
Sources of charge asymmetry in the cross sections for inelastic transitions excited 
by fast particles and antiparticles in helium 

V. A. Sidorovich 

Nuclear Physics Research Institute, Moscow State University 
(Submitted 19 November 1992) 
Zh. Eksp. Teor. Fiz. 103,806-831 (March 1993) 

Inelastic transitions excited by helium collisions with fast particles and antiparticles are examined 
within the framework of the impact-parameter method, with allowance for configuration 
interaction. The sources of the charge asymmetry in the total cross sections for one- and two- 
electron excitation and ionization of helium are studied. It is shown that in fast ion-atom 
collisions, when polarization of the helium-ion electron-shell polarization by the incident ion and 
the influence of the competing charge-exchange process can be neglected in the scattering of a 
positively charged ion by helium, the difference between the cross sections of the indicated 
inelastic transitions for particles and antiparticles can be attributed to interference between 
different inelastic-transition mechanisms. Specific processes responsible for the charge 
asymmetry in the integral scattering cross section are determined for each of the considered 
inelastic transitions, and those making the decisive contribution are identified. The published 
theoretical and experimental data on the cross sections for one- and two-electron excitation and 
ionization are analyzed from the standpoint of the described approach. 

1. INTRODUCTION 

Study of the scattering of electron, positrons, protons, 
and antiparticles by helium points to the presence 
of charge asymmetry in the elastic-collision cross sections. 
The charge asymmetry is particularly pronounced in the 
double ionization process.2 Investigations'33p22 have shown 
that the dependence of the cross section for double ioniza- 
tion of helium on the sign of the ion charge is contained in the 
interference term of the cross section, a term proportional to 
the cube Z of the incident-particle charge. One of the possi- 
ble causes of the term proportional to Z in the double-ioni- 
zation cross section is interference between the mechanism 
for independent separation of the electrons and the double- 
ionization mechanism, in which the electron ejected by the 
interaction with the incident ion is scattered by another heli- 
um e l e ~ t r o n . ~ , ~ ~  

The strong dependence of one-electron excitation of he- 
lium on the sign of the charge of the incident ion in the colli- 
sion-energy interval from 50 to 1000 keV was determined by 
calculations, based on the multichannel diffraction approxi- 
mation," of the cross sections for helium excitation by pro- 
tons and antiprotons. It was ascertained that the excitation 
cross sections are more asymmetric for optically forbidden 
transitions than for optically allowed ones, owing to the sig- 
nificant contribution of two-step transitions to excitation of 
optically forbidden transitions. 

Many calculations e ~ i s t ' ~ , ~ ~ , ~ ~ . ~ ~ ~ ~ ~  of the cross sections 
for excitation of the lowest autoionization states of helium 
by protons and antiprotons. The results of tight-binding cal- 
culations using a discrete basis of atomic orbitals relative to 
one centerI6 and a Sturm basis of wave  function^,^' calcula- 
tions in the second Born approximation including only dis- 
crete states and transitions outside the energy surface,18 and 
also calculations carried out in the second Born approxima- 
tion and in the tight-binding method using hyperspherical 
wave functions with allowance for only discrete states,26 
yielded only insignificant ( - 30%) differences of the proton 

and antiproton cross sections in the energy interval E from 
1.5 to 10 MeV. Exceptions are the calculated cross sections 
for the excitation of the 2p2 'D states at 1.5 MeV energy,I6 
when the cross section for the protons is almost 1.8 times 
larger than that for the antiprotons. A significantly higher 
(by up to six times in the case of the 2p2 ID state) cross 
sections of two-electron excitation of helium by antiprotons 
compared with those for protons at energies E = 1.5-10 
MeV was obtained by perturbation-theory  calculation^^^ of 
second order in the potential of interaction of an incident ion 
with helium electrons. Only transitions on the energy sur- 
face were taken into account in these calculations. A con- 
flicting situation arises: some calculations show an insignifi- 
cant discrepancy between the cross sections for particles and 
antiparticles, while others, in the same collision-energy 
range, predict a large excess of the antiparticle cross sections 
over the corresponding ones for particles. 

Thus, notwithstanding the large number of original re- 
search (both experimental and theoretical) and published 
reviews devoted to scattering of fast charged particles and 
antiparticles by inert-gas atoms, there is no adequately veri- 
fied physical explanation of the charge asymmetry observed 
in the inelastic-scattering cross sections. 

To advance further in the research into the nature of the 
charge asymmetry in ion-atom collisions, a single approach 
is presented here, based on the use of the impact-parameter 
method, with allowance for the configuration interaction, to 
consideration of various inelastic transitions excited in heli- 
um by collisions with fast particles and antiparticles. The 
causes are investigated of the charge asymmetry in the total 
cross sections of one- and two-electron excitation 

( la)  

and of one- and two-electron ionization 
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Z + H+(nZ) + e- 
Z + He(ls2 IS) = Z + He**(nl l ln212'~~) , ( l c )  

+ He+(ls) + e- 

as well as inelastic-transition excitation mechanisms respon- 
sible for the charge asymmetry in the scattering cross sec- 
tions. Polarization of the helium-atom electron shell by the 
incident ion, which is significant only at low collision veloc- 
ities (see, e.g., Ref. 3) ,  is neglected here. Since the results of 
Ref. 28 have revealed a weak influence of charge exchange in 
helium ionization even at ion energies E-0.2 MeV/nu- 
cleon, no account is likewise taken here of the competing 
process of charge exchange in scattering of a positively 
charged ion by helium. The approach developed is used to 
analyze the published calculated and experimental data on 
the cross sections of inelastic transitions in helium. 

2. THEORY 

2.1. Electron wave function of helium atom 

Consider scattering of a structureless charged particle 
by a helium atom. The scattering problem is solved on the 
basis of the impact-parameter method. It is assumed within 
the framework of this method that the charged particle 
moves along a straight line R( t )  = p + vt (where p is the 
impact parameter and v is the ion velocity relative to the 
nucleus of the target atom), and the electron wave function 
Y of the helium atom is independent of the relative distance 
between the colliding particles and is determined by the 
Schrodinger equation, which takes in the interaction repre- 
sentation the form 

where - 
V(f) = exp(iHof) V(R, rl, r2)exp(-iC/,t) ( 3 )  

is the operator of the interaction of the ion with the target 
atom in the interaction representation, and 
V(R,r,,r,) = - Ej=, Z/IR(t)  - r, 1. The wave function 
Y (r,,r2) is an eigenfunction of the atomic Hamiltonian Ha 
with an eigenvalue E: 

HereA H, = H, + K is the free-motion Hamiltonian; 
K = P2/2M and Mare  the kinetic-energy operator %nd the 
reduced mass of the colliding particles, respectively; P is the 
relative-motion momentum operator; Rand r, are the radius 
vectors of the ion and of the jth electron of the helium rela- 
tive to the nucleus of the target atom; Z is the ion charge. 

To determine the wave function Y (r,,r2) it is conve- 
nient to express the atomic Hamiltonian Ha as a sum of two 
terms: the Hamiltonian H Ij corresponding to the self-consis- 
tent-field approximation, and the proper correlation part 
w c  

V c  = l / lr ,  - r,l is the interelectron-interaction potential, 
Z, is the charge of the target-atom nucleus; w, is the screen- 
ing potential applied to the jth electron of the helium by the 
other electron; $j is the momentum operator of the jth elec- 
tron of the helium atom. 

We seek the wave function \Y, (r,,r2) of the helium in 
the form 

where @, (r,,r2) is the wave function of the helium in the 
self-consistent field approximation 

E is the energy of the K th state of the helium without 
allowance for correlation effects. For the discrete (d) and 
continuous ( c )  states ofthe helium, +, (r,,r,) is determined 
respectively by the expressions 

and 

Here k, denotes the aggregate of quantum numbers describ- 
ing the state of an individual electron (n,  I, m-for a discrete 
spectrum, u-for continuum states); L and Mare  the total 
orbital electron moment and its projection on the direction 
of the relative-velocity vector v of the colliding particles; 
C$E,,Zm2 is a Clebsch-Gordan coefficient; p, is the wave 
function of an individual helium electron. The last term in 
the right-hand side of (7)  defines a correction to the wave 
function of thepth state for configuration mixing. The prime 
on a summation sign denotes elimination from the sum of 
states that can kad to self-mixing (i.e., to self-mixing of a 
configuration); P I ,  is the permutation operator. 

To determine the coefficient A, we substitute expres- 
sion (7)  for the wave function +, (r,,r,) in Eq. (4),  multiply 
the right-and left-hand sides of the result by the function 
@, (rl,r2) and integrate over the coordinates of both elec- 
trons. The result is the following equation for the coefficients 
A,: 

If the elements of the system ( 10) are written in matrix form, 
the terms with A, are located on a diagonal (since the system 
( 10) includes continuum states, the matrix of the system of 
equations has an infinite dimensionality). Confining our- 
selves in the solution of ( 10) to diagonal elements only (ar- 
guments favoring this confinement are given in Ref. 29), we 
obtain for the coefficient A, 
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where the imaginary increment iO specifies, in the case when 
@, (rl,r2) describes a state in a continuous spectrum, the 
direction of circuiting the pole in the integration 
E, = E :  + (@,IWCI@,). 

In the case of single-electron ionization, transitions into 
states with one electron in the continuum 
@, (rI,r2) = (1 + ?12 / f i )~ ( r l )pO( r2 )  (where po(r) de- 
scribes the ground state for one of the helium electrons, and 
F ( r )  describes the continuum state for the other electron) 
can proceed through resonance states with energy equal to 
the energy of a state with one electron in the continuum. In 
this case one cannot use the expression ( 11 ) for the coeffi- 
cients A, that determine the contribution of the resonance 
states to the wave function (7),  since A, becomes infinite. 
We shall determine the contribution of the resonant states to 
the wave function Y, for the coefficients A, by using an 
expression obtained in the framework of the diagonalization 
approximation,29 

1, = @ y 2 1 1  + 1 2 0 2  (12) 
Ep - $ - by + ir/2 

9 

where 

is the energy shift of the position of the autoionization reso- 
nance E, relative to the level E that results from the cou- 
pling of the resonant state with the channel a,; 
h l =  - A l - ( Z l / r , ) + ( l / l r j - r , l ) ;  K 2 = 2 ( E p - ~ o ) ;  
E~ is the ground-state energy of the singly charge ion He + ; 

is the autoionization width of the resonance @,(rlr2); 
F + (r,)  is the solution, regular at zero, of the equation 

We take hereafter F + to mean a continuum single-electron 
wave function defined in the self-consistent-field approxi- 
mation. 

The coefficients A, [expression ( 1 1) ] differ by an ener- 
gy denominator from those obtained in first-order perturba- 
tion theory with respect to the potential Wc in Ref. 19. Our 
present coefficients contain correlated values of the electron 
energy, while the coefficients used in Ref. 19 contain values 
determined in the self-consistent-field approximation. The 
use of our present wave functions to determine the charac- 
teristics describing the scattering process is preferable in vir- 
tue of the fact that the expressions obtained on their basis 
will contain only correlated values of the electron energies. 

2.2. Amplitudes of electronic transitions 

The amplitude of an inelastic transition in helium from 
state I to stateF, effected by a fast charged particle, is defined 
as a function of the impact parameters by the expression 

where the scattering matrix S is of the form 

Expanding the exponential above in a perturbation-theory 
series and using the completeness of the eigenfunctions of 
the Hamiltonian Ha,  we obtain for A ( F + t p )  

where {Y, (rl,r2)} is the complete set of eigenfunction of 
the Hamiltonian H, and EK is the eigenvalue corresponding 
to the eigenfunction Y, ( r , , r , ) .  Since we are interested in 
the charge asymmetry of ion-atom collisions, we need take 
into account in the definition of the inelastic-transition am- 
plitude only the perturbation-theory series up to second or- 
der in the potential Vinclusive. These very terms are respon- 
sible for the charge asymmetry, for only they can contribute 
to the term proportional to Z in the scattering cross section. 
We neglect the contribution of the terms proportional to Z n  
with n>5 to the scattering cross section. 

Substituting in ( 18) expressions (7) ,  (9) ,  and ( 1 1 )- 
( 14), which define the wave function 9, (r,,r2) and the co- 
efficients A,, and using the Bethe integral3' 

we write for the amplitudes ( 1) of the inelastic translations: 
a )  the single-electron excitation amplitude 

b) the two-electron excitation amplitude 

(21 1 
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C )  the single-electron ionization amplitude 

A(n1mu c ls2 I S ;  p) = dl (n imu;  p) + acl(nlmu; p) 

+ d2(nlmu; p) + d(n1mu; p) + ac2(nlmu; p) + #(nlmu; p), 

d )  the two-electron ionization amplitude 

The amplitudes a'', a", a'', d ,  ac2 and aR are defined, respec- 
tively, as 

(24) 

6 being the amplitude of the transition of one of the helium 
electrons from the state ( I s )  into the state 
I f , ,  ) ( V;)  = Inlm) or (u) for transitions into the states of 
the discrete or continuous spectra, respectively) without 
change of the state of the second electron (inasmuch as the 
one-electron wave functions are orthogonal, we have 
( f i l s )  = O  for I f , ) # ( l s ) ,  or ( f , l l s )  = 1 for V;) = ( l s ) ) ,  
defined in first-order perturbation theory; 

is the amplitude of the inelastic transitions of helium elec- 
trons as a result of single scattering of an ion by helium and 
of the correlation interaction of the atomic electrons; 

is the amplitude of the steplike transitions of one helium 
electron as a result of its interaction with the incident elec- 
tron; 

is the amplitude of the inelastic transitions of helium elec- 
trons as a result of the twofold scattering of the ion by the 
atom and of the correlation interaction of the atomic elec- 
trons; 

is the amplitude of the transition of two helium electrons as a X ~ ( E F  - E~ - qlp - ply) P ( E ~  - E~ - ply) 
result of interaction of each of them with the incident ion. 
The amplitude az2 coincides with the amplitude determine + P 
in the independent-electron approximation in second order 
of perturbation theory, and corresponds to the amplitude 

- E~ - pl,Y] 

T S : ~  introduced in Ref. 3 (it is shown in the Appendix that 
in second-order perturbation theory the two-electron transi- 
tion amplitude determined in the independent-electron ap- 
proximation contains no off-energy part); is the amplitude of the resonant transition of one helium 
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electron to the continuum via an autoionization state. We 
have confined ourselves here only to the case of one resonant 
state. 

Here q(p) and q' are the momenta transferred respec- 
tively to one electron and the helium atom in the collision 
process, ql, (pll ), qi and q, (p, ), q; are their parallel and 
orthogonal components relative to the velocity vector v; E,  is 
the energy of one helium electron in the state v; the symbol P 
in expressions (25) and (27)-(29) denotes that the inte- 
grals over E andpll are calculated in the sense of the principal 
value. 

We continue the transformation of the amplitudes 
(24)-(29) using the scheme described in Ref. 22. For the 
wave functions Ig) of an individual electron we use Coulomb 
wave functions defined in the field of the effective charge Z *. 
We use an expansion of exp(itr) in a series of spherical har- 
monics3' 

and an expansion of the one-electron wave function (k)  in 
Coulomb functions of the stationary states with definite en- 
ergy E, momentum 1, and its component m along the quanti- 
zation axis3' 

Herej, ( t r )  is a spherical Bessel function of order 1; Y,, (R )  a 
spherical harmonic; R, is the spherical angle of the vector t; 
8, is the phase shift; k the electron momentum in the contin- 
uum state; R,, ( r )  a Coulomb wave function defined in the 
effective-charge field Z *. We denote by QCf, f2;p) any of the 
amplitudes (24)-(29) and introduce the definition 

(32) 

where 

The variable ii denotes here any principal quantum number 
n of the electron state in the discrete spectrum or else the 
electron momentum x in the continuum state, respectively. 
The functions Z)(iilllmlii212m2;p) coincide in the case of dis- 
crete transitions with the corresponding functions, while in 
the case of transitions to the continuum they are the ampli- 
tudes of transitions to states characterized by a definite ener- 
gy x2/2, a momentum 1, and its component m along the ion 
velocity v. The introduction of the functions is convenient 
because they can be resolved into sums of not more than two 
terms, each of which proportional to the imaginary unity 
raised to a definite degree (more below), in contrast to the 
functions Q which do not have this property in the case of 
transitions into the continuum. 

Substituting (30) and (3 1 ) in expressions (24)-(29) 
and introducing the structure functions T, we represent the 
amplitudes Z) in the form: 

1 1 s2(9) ;  p ) ( i 4 p t  1 14 ,  (34) 
- - 

;i(nlllmln212m2; P )  = don(n l~ lmln2~2m2;  P )  

+ ;iof,6111mli2~2m2: P I ,  (35) 

where 

are the amplitudes of the direct (5") and stepwise (2) tran- 
sitions of one helium electron, respectively. The amplitudes 
4, and aOi,, describe transitions on an off the energy shell, 
respectively; 

is the amplitude of a two-electron transition resulting from 
interaction of an ion with each of the helium electrons; 

d1(i11,m1n212m2; PI = ~ n ( i l l l m l n 2 ~ 2 m 2 ;  P )  

+ i$i111m1i212m2; P),  (37) 

where 

XZ (-l)'fi2)( I ;lIm;t'rt(fl) * I klm l s ( r ) )  + I l s2(g) ;  p), 
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- 
>2(illlmli2r2m2; P)  = $(nlllm 1i212m2: P )  

- - - 
+ a:2(nlllmln212m2; P) ,  (38) 

where 

- _ - z22\/2i 
a~2(nlllml~212m2; p) = - 

n3v 

x ~ ( E ~  - E ~ )  fi3)3)(l irf/rS;l++tmt(~) + 

1 i l~ lmtG+Lmt(q)  n l l l l t m f l l s ( r ) )  

[ l i t ]  + { m  } + 

1 ls2(1)); ~ ) 6 ( ~ ~  - EK)] 

S P 1 
+ dq 1 EF - EK - q ,v [- $/( 1 ' {p~~tml((nl(F)) + 

- - I 1 i f ~ f m l i l l l l l m l l ( r ) )  
Inlllmlnt~tmt(r;)) + I i ~ ~ ~ l ~ ~ . i ~ ~ ~ r ) )  I -= l l s2(4); P) 

+ 

P 

are the amplitudes of inelastic electron transitions resulting 
from single (5'') and twofold (5"') scattering of anion by an 
atom, respectively, and of the correlation interaction of 
atomic electrons. The amplitudes iizf, and 5:; describe tran- 
sitions respectively on and off the energy shell, whereas each 
of the amplitudes iif2 and includes both transitions. The 
amplitude 5:: corresponds to ion scattering by helium such 
that the electron ejected as a result of the interaction with the 
incident ion is scattered by another helium electron, and de- 
scribes transitions via states of the one-electron continuum. 
Since this transition takes place on the energy shell 
(E, = E, ), the amplitude does no contain this term in the 
case of single-electron excitation of helium. In the case of 
twofold ionization of helium, the amplitude a;!, responsible 
for corresponds to the amplitude TS - 1 (Ref. 3); 

where 

2 

j=1 t # j  

- z 2 2 a  m;,m; 
&i111m1i212m2; p)  = - 

n2v 

j=l t#j ~ ' , m '  p.m"nl n" I n{Imjls(K)) + I l s2(4;  P) 
- 

P 
d q l l  EF - EK - qly x [l EI - El- fi3)( I i~lm,+tmi(q) + 

- 
and - 

4 ( l s u l m ;  p) = z22d2i 
P n3v[(EF - E ~ ) ~  + r2/4i 

2 
x cg, 12m2cEt1 C C fl( 1 1 sulm) -= 
m, .m2. 1 1 '  2 j,1 t # j  

I l sn"~"m"(r)) " t  ] { - ] + 1 l s 2 ( n ;  m;.m; 
I i"l"m"n,limt(r)) I lsnll'm'(K)) 

- - + $3)0 l n+lmin,rimt(~) 
EF - Er 

l i * ~ ~ ~ * m ~ ~ l s ( r ) )  P 
1 i ~ r m ~ G ~ ~ ~ ~ ~ m ~ ~ ( r ) )  / I G ~ ~ ~ ~ ~ ~ ~ ( M )  I ls2(r>); p)]  -(EF - ER)Sdql l  EF - I; - 

- 
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is the amplitude of the resonant ionization of helium in the 
presence of one resonance. Just as in the case of the ampli- 
tude iic2, each of the amplitudes a: and af includes transi- 
tions that occur both on and off the energy shell. 

By subdividing the amplitudes 2, iic', iic2 and iiR each 
into sums of two terms we aimed to separate terms with 
equal powers of $-1. The difference between the degrees of 
imaginarity of individual terms in each of the amplitudes 
(35) and (37) - (39)  is that they contain propagators due 
either to interaction of the incident ion with the helium elec- 
trons, or to interelectron interaction. Each of the propaga- 
tors breaks up into a sum of two terms with different powers 
of the imaginary unity 

1 -- - - - 7 h d ( E  - E). 
E - E k i O  E - E  

The energy conservation law is satisfied for one of the terms 
of (40). Therefore the amplitudes d and iicl, which contain 
only one propagator each, terms with the same power of 
$-1 describe transitions either on or off the energy shell. 
On the other hand, in the case of the amplitudes iic2 and aR, 
which contain two propagators each, terms with equal pow- 
er of - describe already transitions both on and off the 
energy shell. The power of $-1 in amplitudes correspond- 
ing to different transitions is an important property, since it 
makes it possible to determine the phase differences between 
different amplitudes G and hence the possibility of interfer- 
ence of various transitions with one another. 

The structure functions T"', T"' F"' TC3',  and Ti;' ' 411 ' 
describe electron transitions from a state contained in ex- 
treme right-hand position of the transition chains into a state 
in the extreme left position. Each of the transition-chain 
states contained in the structure functions is determined by 
the product of wave functions of individual electrons enter- 
ing in some state of the helium atom, designated in parenthe- 
ses. Antisymmetrization effects are taken into account ei- 
ther by a corresponding numerical factor or by the form of 
the actual expression for the structure functions. Each sim- 
ple arrow ( - ) in the transition chain corresponds to a tran- 
sition under the action of an electron with the incident ion, 
while each double arrow ( e ) corresponds to a transition 
resulting from a correlated electron-electron interaction. 
Since V is a single-electron operator, its action can effect a 
transition of only one electron. The states indicated on the 
right and left of a simple arrow can therefore have different 
characteristics of only one electron. In the functions T "', 
T"', and T'3' the energy-conservation law is satisfied in 
each collision of the incident particle with the helium elec- 
trons, i.e., as many times as there are simple arrows in the 
chain of the structure-function transitions. The parallel 
component of the momentum transferred to the helium 
atom in each collision is determined by the energy difference 
of the atomic system before and after the collision. In the 
first collision act the parallel component of the momentum is 
determined by the difference of the energies before and after 

states are labeled in the equation by the letter r. For the 
functions Fg' and T::' the energy conservation law is satis- 
fied only for the entire collision process. 

Each of the functions T "' and ci' includes two chains 
of transitions, one determined by the sequence of the upper 
states of the chain (if only one state is located between the 
arrows, it is contained in both chains), and the other by the 
lower states. These structure functions are sums of two 
structure functions for each of the chains of the transition. 

In'11"m"n212m2(~)) * In'llm'ls(K)) + 1 ls2(l)); P). 

The & sign preceding the functions T"' and F::' contain- 
ing two chains of transitions denotes that the corresponding 
structure function responsible for the upper chain enters in 
the equation with the upper sign, and that for the lower chain 
with the lower sign. 

The expression for the structure function should be 
written as going from left to right along the transition chain 
and assigning the function D ( I '  to each simple arrow and 
D "' to each dual one, with indication of the states of the 
active electrons, i.e., those electrons whose states can change 
on going from the start of the arrow to its end (the function 
D ' I '  has one such electron and the function D "' has two). 
The sequence of the single-electron states from the left to the 
right of the double arrow in the function D is firmly fixed, 
to ensure strict unambiguity in the treatment of electron 
scattering by one another, when both the direct and ex- 
change processes are possible. It is thus understood that for 
the link y v e p q  the transition of an electron from a state 
p(q)  can take place only in a state y(v) .  When the correla- 
tion interaction takes the system out of the initial state I and 
takes it into the final state F, the antisymmetrization is auto- 
matically taken into account in the expression for the func- 
tion ~ ( ~ , ~ , r n , f i , l ~ r n , ; ~ ) .  In these cases a double arrow in the 
transition chain contained in a structure function is set in 
correspondence with one D "' function. To take into ac- 
count antisymmetrization of each double arrow designating, 
in a chain of structure-function transitions, a transfer of a 
system from a K state to a r state or conversely (this takes 
place only for the functions T "' and IT:;' ), it is necessary to 
set in correspondence a sum of two D ',' functions corre- 
sponding to the direct and exchange processes. We write 
down expressions for some of the structure functions: 

the first collision,while in the second it is determined by the 
atomic-system energy difference after the first and second 
collisions. The energy of the system in states resulting from 

d l ) ( /  nlm l s ( ~ ) )  + I 1 sZ(l);  p) 

configuration mixing does not enter in the energy conserva- 
tion law, and is not taken into account in the determination = d l ) ( l n l m )  + 11s) 7; p), 
of the parallel component of momentum transfer. These 

I E F  - E1 
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The expressions for the remaining structure functions can be 
easily obtained by analogy. In the arguments of the function 
D "' are indicated the values of the parallel component of 
the momentum transfer to the helium atom in the corre- 
sponding collision act. Apart from a factor that depends on 
the incident-ion velocity v', the function D "' is the quasi- 
classical amplitude of the single-electron transition32 

(45 

and the function D '2' is a matrix element of the potential of 
the correlation interaction W c  

d 2 ) (  14 ~ , m , n ~ ~ ~ ~ ~ )  + I i ;~;m;n;l;m;)) 

= (n ,I, rn i21zm2 1 w I n ; ~ ; m ; n i ~ ; m $  

where Jm ( x )  is a Bessel function of order m, and P (cos 0) 
are associated Legendre polynomials. The symbol 

denotes summation over the principal quantum number n 
for the states of a discrete spectrum and integration over the 
electron momentum x in the continuum. 

Using expressions (32)-(46) we obtain the amplitudes 
for all the considered inelastic transitions. 

2.3. Cross sections of electronic transitions 

We focus our attention on the causes of the charge 
asymmetry in the integral cross sections of inelastic transi- 
tions induced in helium by fast collisions with particles and 
antiparticles. The difference between the cross sections of 
inelastic transitions for particles and antiparticles is deter- 
mined by the cross-section interference terms proportional 
to 2 3. We shall write these terms for each of the processes 
considered. To this end we must know the degree of imagin- 
arity of each of the amplitudes (34)-(39). Using the results 
of the preceding section, we find that the amplitudes do, and 
2: are proportional to iml ,  the amplitudes ii", &, and 2; to 
i m , +  1 , the amplitudes ii:f,, GI2  and ii;2 to iml + "', and the 

amplitudes 2:; and ii;2 to iml  + m2 + ' . The differences in the 
cross sections of one- and two-electron excitations and ioni- 
zation of helium, for particles and antiparticles, will be de- 
termined by the following expressions: 

1 ) Single-electron excitation: 

Au = 2Z Jdp{d l ( lsn Im;  p) + a'$lsnlm; p)) 

m 

Expression (47) shows that when account is taken, in the 
one-electron excitation amplitude (20) of terms up to sec- 
ond order of smallness in the potential Vinclusive. The onset 
of charge asymmetry in the cross section of single-electron 
excitation of helium is due interference between, on the one 
hand, direct electron excitation and electron transitions to 
an excited state due to single scattering of an ion by helium 
and correlation interaction of the atomic electrons and, on 
the other hand, stepwise transitions of an electron into an 
excited state as a result of double scattering of an ion by 
helium and the correlation interaction of the atomic elec- 
trons. From among the transitions resulting from single 
scattering of an ion by helium and the correlation interaction 
of atomic electrons, and the stepped transitions, only transi- 
tions taking place off the energy shell take part in the inter- 
ference. 

2)  Two-electron excitation: 

In the case of two-electron excitation of helium the differ- 
ence between the cross sections for particles and quasiparti- 
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cles is determined by interference of the transitions resulting 
from single scattering of an ion by helium and from the cor- 
relation interaction of atomic electrons, with transitions re- 
sulting from double scattering of an ion by helium and the 
correlation interaction of atomic electrons, as well as inter- 
ference of independent transitions of two atomic electrons as 
a result of interaction of each of them with an incident ion 
with transitions of the electrons into excited states in which 
the electron ejected as a result of interaction with incident 
ion is scattered by another helium electron. 

3) Single-electron ionization: 

Single-electron ionization of helium as the features of both 
one-electron transitions (one electron goes into the continu- 
um and the state of the other is unchanged) and two-electron 
transitions (one electron goes into the continuum and the 
other into an excited discrete state). Therefore the difference 
between the cross sections of one-electron ionization of heli- 
um for particles and antiparticles is determined by interfer- 
ence of the transitions already listed in the two preceding 
subsections, and also by interference of the transitions of one 
electron into the continuum via resonant states with direct 
transitions of one electron into the continuum and with tran- 
sitions, resulting from single scattering of the ion by the heli- 
um and correlated interaction of the atomic electrons, and 
interference of the steplike transitions of each electrons into 
the continuum, taking place on the energy shell, and transi- 
tions of one electron into the continuum such that the elec- 
tron ejected as a result of the interaction with the incident 
ion is scattered by another helium electron. 

4) Two-electron ionization: 

As seen from (48) and (SO), the charge asymmetry in the 
case of two-electron ionization of helium is of the same type 
as in the case of two-electron excitation. 

3. DISCUSSION OF RESULTS 

We analyze in this section, from the standpoint of our 
present theoretical approach, the results of the published 
experimental research and theoretical calculations of inelas- 
tic scattering of charged particles by helium. We begin with 
the excitation of nS, nP, and nD states of helium by protons 
and antiprotons. The main contribution to the difference be- 

tween the excitation cross sections for protons and antipro- 
tons will be made by interference of direct excitation and 
stepwise transitions of one electron, which take place off the 
energy shell. In the case of excitation of nS states, a direct s-s 
transition is optically forbidden and is suppressed compared 
with an s-p transition. Therefore stepwise s-p-s transitions 
will make a substantial contribution. The cross-section in- 
terference term responsible for the charge asymmetry can 
have a large weight and the differences between the cross 
sections of nS excitation for protons and antiprotons can be 
appreciable. A similar situation obtains also for excitation of 
nD states, when the stepwise s-p-d transitions also make a 
large contribution. The situation for npexcitation, however, 
is different. A direct s-p transition is optically allowed, while 
stepwise s-p-p and s-s-p transitions include one optically 
forbidden transition and are therefore small. The relative 
contribution of the interference term to the cross section is 
consequently small compared with the contribution from 
the direct excitation, and the difference between the excita- 
tion cross sections of the nP states should therefore be large 
for the protons and antiprotons should not be large. 

This situation is in fact observed in calculations made in 
the framework of the multichannel diffraction approxima- 
tion2' and in the method of strong coupling of the chan- 
n e l ~ . ~ ~  Since the excitation cross sections for stepped transi- 
tions decreases with increase of the ion energy E like 1/E 2, 
and the cross section for direct excitation decreases like 
( A  + B In E)/E, the difference (both absolute and relative) 
in the excitation cross sections for fast protons and antipro- 
tons should decrease with increase of the collision energy. 
This is in fact confirmed by  calculation^.^' 

As seen from Eq. (48), the main contribution to the 
difference of the excitation cross sections of autoionization 
constants of helium for particles and antiparticles will be 
determined by the interference between the excitation of the 
electrons by interaction of each of them with an incident ion, 
and transitions in which the electron is scattered by another 
gallium electron, after which both electrons are in excited 
states. These transitions take place on the energy surface, 
and the excitation of two helium electrons with participation 
of correlative interaction is via the continuum, and results 
from the interaction of the configurations in the final state 
(see Ref. 19). The interference term (48) will have a maxi- 
mum in the collision-energy region where the contributions 
from the above two excitation mechanisms to the total cross 
section for excitation of autoionized states are comparable. 
Its value in this energy region can be comparable with the 
cross section. A considerable difference should be observed 
here between the cross sections of two-electron excitation of 
helium for particles and antiparticles. 

Let us analyze the published experimental and theoreti- 
cal cross sections of two-electron excitation. Tables I and I1 
list the experimental and theoretical excitation cross sec- 
tions for 2s2'S, 2p2'D and 2s2p1P auto-ionization states of 
helium and the total cross section for excitation of the 2p2'D 
and 2s2p1Pstates for protons, antiprotons, and electrons. All 
the theoretical calculations of the cross sections of excitation 
of the auto-ionization states of helium by protons and anti- 
protons 16,18,20,23,26 can be subdivided into three groups in 
accordance with the extent to which they take charge asym- 
metry into account. 

1.   calculation^'^^'^^^^ with account taken of only dis- 
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TABLE I. Experimental and theoretical cross sections for the excitation of the 2s2 IS, 2p2 'D and 
2s201Pauto-ionization states of helium. in units of cm2. 

Crete states. In all such calculations, using both the method 
of strong coupling of the  channel^'^.^^ and the second Born 
approximation,'8s26 the difference between the excitation 
cross sections for protons and antiprotons is determined by 
the term af2(a$ ) *, which does not make the main contribu- 
tion to (48) and from which, furthermore, all the transitions 
via the continuum, have been discarded (the principal term 
ar2(a:: )*  is not taken into account, since the amplitude a:: 
describes transitions that go only through the continuum). 
The cross sections for excitation of auto-ionization states for 
protons, calculated in each of Refs. 16, 18, and 26, is there- 
fore not significant (except for the excitation of the 2p2'D 
state at an ion energy E = 1.5 MeV) differ from the corre- 
sponding cross sections calculated for antiprotons in the 
same paper (see Tables I and 11). The difference between the 
indicated calculations is attributed to the choice of different 
wave-function bases. The calculation in Ref. 18 differs from 
that in Ref. 16 and 26 also because the amplitude af2 of Ref. 
18 takes into account only transitions off the energy surface. 

2. In the  calculation^^^ based on the method of strong 
coupling of the channels, use is made of the Sturm wave 
functions, which take into account states of both the discrete 
spectrum and the continuum. The interference term (48) 
should include here all the terms. Nonetheless, the calculat- 
ed cross sections for excitation of the autoionized states of 
helium by protons do not differ from the corresponding 
cross sections for antiprotons (see Table 1 ) .  The apparent 
reason is the incomplete allowance for the continuum states, 
particularly those with energy equal to that of the doubly 
excited state. Yet only such intermediate states which con- 
tribute to the amplitude a:: . 

3. Calculationsz3 in second-order perturbation theory 
in the interaction potential of the incident ion with the heli- 
um electrons, with account taken of only transitions on the 
energy shell. In these calculations the discrepancy of the ex- 
citation cross sections of autoionization states for protons 
and antiprotons was determined only by the principal term 

of the interference term (48). The large excess (by up to six 
times) of the excitation cross sections for antiprotons over 
the corresponding cross sections for protons in the ion-ener- 
gy interval E = 0.1-10 MeV can be attributed to exclusion of 
the contribution to the excitation cross section from transi- 
tions that take place outside the energy shell. 

The available data, '32'7 assuming that the cross sections 
for excitation of helium autoionization states are equal for 
fast electrons and antiprotons of like velocity, agree with the 
approximate conclusions of the present paper. 

In the case of single-electron ionization, a whole spec- 
trum is observed of terms responsible for the asymmetry in 
the cross section. However, just as in the case of single-elec- 
tron excitation, the largest contribution should come from 
interference of a direct transition of an electron to the con- 
tinuum with the stepwise transitions, off the energy shell, of 
one electron into the continuum. Just as in the case of one- 
electron excitation, the difference between the ionization 
cross sections of helium for particles and antiparticles 
should decrease with increase of the collision energy, as is 
indeed observed in e ~ ~ e r i m e n t ~ - ' ~ - ~ ~  and in  calculation^'^ in 
the Monte Carlo method of classical trajectories. Since the 
main contribution to the electronic ionization is made by 
transitions of an electron into p and s states of the continu- 

the ratio of the cross sections for helium ionization by 
particles to ionization by the corresponding antiparticles 
should be contained between the analogous cross-section ra- 
tios for excitations of nS and nP states of helium. 

In the case of two-electron ionization of helium, just as 
for two-electron excitation, the main contribution to the in- 
terference term (50) will be made by interference between 
electron transitions to the continuum as a result of interac- 
tion of each of them with the incident ion and transitions in 
which the electron ejected through interaction with the inci- 
dent ion is scattered by another helium electron and both 
electrons go into the continuum. At ion energies such that 
the contributions to the double-ionization cross section from 

Ref- 

zce 

TABLE 11. Experimental and theoretical total cross section for the excitation of 2p2 ID + 2s2p1P 
for helium by electrons, protons, and antiprotons at energies 1.5 MeV/nucIeon in units of 
~ m . ~  

Energy, 
MeV/ 
nucleon 

2s2 I S  

Exper- I Theory 
iment 

Ion 
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each of the indicated mechanisms have close values, this 
term has a maximum and is comparable with the double- 
ionization cross section. Experimental investigations of dou- 
ble ionization of helium by protons and have 
shown that the cross sections for double ionization of helium 
by antiprotons is practically double that for protons at ion 
energies from 2 to 5 MeV. 

Note that in the region where the interference term re- 
sponsible for the charge asymmetry is a maximum the rela- 
tive contribution of the interference term to the total cross 
section for double ionization should be larger in the case of 
two-electron ionization of the helium than in the case of two- 
electron excitation. The reason is that in the latter case the 
ratio of the modulus a:!, of the amplitude describing the 
transitions to the energy surface to the modulus azi of the 
amplitude describing transitions off the energy surface 
should be higher than in the case of two-electron ionization, 
since the energy denominator in the amplitude a$ [see Eqs. 
(37)] is smaller for two-electron excitation than for two- 
electron ionization. In double helium ionization the relative 
difference between the cross sections for particles and anti- 
particles should be larger than in double excitation. 

4. CONCLUSION 

The present investigation of inelastic transitions excited 
in helium by collisions with fast charged particles has re- 
vealed the causes of the charge asymmetry in the total cross 
sections of single- and two-electron excitation and ioniza- 
tion. It is shown that in fast ion-atom collisions, when polar- 
ization of the helium-atom electron shell by the incident ion 
and the influence of the competing process, charge exchange 
is scattering of a positive ion by helium can be neglected, the 
difference between the cross sections of the inelastic transi- 
tions in question for particles and antiparticles can be attrib- 
uted to interference between different inelastic-transition 
mechanisms. The specific processes responsible for the 
charge asymmetry in the integral scattering cross section are 
determined for each of the considered inelastic transitions, 
and those making the decisive contribution are identified. 

The published theoretical and experimental data on the 
cross section of single- and two-electron excitation and ioni- 
zation are analyzed in light of the presented approach. In the 
case of excitation of auto-ionization states of the helium 
atom, a relation between the results of different calculations 
is established from the standpoint of the physics of the pro- 
cess considered. 

It is shown that in the cases of single-electron excitation 
and single-electron ionization of helium the integral cross- 
section interference terms responsible for the charge asym- 
metry differ substantially, whereas in the case of two-elec- 
tron transitions the corresponding interference terms in the 
two-electron excitation and ionization cross section are de- 
termined by the same transition variety. 

One of the important results of the present investigation 
is the confirmation that a difference between the particle and 
antiparticle excitation and ionization cross sections is possi- 
ble in the case two-electron transitions only for a correlation 
interaction of atomic electrons [see Eqs. (48) and (50) 1, 
whereas in the case of one-electron transitions the correla- 
tion interaction determines only corrections to the principal 
terms in the scattering cross section interference terms re- 
sponsible for the charge asymmetry [Eqs. (47) and (49)l.  

APPENDIX 

Let us show that the amplitude of a two-electron transi- 
tion in a helium atom, determined in the independent-elec- 
tron approximation, does not contain a non-energy part in 
second order of perturbation theory. According to ( 18), 
ar2(Ft-l;p) takes the form 

Without loss of generality, we can use expression (9b) for 
the functions Y,, YK, and Y,. Using the Bethe integral ( 19) 
and replacing Y,, YK, and Y, by their specific values, we 
obtain for the amplitude ar2 

Consider the expression 

(A31 
The energy of the helium-atom electrons in the intermediate 
state is EK = E~ + E ) , ,  for the first term and EK = + E~~ 

for the second. We have then for the first term 
EF - EK = ef, - and EK - E, = EL - E~~ and analo- 
gously for the second EF - EK = E& - E , ~  and 

EK - E, = E ~ ,  - E ) , .  Using the last relations, we write for T, 

m t, 
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The change of variables t, st2 in the second term of (A4) 
yields 

w tl 

We now change the order of the integration in the second 
term make simultaneously the change of variables q s  p. The 
result for T,  is 

Using similar transformations also for T2 

and substituting the resultant expressions for TI and T2 in 
the amplitude a12, we obtain ultimately 
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