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The fluctuations of the order parameter in nematic liquid crystals are analyzed on the basis of 
topology and symmetry considerations. It is shown that in the five-dimensional space of the order 
parameter of a nematic (represented by symmetric zero-trace second-rank matrices) there can 
exist only two cases corresponding to two types of orbits in five-dimensional space. One case (the 
orbit is a sphere S *)  is described by two no-gap and three gap modes of the order-parameter 
fluctuations. In the limit as q -0 (q is a wave vector) two of the modes with gaps are degenerate. 
The second case [when the orbit is SO(3 1 is characterized by three zero-gap modes and two gap 
fluctuation modes that are degenerate in the limit as q- 0. Both cases are realized in experiment 
and correspond to uniaxial and biaxial nematic liquid crystals. In a uniaxial nematic, axial- 
symmetry conditions lead to a definite connection between the variation of the order-parameter 
components corresponding to degenerate gap and gapless modes. The dynamic aspects of 
symmetry and the physical consequences of the study are discussed. 

1. INTRODUCTION 

The calculation of fluctuations in liquid crystals (see 
e.g., Refs. 1-4) is based on an investigation of the free ener- 
gy, determination of the equilibrium structure of the order 
parameter, and linearization of the corresponding equations 
of motion near this equilibrium structure. This procedure is 
as a rule quite cumbersome and is furthermore dependent on 
a specific model form of the free energy of the system. 

This raises the natural question of identifying the fluc- 
tuation characteristics that are determined by the order-pa- 
rameter itself and depend also on the form of the energy (a  
form based on model representations of the phase transition, 
of the type of interaction, and others). The present paper is 
devoted to just this group of questions. 

It turns out that it is possible to make for the order- 
parameter fluctuations of nematic liquid crystals specific 
predictions without making any assumptions concerning the 
explicit form of the thermodynamic potential. A substantial 
role is played only by local symmetry and topology charac- 
teristics of the order-parameter space, which is five-dimen- 
sional in the general case. 

Starting from the dimensionality of this space, it might 
be possible to obtain five different types of locally stable 
ground states of nematic liquid crystals, i.e., five types of 
nematic. It is well known, however, that in nature there are 
only two nematic liquid crystal types, called uniaxial and 
biaxial nematics. In both cases the order parameter is a sym- 
metric zero-trace matrix of rank 2, but in the usual case some 
two arbitrary eigenvalues coincide, so that the matrix is de- 
scribed by only three (and not five) independent param- 
eters. We show below that this simple fact is connected with 
rather general properties of the order-parameter space. 

Similarly, some general characteristics of the order-pa- 
rameter fluctuations are connected only with the properties 
of the aforementioned five-dimensional space. Foremost are 
the characteristics describing mode degeneracy and split- 
ting, the presence or absence of a gap in the dispersion law, 
the structure of the Poisson brackets between the dynamic 
variables, etc. To establish these general laws it is not at all 
necessary to know the explicit form of the thermodynamic 

potential, which is specified, for example in the case of biax- 
ial nematic liquid crystals, by a large number of unknown 
phenomenological coefficients (in the simplest Landau-de 
Gennes approximation these are six coefficients of the ex- 
pansion of the homogeneous part of the energy and 15 elastic 
moduli). 

The scheme proposed in the present paper is in fact an 
analog of the traditional group-theoretical analysis of the 
lattice-oscillation spectrum in crystals. The only difference 
is that in solids one deals with discrete symmetry groups of 
the crystal, and in nematics with continuous symmetry 
groups acting in the order-parameter space. A similar ap- 
proach was already used to describe and classify the eign- 
modes in the B phase of He3 (Ref. 5). 

2. ORDER-PARAMETER SPACE OF A NEMATIC LIQUID 
CRYSTAL 

It is knownx4 that the order parameter in a nematic 
liquid crystal is a symmetric real zero-trace matrix QU . The 
specific physical meaning of the order parameter in the pres- 
ent paper is immaterial. Any quantity linear in QU and there- 
fore having the same transformation properties can serve 
equally well as the order parameter. The possible values of 
the matrix QU are determined by minimizing the free energy, 
which can be symmetrically put in the form 

Here V is the vector potential, whose explicit form is of no 
importance to us, and the second term specifies the so-called 
alastic energy. The nematic liquid crystals existing in nature 
are formed from the isotropic phase by a weak first-order 
transition (i.e., close to continuous). The potential must 
therefore be invariant to the three-dimensional rotation 
group (the elastic energy is written in (1)  with explicit 
allowance for this invariance). 

It is important that the free-energy minimum is degen- 
erate and the symmetry present is described by the transfor- 
mation 
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Q -. RQR-1, 

where R is the three-dimensional rotation matrix. In the ab- 
sence of additional degeneracy, the values of the order pa- 
rameter for this phase of the liquid crystal are of the form 

where is a certain Axed matrix, Equation (2)  makes pos- 
sible a topological description of the order-parameter space, 
i.e., of the aggregate of its values that are compatible with the 
nematic phase. 

According to the general theory6 the order-parameter 
space as a manifold will be a factor in the spaces 

where SO( 3 ) is the group of all three-dimvsional rotations, 
H i s  the group of rotations that conserve Q,: 

We are not interested here in discrete symmetries. As to con- 
tinuous nontrivial subgroups in S0 (3 ) ,  there exists, accu- 
rate to conjugation, only one: SO(2). The space of the order 
parameter can be only a sphere S or SO( 3 1. 

For actual calculationc it is convenient to have a basis in 
the space of real symmetric zero-trace matrices 

The numerical coeflcients in (3)  are chosen to ensure the 
normalization condition: 

This very basis was used earlier to investigate collective 
modes in He3-B (see Refs. 5 and 7-9 1. 

Let us consider a situation in which the order-param- 
eter space is two-dimensional. Wi~houtloss of generality we 
can confine ourselves to tht; case Q, = Y, . The subgroup H 
of rotations that conserve 9, consists then of rotations 

cos p, -sin p, 
D - sin p, map, 3. [ 0,1 

The action of the operator D on the basis matrices G, is 
specifled by the equations 

D$,D-I = cos 2p49 + sin 2p&, 
( 5  

D$J~D" ;o -sin 2p.q1 + cos %p"jlz, 

It follawb thus frurr~ Eqs, (5 ) - - (7 )  that with ~evpcct to 
the transformation D the entire five-dimensional space 
breaks up into two two-dimensional and one one-dimension- 
a1 manifolds. Note also the following circumstance. For the 
operator D corresponding to rotation through a certain*flx$d 
angle p the component of the order parameter in the $,, $, 
plane is rotatedjhrcpgh the same angle p, whereas the com- 
ponents in the $,, $, plane are rotated through double the 
angle, 2p. 

It is easy to verify by direct calculation that  he space 
tangent to the sphere (which specifies in-this case the order- 
gartmeter space) stretches at the point $, over the matrices 
$3, A and the normal one on $,, $,. 

3. NATURAL MODE8 OF ORDER-PARAMETER 
FLUCTUATIONS 

Everything said above concerning the order-parameter 
space and some of its properties leads to the following state- 
ments concerning the ground state of the system and small 
deviations (fluctuations) from it. 

As established in the preceding section, from the stand- 
point of the order-parameter symmetry only two different 
cases are possible (corresponding to two different types of 
nematic liquid crystals). In the first the order-parameter 
space is specifled by the entire SO( 3) group, and in the sec 
ond by the two-dimenbional sphere S 2  

Consider initially the Arst case, Let there be a nlllrlrnum 
of free energy ( 1 ) in the class of solutions belonging to 
SO( 3 ) . Obviously, all the displacements of this maximum 
can be of two types. In the flrst these are three-dimensional 
displacements in a space tangent in the ~n i tk l  point of the 
space minimum. Since these displacements will not move the 
minimum away from the stationary SO( 3  1 orbit, the (three) 
eigenmodes corresponding to these displacemel~ts are gap- 
less (of the Goldstone type). Second, there exist two types of 
displacements that move the minimum away from the rnani- 
fold S O ( 3 ) .  These displacements correspond to gap modes 

Thus, independently of the actual for111 of the liquid- 
crystal energy, in the case of a biaxial nematic there are three 
Goldstone and two gap modes of fluct~ation.~'  

In the case of a stationary orbit, Sa, there 1s another 
situation. This case corresponds to a certain singled-out di- 
rection in real space. Transformations of the rotation group 
around this axis splits the five-dimensional space of the or- 
der parameter into two two-dimensional and one one-$1- 
mengonal manifolds. In these rotations, the con~ponents $, 
and $, are transformed to the stationary state in the nianj- 
fold iangent to the stationary orbit, and the components $, 
and $, are trans!ormed in the transverse space. A change of 
the component $, moves the minimym away from the mani- 
fold S2, Similarly, the components $, and $, alter the order 
parameter in the manifold transverse to the stationary orbit, 
and consequently moveJhe rnin!murn away from this orbit, 
whereas the elements $, and $, acting in the tangential 
manifold S leave the minimum on the orbit. 
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Thus, in the considered case of a preferred direction, 
(i.e., of a uniaxial nematic) there exist two zero-gap modes, 
two degenerate (in the limit as 9-0, where q is a wave vec- 
tor) gap modes, and one more gap mode with a frequency 
different from those of the preceding ones. 

4. POISSON BRACKETS 

As already noted in the Introduction, we are interested 
in the present paper only in those nematic properties which 
are independent of the actual form of the thermodynamic 
potential, but are determined by the symmetry and topology 
of the order parameter. One of the most important charac- 
teristics of this type of system are the Poisson brackets, 
which determine in turn its dynamics. 

It is knownl.'O that the dynamic variables of a nematic 
liquid crystal are all the variables of an isotropic liquid (den- 
sities of the mass, momentum, and energy) and the degener- 
acy parameter. This parameter is specified by two indepen- 
dent components of the director unit vector in the case of a 
uniaxial nematic, while in the case of a two-axis nematic it is 
given by three rotation angles of a triplet of mutually perpen- 
dicular unit vectors that parametrize the displacements, de- 
scribed above and in the preceding section, of the minimum 
of the free energy in a manifold tangent to SO(3). 

However, in the case of weak first-order transitions 
(such as are all the known transitions from an isotropic liq- 
uid to a nematic) and with allowance for the narrow tem- 
perature range ATin which the nematic phase exists (AT/ 
T, - lop2, where T, is the temperature of the nematic - iso- 
tropic liquid transition), all the components of the order 
parameters should be regarded as dynamic variables. We 
need thus a system of Poisson brackets which includes all 
five components of the matrix QU . 

It is convenient (following the analogous procedure" 
for uniaxial nematics) to introduce the components of the 
orbital momentum m which are generators of infinitesimally 
small transformation of the type 

To avoid misunderstandings, we emphasize that in real 
nematics the variable m has no macroscopic meaning. It 
must therefore be regarded as an auxiliary quantity. One 
must put m = 0 in the final dynamics equations. Introduc- 
tior. of m makes it possible nonetheless to derive (and ex- 
press in compact form) dynamics equations. In addition, 
one cannot exclude the possible (in principle) existence of 
nematic liquid crystals with a moment-of-inertia density 
that is small (compared with dissipation). In this case the 
density of the orbital momentum would have a macroscopic 
physical meaning. 

The Poisson bracket {mi, Q,, > is a commutator of [Q, 
f;. 1, wheref; are generators, belonging to SO,, of infinitesi- 
mal rotations: 

where E,, is an entirely antisymmetric tensor: 

For an explicit calculation of the commutator in Eq. 
(9) we expand the order parameter in terms of the basis (3) : 

Hence, with allowance for the normalization condition: 

Using these equations, we get: 

(mi. qi) = qkS~(+jI+k,  fil 1. (12) 

We put 
.. .. 

Sppj [qk,  fr] = -Ijjk. (13) 

The matrix tUk that determines the Poisson bracket {mi, q,) 
can be easily obtained by direct calculation 

Thus, the Poisson bracket of interest to us is 

In this equation i = 1, 2, 3 and j, k = 1, 2, 3, 4, 5. The 
matrix tUk is defined by relations ( 14). 

The Poisson brackets between the components of m fol- 
low from the known commutation rules'' 

A separate and quite not trivial problem is the deriva- 
tion of Poisson brackets between the momentum-density 
vector j and the quantities qi and m. If, however, only the 
fluctuations of the order parameter are of interest (and it is 
just they which make the main contribution, for example, to 
light scattering), one can neglect in first-order approxima- 
tion t&e contribution of all dynamic degrees of freedom ex- 
cept Q and m. The phzical basis for this approximation is 
that the characteristic Q fluctuation times are considerably 
longer in real liquid crystals than the fluctuation times for 
other hydrodynamic quantities, such as j. Consideration of 
only the order-parameter fluctuations can be justified also if 
spatial gradients can be neglected. The group of problems 
connected with the structure of the Poisson brackets G, qi ) 
and 6, m) calls for a separate investigation. Here we note 
only that the right-hand sides of the corresponding brackets 
should contain both the usual terms, corresponding to dis- 
placement of m and qi along the current lines, also the addi- 
tional terms connected with the rotations m and qi . 

5. CONCLUSION 

At present there is no need to convince any one of the 
usefullness of topological ideas in the physics of condensed 
media. As a rule, however, topological methods are used to 
describe and classify defects of various types (see, e.g., the 
reviewsI2). In the present paper, with nematic liquid crystals 
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as the example, we call attention to the feasibility of using 
topological method also for investigations of order-param- 
eter fluctuations in complicated systems. 

Roughly speaking, the procedure of topological analy- 
sis of order-parameter fluctuations is the following. We must 
separate all the orbit possible in the system's order-param- 
eter space. Each orbit corresponds to possible equilibrium 
phases of the system. It is necessary next to determine the 
tangential and transverse manifolds. The first correspond to 
gapless (Goldstone) modes of the fluctuations, and the sec- 
ond to gap modes. Degeneracy of the gap modes is deter- 
mined in a transverse manifold from symmetry consider- 
ations. 

Clearly, such an analysis can in principle be confirmed 
directly by computations for which one must use, however, 
some model form of the thermodynamic potential. 

A similar classification can be used in principle also to 
describe the dynamics of the fluctuations. It is known12.10 
that relaxation dynamics can be described in the framework 
of some supersymmetrical action. It can thus be stated that 
the dynamics of fluctuations in nematic liquid crystals 
evolves from a supersymmetric generalization of the SO(3) 
group. It is necessary to separate in this group the superor- 
bits and find the tangents to the transverse supermanifolds 
(see the Appendix). 

Finally, we note also that the obtained relation of the 
rotation "velocity" rates of the order-parameter compo- 
nents in tangential and transverse manifolds (and the corre- 
sponding ratio for the superorbits) denotes feasibility of the 
following phenomenon. Following a system-parameter 
change corresponding to motion along a closed contour in a 
normal manifold, the system state will not return to the ini- 
tial point, because the rate of change of the components in a 
transverse manifold is half as large [this property is connect- 
ed only with local symmetry of the minimum of the thermo- 
dynamic potential and is not a consequence of the known 
n+n global symmetry that reduces SO(3) to RP2] .  The or- 
der parameter acquires thus a certain phase of geometric or 
topological type (a  classical analog of the so-called Berry 
phase13), which can in principle be measured by optical 
methods. 

One of us (V.L.G.) thanks J. B. Ketterson for numer- 
ous helpful discussions. 

APPENDIX 

The variation of the order parameter and of the momen- 
tum vector m with time is described by the Langevin equa- 
tions, which can be symbolically written in the form 

Here Xi (i = 1 ,. . . 8) specifies the components of QU and m, 
H is the Hamiltonian, { x , , ~ )  is a Poisson bracket, A is a 
generalized force, and 7, is noise, assumed to be Gaussian. 

To calculate the mean values (correlators) it is neces- 
sary to average over the noise: 

where c is a normalization factor and @ is an averageable 
quantity. It is convenient, following Ref. 14, to make in 
(A2) the change of variables 

and to obtain the random noise formally from the Langevin 
equation: 

The determinant IIGv/SX 1 1  which defines the functional de- 
rivative in (A3) can be expressed as an integral over the 
Fermi fields $ri : 

Substituting these equations in (A2), we represent the result 
of the averaging in the form: 

Averaging over the noise can thus be reduced to averaging 
with an effective supersymmetric action: 

The main ideas, definitions, and properties of the supersym- 
metric broadening of the groups can be found in Refs. 15. 
Here, in the context of the main content of our paper, we 
discuss only the possible types of stationary superorbits of 
the effective action (A7). 

The case of thermodynamic equilibrium states can be 
obtained from (A7) by neglecting in the super-action S"" 
the derivatives with respect to time, and putting m = 0 and 
T = 0. We arrive thus at a minimization of the free energy F 
and to the orbits SO(3) and S 2  obtained in the main text. 

A more complicated situation takes place when the sad- 
dle trajectory in Fff is determined from the conditions 

In this case it is necessary to minimize the supersymmetric 
potential 

The conditions for the extremum of U are of the form 

They determine all the possible superorbits of this type. 
The usual orbit (free-energy minimum) is contained as 

a submanifold in the superorbit specified by (A9). Then it is 
just the first equation of (A91 which contains the usual or- 
bit, and the second 
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specifies the vector @,--the section of the linear stratifica- 
tion above the orbit. 

If the condition ( a F / d X )  = 0 that the free energy be 
stationary is satisfled, it follows from (A101 that this strati- 
fication above the orbit is directly connected with the gap 
modes of the system, since only for nuch modes do we have 
a7~/ax,ax,  $0. 

In the general case x # O  the classification of all the pos- 
sible types of supexorbits and of all the possible types of su- 
perhroadening of the group SO(?)  is a problem outside the 
qcnpe of the present paper. 
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