwatt (and even less) power. Of course, the 
number of photons of the incident radiation is still assumed 
to be large (quasiclassical limit) so that there do not arise 
any problems of obtaining a strong squeezing for low pump- 
ing powers. A detailed discussion of this problem and also an 
actual experimental scheme for obtaining an effective 
squeezing of radiation in the presence of DFB is of interest 
by itself. We note, nonetheless, that especially interesting 
possibilities in the field of generating extreme states of light 
are opened up when one uses lasers with an extreme spatial 
coherence determined by the natural (spontaneous) laser 
noise2' which thus can be suppressed in the case when 
squeezed light is formed. 

Of course, there arises then the problem of the real char- 
acteristics (e.g., the temperature stability) of the DFB sys- 
tem itself (and of its natural fluctuations) and as a conse- 
quence the problem of the widths of the Bragg reflection 
resonance curves and also those of the coherence properties 
of the incident radiation, of the presence of loss in the medi- 
um, and so on. All these factors lead to a degradation of the 
squeezed states in the propagating pulse. Moreover, schemes 
for detecting the squeezed light (e.g., a balance homodyning 
scheme) require a separate analy~is .~ Of great interest in this 
case is the use of a polarization interferometer on the basis of 
which one may realize an original and highly effective het- 
erodyning scheme for squeezed light.28 

We express our gratitude to our teacher S. A. Akh- 
manov who died prematurely in 1991 and with whom we 
discussed the present work several times; the idea itself of 

studying the problems touched upon in this paper arose from 
discussions in the nonlinear optics seminar at Moscow State 
University over which he presided. 

APPENDIX 1 

Wave-packet operators (light beams) 

We look for the solution of ( 15) with I = 0 in the form 
[cf. (511 

where the operators a,,, ( 7 , ~ )  = alP2 (z,x) ( d  is the thickness 
of the medium) correspond to the radiation leaving the me- 
dium, while the a , ,  a , , ,  ( 7 , ~ )  1 ,  =, correspond to the radi- 
ation entering the medium; f '(7) =df(r])/dv. The bound- 
ary conditions for the A,( 7 , ~ )  mode are: 

where r, is the beam radius on entering; the A, ( 7 , ~ )  mode is 
a vacuum mode (a, ( 7 , ~ )  1 =, = 0). The commutation 
conditions are 

where A and B are some operators with real positive values of 
their averages, (A ) and ( B  ) (cf. Ref. 13). 

The relations between the characteristic spatial scales 
of the problem are as follows: L,,, 5 L,, -L :,, where 
L :,, = 4/~,,, sin2 8; they determine the length over which 
the effect of the finite size of the beam exerts influence (spa- 
tial drift of the 0- and h-modes) . I2 '  

The requirement that the operators f,,, (7) and @,,, (7) 
be Hermitian leads to the equations [substitution of ( A l )  
into ( l 5 ) ] :  

where S;,, = L :,,p,,, a n d p , ,  is a nonlinear parameter de- 
fined in (15). 

The system (A4) has Hermitian solutions only in the 
framework of perturbation theory-when we expand in the 
small operator parameter S;,,a;f2a,,,, i.e., we assume that 
6 ; .  l a , ,  1'41, and neglect small (non-Hermitian) terms. 
We then obtain a relation like (6) :  

where the Pl.2.3  PI,^,^ (7) and yl,2,3 = Y I , ~ , ~  (7) are nu- 
merical functions which satisfy the following equations 
[substitution of (AS) into (A4), neglecting small terms and 
satisfying the boundary conditions f,,, (7) 1, =, = 1 and 
df1,z ( ~ ) / d 7  / ,=o =Ol: 
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From (A6) we find 

where 7 , ~  7/L :,, and where we have used the approxima- 
tion 3p,/p: < 1, (6p: - 3pfi,)/p: < 2p2. 

After similar transformations we get for v,, , ,  : 

The physical meaning of the relations obtained here 
consists in the following: The parameters p ,  ( 7 )  and v, (q) 
characterize the linear drift (in the transverse direction) as 
the modes a , ,  ( 7 , ~ )  propagate; p , ,  (7) and v,,, (7) corre- 
spond to the nonlinear drift. 

The procedure described here can also be applied for 
finding the nonlinear phase operator @,, (7) in (A l ) .  We 
then find successively: 

Q1(q) = ~ ~ ( 7 )  + u2(rl)6,'~;).a, + a3(r>6;2(aTa1)29 
('48) 

@2(9) = d l  (7) + d2(~)8;a2+~2 + d3(~)8;2 (a2+a2>29 

We used here the boundary conditions 
@ l . Z ( 7 )  I , = ,  =o.  

If we use (A7) and (AlO), Eqs. (A5) and (A8) deter- 
mine the partial modes [(the wave-packet operators) 
a,,, ( 7 , ~ )  in (A1 1 I.  
Fluctuations 

We determine the Hermitian quadratures 

@O,h(~ '  X) = Ao,h('lr X) + AO+,h('7, 
(A1 1) 

PO,h('l? X) = i{Ag+,,,('ll x )  - Ao,h(v, 41.  
We have for the mean square fluctuations (AQ;,, ) and 

( APi,, ): 

where (AQ :,, ) and (AP:,, ) are the mean square fluctu- 
ations of the quadratures of the partial modes and the quan- 
tum averaging is carried out over the initially coherent 
states: 

where lao(x))  is the wave function of the eigenstate of the 
operator Ao(7,x) 1, =,; (O), that of the vacuum state for 
A, ( 7 , ~ )  1, =, and la,,, ( x ) )  those for the partial wave- 
packet operators a ,,, ( 7 , ~ )  ( , = o ,  13) 

We assume that m 4 =  1 (I=O)--see (15); the 
(AQ;,, ) and (AP;,, ) fluctuations which do not contain 
quantum interference terms (cf. Ref. 22) are the same for 
the 0- and the h-modes; we denote them by (AQ;) 
= ( A Q i ) ( A Q 2 )  and (AP;) = (APi)=(AP2) .  
Temporal characteristics (light pulses) 

In the nonstationary problem (quasistatic case) there is 
at the entrance into the medium radiation with a temporal 
(Gaussian) profile of its envelope, i.e., we must put 
A,(q,C,x) I , = o  =Ao(x,f) =Ao and a,,, (x,?) =a,, , ,  where 
the averages for the corresponding operators are determined 
in the form [we use (16)]:  

7, is the initial length of the pulse. 
The boundary conditions are in this case the following 

[cf. (A2)]: 

and they must lead to a time-dependence also for the opera- 
torsf,,, =A,, (7,t) and @,,, =@,,, (7,f) in (A1)-the case 
of quasistatic self-focusing (self-defocusing) . I 4 )  

If we are only interested in the effects of transforming 
the temporal envelope of the light pulse (its compression 
and decompre~sion)'~' we have instead of ( A l )  for the 
propagating quantum wave packets the following solutions: 

where the effective time coordinate is 7, = t 
- Z/V cos 6 - x sin 6/v, y; ' = L,,, sin2 6 tan2 6/v2.r;, rU 

determines the length of the pulse, and the operators f,,, (z) 
and @,,  (z) are functions only of the propagation coordi- 
n a t e ~ .  We obtain the solution of (A16) under the boundary 
conditions 

- 
a0(z, X, t)lz=O = expi-(t - x sin 6 / ~ ) ~ / 2 < ] a ~ ,  

- 
u, ,~(z,  X ,  t))z=O = exp[-(t - x sin 6 / ~ ) ~ / 2 r : ] a ~ , ~ .  
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It is clear that the transition to the spatial problem is 
performed by means of the substitution yo+L Lx,, 
T;/~T: -+x2/2L,,, L :,, tan2 8. 

Comparison of ( A l )  and (A16) thus enables us to 
speak about a complete space-time analogy for the two cases 
considered by us. 

APPENDIX 2 

The uncertainty relations for the quadrature compo- 
nentsPand Q, [see ( A l l )  and (A12)], 

are, strictly speaking, justified for single-mode fields in the 
stationary case. Using (A18) for quantum wave packets 
propagating in a medium with a cubic nonlinearity therefore 
requires additional comment. 

Indeed, the appearance of phase modulation for an en- 
semble of wave packets, which is characteristic for the quan- 
tum case [see (26) ] and for which the propagation velocities 
of the components and also the spatial scales 
L,, - l/(nl,, - 1 ) are different, leads to a complex transfor- 
mation of the envelope and makes the problem considerably 
more complicated. This set of packets, in fact, reduces only 
in the quasiclassical limit to a single pulse (beam) with some 
effective value of L,, [see (27) 1. 

It is therefore convenient, for instance, in the problem 
of solitons, which are stable objects, to start from the mo- 
mentum-coordinate2 or (when one takes phase modula- 
tion into account) from the particle number-phase'5 un- 
certainty relations. However, in our case it is apparently 
more natural to turn to the relation connecting the length T 

of the envelope of the packet with the width Aw of its spec- 
trum, i.e., to the time-energy l9  uncertainty relation:I6' 

Awr = S 2 0,5, (A191 

where 

(a' ( t )a ( t ) )  is the envelope of the radiation wave packet; 
Wo and So (w) are its energy and spectral density, respective- 
ly; a +  (@) and a (@)  are the Fourier transforms of a + ( 2 )  

and a ( t )  [we do not distinguish here between the notation 
for the partial and the normal (0- and h-) radiation modes]. 

Although the interpretation of Eq. (A19) in quantum 
theory is not that simple (see, e.g., Ref. 19), for the problem 
considered by us it is not significant. Therefore, using (26) 
(for simplicity we neglect the cross terms) we get for T and 
Aw in the case of the 0- and h-modes: 

where l /p  Ct', T, = { 1 + ( yo$:$)I $:$',' )2)1'2/$:$'1 T, is 
the effective width of the spectrum of the ( m  + 1 )st compo- 
nent of the packet (its length is T, ). It is clear from (A201 
that the lengths of the transmitted and the scattered packets 
and also the widths of their spectra are determined by the 
lengths T:.:', -$:.:', T, and the spectra 1/P T, of the 
partial pulses. 

However, strictly speaking, it is impossible in the quan- 
tum case to neglect the cross-terms for the partial compo- 
nents since the envelope of the packet is formed by the super- 
position of the component pulses with different nl,,-see 
(26). (In the quasiclassical case when one requires that 
laoI2) 1 the interference term is unimportant.) The more 
exact expression for (A20) therefore contain additional 
terms of combinations of and ($:$', ) '  which can be 
called cross-durations (spectra) of the partial components. 
Hence, in the quantum case there appears an additional 
mechanism for the change in the shape of the envelope. 
Moreover, for different in (26) there is an optimal 
length over which, for instance, there occurs compression of 
that component (see Fig. 4).  The total effect therefore leads 
to a more complex dependence for compression than the 
simple periodicity in the propagation coordinate as is ob- 
served in the classical problem (see Ref. 22) .I7' 

The transformation of the shape of the quantum wave 
packet (for the Ao(q,x) mode), (A ,+ (q,x)Ao(q,x)), has 
thus its special features as compared to the classical case; its 
envelope is arranged in an "uncertainty shell" with a nonun- 
iform width (along the length of the packet) which is deter- 
mined by the superposition of component pulses and con- 
nected with a phase modulation of the radiation which 
appears (as the result of quantum interference) when it 
propagates in a nonlinear medium with a strong spatial dis- 
persion-Fig. 6. Of course, these processes also determine 
the behavior of the fluctuations of both the amplitude (con- 
nected with the uncertainty in the amplitude of the oscilla- 
tions'" filling with the optical frequency the "space" inside 
the envelope) and in phase (connected with the uncertainty 
in the position of the trains of these oscillations) (Ref. 
17).18' 

The fact itself of the appearance of phase modulation of 
the radiation due to the nonlinearity of the medium is, of 
course, characteristic also for the classical discussion. In 
that case it may be cancelled thanks to the dispersive proper- 
ties of the medium and this leads, in particular, to compres- 
sion in the temporal problem and to the appearance of a 
spectrally bounded pulse at the exit from the system [for 
which one can only write down Eq. (A19) which uniquely 
connects the values of T and Awl. On the other hand, cancel- 
lation is also possible due to an a priori chosen chirp of the 
initial pulse.24 

However, in the quantum case such a total cancellation 
is not realized-this follows already from Eqs. (26) and 
(29)-i.e., no spectrally bounded pulse in the classical sense 
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FIG. 6. Qualitative behavior of the wave functions of space-time packets 
for the problem in the Schrodinger representation: (a):  a spectrally 
bounded pulse is incident when entering the medium; (b)  and (c):  trans- 
formation of the shape of the envelope on leaving: (b): compression, (c): 
spreading. Notation: 1 is the "uncertainty shell" for the envelope 
(A ,+  (t,z,x)A,(t,z,x)) of the wave packet; 2 shows the absence (a)  or 
presence (b,c) of quantum noise and phase modulation [the result of the 
summation in (26) over separate local modes for each n,,, 1. 

is formed. However, under well defined conditions a partial 
cancellation occurs (see Ref. 24) and here we can also speak 
of spectral boundedness of the wave packet on average; the 
fluctuations are then (:AQ 2:) - ( : A P 2 : )  ZO for any t and w. 
It is important that for this case the "uncertainty shell" is 
uniform in t (or @).I9 '  

The state of the wave packets can thus be identified as 
being coherent when there is no phase modulation, but when 
there is phase modulation it leads to the appearance of addi- 
tional quantum noise (nonuniform along the width of the 
packet). We are therefore dealing here with the presence of 
"nonclassical" chirp. The decreasing fluctuations (strength 
of the fluctuation spectrum) and then the transition to a 
squeezed state affects naturally also the shape of the enve- 
lope of the wave packet (and hence of the true spectrum) 
and in that sense one can speak, for instance, of its compres- 
sion beyond the limits imposed by the spectral boundedness. 

It is of interest to study these effects for video pulses 
when there is not mechanism for changing the length of the 
pulse by means of phase modulation; for squeeze light the 
coefficient s in (A19) itself changes then its value (in this 
case it is necessary to write down the energy A E s f i A w  in- 
stead of Ao). 

In connection with this last statement one can again 
consider the problem of the stability of optical solitons to 
quantum fluctuations; a recent discussion (see Ref. 32) con- 
nects the effect obtained here, of the spreading of similar 
structures, exclusively with the quantum uncertainty in the 
position of the soliton peak. However, in such an analysis 

one should pay special attention to the role of phase modula- 
tion. Its influence, essential for the envelope of the wave 
packet T= (A ,+ (v,x)A0(vf,x') ) (the field correlation 
function) does, of course, not appear in the intensity correla- 
tion functions Go= (A ,+ (v,x)Ao(v,x) A ,1 (v',xf)A0 
x (v',xf))-a well known fact in classical statistical op- 
t i c ~ . ' ~  However, the latter quantity, G, which determines the 
correlation of the photons [cf. (30) 1, characterizes the sta- 
bility of the packet.32 

" It is customary to speak in these cases of the geometries of Laue and of 
Bragg scattering. 

*' We note also that the waves producing a lattice in the medium (El and 
E, or E l  and E,) may in principle be of a nature which is not optical 
(e.g., acoustical-photon-phonon interactions); in that case the transi- 
tion to a naturally periodic medium in ( 1 ) is most obvious. 

3, For a free radiation field (without sources) in a cavity, when the differ- 
ent modes are quantum-mechanical oscillators, one is led to the repre- 
vntation of boson creation and annihilation operators; in that case 
C =  6 ( r  - r1)6(t - t').I7-l9 

4, The effects of the diffractive spreading ofbeams has been neglected, i.e., 
d(L,,, = ka,6/2, where ro is the initial beam radius; moreover, we 
assume that L,,, < d. 

5 ,  Both these cases are mathematically similar under a-transformation of 
the parameters: L :,,,uv2~,/L,,, sin! 8 tan2 8 ,  x2/2L,,,L L,, 
x tanZ 6-72,/2.2, where r0 = t - Z/U cos 6 - x sin 8 /u  and T, is the 
initial length of the pulse. 

6' For uo = r,, = 0 we assume that there is initially squeezed light. 
7' The case to- m goes at r, -0 beyond the framework of the quasista- 

tionary approximation (the nonlinear response of the medium is as- 
sumed to be instantaneous) considered by us; however, the case uO- m 
corresponds just to the value x - +  m, i.e., to a weak beam field (the 
limiting values uo = 0 and u- oo correspond to the values x = 0 and 
x- a, since it is assumed in the given approximation that the quantity 
L :,, is practically fixed (L :,, -L,, > L,,, ). 

8' For small values of L :,, one must take into account the diffractive 
terms of ( 15), which we have neglected. 

9' The self-similar solutions Y!,:::'(y,r) presume that one can find func- 
tions $!,'.*' ( r )  and Qi1*2' (7) determining the width and the phase of the 
propagating wave packet [analogous to the operators f,,, ( 7 )  and 
Q,,, ( 7 )  in ( A l ) ]  and satisfying relations such as (A4). 

lo' We note that one can use this approximation only after a quantum 
averaging over the states of the system (this was not taken into account 
in Ref. IS). 

"'This contribution from the vacuum modes leads to the existence of a 
continuous set of spatial parameters L,,,, which determine the position 
of the minima of the function $::: (q/L :,, ) (cf. Fig. 4) .  

12'The plane-wave limit (see Ref. 24) corresponds to the condition 
L:xc>Lexc, LnI (r,)-w). 

13' We note that the last equality in (A13) is valid only when the wave 
packets A, ,  ( 7 , ~ )  are uncorrelated on entering the medium. 

14' The quantity r, is assumed to be longer than the characteristic time for 
the nonlinear response of the medium; the interdependence of the spa- 
tial and the temporal parameters of the problem is neglected [ there are 
no mixed derivatives a '/dtdz in ( 15) 1. 

Is '  The problem was solved in the classical case in Ref. 22. 
Ib'  In the classical case its analog is a property of the Fourier transforma- 

tion; of course, (A19) can also be written for the spatial case." 
17' For different n,,, the spread of these dependences is confined to the 

band between the dependence for the linear case (when chirp is present 
a priori)> and that for the nonlinearz2 case. 

18' These oscillations are often called local modes.I4 
"' One can write the operator of such a wave packet as a sum of a regular 

(c-number) and an operator (8-correlated)  art.^,'^ 
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