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The paper analyzes the collision integral (CI)  in the quantum transport equation of the 
Boltzmann type for a gas in an electromagnetic field. The nonlinearity of CI and the polarization 
of the gas explain the existence of nonlinear interference components in CI, components that are 
especially important for a one-component gas. In properties and origin these components are 
similar to the nonlinear interference effects in the two-photon resonance scattering or absorption 
of light. Specific integral conservation laws following from the generalized optical theorem are 
established. The collision integral is concretized for a two-level system and in the eikonal 
approximation. Finally, it is discovered that owing to the nonlinearity of CI a two-level system in 
a monochromatic field exhibits optical bistability. 

1. INTRODUCTION 

It is common practice to base the theoretical analysis of 
kinetic problems of gas spectroscopy on the quantum trans- 
port equation of the Boltzmann type.'-4 The collision inte- 
gral (CI) in this equation can take into account any nuance 
in the internal structure of the colliding particles, which is 
what is needed in spectroscopy since it is interested in transi- 
tions between time-independent states of internal motion. 
From this viewpoint the CI has been studied by many re- 
searchers (see, e.g., Refs. 5-1 5),  but some important aspects 
remain unclear. 

As is known, the CI contains the product of matrices of 
colliding particles and in this sense is a nonlinear operator. 
This is the nonlinearity mentioned in the heading of the pa- 
per. The CI nonlinearity is taken into account in many kinet- 
ic problems, say, in transport theory,16 but spectroscopy is 
dominated by the idea of a linear or linearized CI: what is 
studied are either collisions of an absorbing (radiating, scat- 
tering) particle with the buffer gas at a given state of the 
latter, or collisions with excited and unexcited particles of a 
single species, the unexcited particles being predominant in 
concentration and acting as the buffer gas. 

It is important that the buffer gas or its equivalent is 
assumed to be at equilibrium. In many cases this is so, but 
other situations are also of interest. For instance, the buffer 
gas interacts with an external field that transforms it into a 
nonequilibrium state. Such a case has been considered by 
Shalagin and the present author: polarized radiation creates 
in the buffer gas a preferable direction and ordering, which 
are transferred to the impurity gas by ~ollisions. '~ A polar- 
ized buffer is also realized in inverted light-induced drift. '' 

The nonequilibrium nature of a collision partner be- 
comes important in the case of a one-component gas inter- 
acting with high-power radiation, when the number of excit- 
ed particles is great and a large polarization is induced in the 
gas. The first to notice this was Kazant~ev.~ 

This paper studies the consequences of CI nonlinearity 
and gas polarization. Section 2 analyzes the general expres- 
sion for CI that allows for off-diagonal elements of the den- 
sity matrices of both colliding particles. Section 3 is devoted 
to the case where the CI is calculated in the eikonal approxi- 

mation. In Sec. 4 the CI is concretized for the two-level mod- 
el. Finally, Sec. 5 discusses the problem of saturation in two- 
level systems. 

2. GENERAL RELATIONS 

The starting point is the quantum transport equation in 
the one-particle density matrix in the Wigner representation 
for translational degrees of freedom:I4 

The variables of translational motion are the position coor- 
dinator r and the velocity v equal (by definition) to the 
Wigner momentum divided by mass m, and p(rvt) is the 
density matrix in the internal degrees of freedom in the ener- 
gy representation. The matrices R, S, and V describe, respec- 
tively, radiative (spontaneous) relaxation, collisions, and 
interactions with the external field (in the quasiclassical ap- 
proximation in rand v). The CI is represented in the form of 
outgoing and incoming terms (S 'I '  and S'2', respectively). 

Let us denote by a and f l  the sets of quantum numbers 
of the internal degrees of freedom of the colliding particles. 
In the case of a buffer gas, whose state is assumed fixed, it is 
common to write the matrix elements SU' (aa ' rv)  and 
S'2'(aa'rv) as 

where summation over repeated arguments is implied. The 
outgoing rates v(aa'la,a,v) and the kernels 
A(aa'vla,a,v,) are fixed by the scattering amplitudes and 
the density matrixpb of a collision partner. Since describing 
collisions with polarized particles or particles of the same 
species requires isolatingp andp, explicitly, it is advisable to 
write S"' and S',' in a different manner, namely 
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Here, v, v,, v,, and v,, are the particle velocities after and 
before a collision. If chemically identical particles collide, 
pb (f11P2rvbt) differs from p(a,a,rvt) only in the values of 
the arguments. The kernels K"' and K") are expressed in 
terms of the matrix elements f(aPula,P, u l )  of the scatter- 
ing amplitude: 

Here E, and EB are the energies of the time-independent 
states a and p; the quantities p, m, and m, are the reduced 
mass and the masses of particles, and u and u, are the relative 
particle velocities after and before collision. 

Equation (2.8) makes it possible to obtain the relation 

which resembles the one between the photon frequencies and 
the transition frequencies of the scattering system in Raman 
scattering of light. An important difference is that in the case 
at hand all three frequencies are fixed by the internal struc- 
ture of the colliding particles. If won& = 0, condition (2.9) is 
met, for instance, at E,, = E, and Ea2 = Ea,, and the CI 
contains p (aa'v) and p (aa'v, ) in S 'I' and S'2', respectively 
(to simplify the notation we drop the arguments r and t ) .  
But ifus,& #O, condition (2.9) is met for different particles 
only if the Bohr frequencies accidentally coincide, which oc- 
curs only as an exception. In the absence of such a coinci- 
dence the optical coherence of the buffer particles contrib- 
utes nothing to the CI, which will contain only the diagonal 
elements of the density matrixp, in the energy. 

In contrast to what has just been said, condition (2.9) 
can be met automatically for particles of a single species 
since herep, ( P 8 2 ~ b  ) andp(a,a2v)  are elements of a single 
matrix and the quantities a and fl run through the same 
values. Thus, in collisions of particles of a single species the 
contribution of the optical coherence of a collision partner is 
a rule rather than an exception. Hence, in this paper we have 
focused on just such a case, known in jargon as "proper- 
pressure broadening." 

For purely magnetic coherence we have was. = w , , , ~  
- - w ~ , ~ ~  = 0, and condition (2.9) imposes no restrictions. 

Hence, for instance, the evolutions of magnetic coherence 
due to collisions with the gas proper or with a buffer gas are 
perfectly similar. 

We use another simplifying assumption, the model of 
nondegenerate states. In this model, optical coherence mani- 
fests itself in collisions quite clearly. Degeneracy and mag- 
netic coherence complicate the analysis considerably, and it 
has proved expedient to allow for these factors when the 
problem is stated more specifically (e.g., when the interac- 
tion potential, the number of levels, and others have been 
determined). 

Let us start by studying the off-diagonal elements of the 
outgoing term ( a # a i ) .  Condition (2.9) simplifies because 
of deltas in Eq. (2.7), 

but the ideas concerning the difference between collisions of 
particles of the same species and collisions of particles of 
different species remain valid. It is natural to break down the 
outgoing term into three parts, 

S(')(aalv) = sL1)(aa'v) + (aa'v) + s$\(aafv), (2.10) 

The term S:') represents scattering that is elastic for 
each colliding particle and in what follows is called the elas- 
tic part of s"'. The terms S Li: and S b f i  represent scattering 
that is elastic for a quasimolecule consisting of the colliding 
particles as a whole and not for each particle separately, that 
is, scattering with excitation exchange, with S::; (crtr'v) in- 
corporating excitation exchange in which only states a and 
a' participate, and s k:: (aa 'v)  excitation exchange between 
states afl and a'fl (a # a'). The terms S d:! and S L:: will be 
called the exchange part of S"'. 

The elastic part S :I' (aa 'v)  is proportional to the ele- 
mentp(aalv) with the same arguments a ,  a' and v, and the 
proportionality factor ~ ( a a ' v )  has the meaning of an outgo- 
ing frequency that depends on p(flP vb ). In other words, 
S L1'(aa'v) is expressed in terms ofp(cra1v) and the popula- 
tions p(Pfl vb ). In this respect S6l' (aa 'v)  is similar to an 
off-diagonal outgoing term in a linearized CI. The important 
difference, however, is that in the case of a buffer gas the 
outgoing frequency 

v(aal 1 aa'v) = (2.765lip) 

contains not p(Pfi) but the elements p b  (oov, )of the den- 
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sity matrix of the buffer gas, which are usually considered 
given (equilibrium) values. 

Let us separate the imaginary and real parts of the for- 
ward scattering amplitudes in (2.11 ). The imaginary parts 
are expressed, by the optical theorem (see, e.g., Refs. 19 and 
20, §12), in terms of the total cross sections of scattering in 
states a and p: 

and similarly for scattering in states a' and p. The same 
quantities are present in the outgoing diagonal terms 
Sbl ) (aav)  and S ~ " ( a l a ' v )  [see Eq. (2.20) below]. Thus, 
generally the real part of the outgoing frequency in (2.11 ) is 
the half-sum of the diagonal outgoing rates: 

This property is also present in the case of a buffer gas.I4 
The difference of the real parts of the scattering ampli- 

tudes in (2.11 ), 

reflects a possible difference in the scattering in states a and 
a ' .  In terms of line-broadening theory, this difference causes 
the line shift due to the phase modulation of an atomic oscil- 
lator. 

The term S::; (aa'v) incorporates the excitation ex- 
change between levels a and a'. As with the elastic part, this 
term contains an element p(aa1vb ) with the same numbers 
a and a' but with the velocity v, (rather than v) of the colli- 
sion partner, with averaging performed over v,. But the pop- 
ulations p ( aav )  and p(a1a'v) depend on v. In collisions 
with a buffer gas these properties are inherent in the incom- 
ing term, as is especially clear in the model of strong colli- 
sions. Here, however, the outgoing term possesses them, and 
it is the CI nonlinearity that guarantees their existence. 

The expression inside the braces in (2.12) can be writ- 
ten as (we drop the argument u in the scattering amplitudes) 

1 + - V(aal lala) + f *(ara laal)] k(a'a1v) - p(aav)] . 2 
(2.17) 

Using the generalized optical t he~ rem,~ '  we can transform 
the difference of the amplitudes on the right-hand side as 
follows: 

I% f(aalu la'au) - f *(alau laa'u) = - n 7i 

On the right-hand side cross sections have appeared that 
describe the interference of the processes 

aa'u -+ a&u2 and a 'au - a&',u, 

with the same final state. Equation (2.17) is convenient at 
high saturation levels, when the difference and sum of the 
populations of levels a and a' are "good" characteristics. 

In contrast to the "two-level" term Sbj: (aa 'v) ,  the 
term S ::$ (aa 'v)  takes into account excitation exchange in 
the triplets of levels a ,  a', andB (P +a , a f ) .  What is impor- 
tant is that St:: incorporates the polarizations of the pa' 
and a0 transitions rather than the level populations. Figure 
1 illustrates the processes that determine S bj$ (aa 'v)  . The 
first term on the right-hand side of (2.13) corresponds to 
Fig. la, in which two level triplets belong to two colliding 
atoms (velocities v and V, ). Single arrows designate the po- 
larizations p (pa'v) and p (apv) ; a double arrow stands for 
the "generated" polarization of the aa' transition or the po- 
larization for which relaxation is considered. The dashed 
arrows correspond to collision excitation exchange. Figure 
lb  illustrates similar processes related to the second term in 
(2.13 ). If we do not specify to which of the two atoms one or 
another polarization belongs, and if we combine Figs. l a  and 
lb, and drop the dashed arrows, we arrive at Fig. lc, which 
expresses the combination of polarizations of atoms and re- 
sembles the diagram for Raman scattering of light. We can 
say, therefore, that the term Sbji (aa'v) describes polariza- 
tion relaxation in an aa' transition of a nonpopulation (in- 
terference) origin, that is, relaxation caused by the presence 
of polarizations in other, adjacent, transitions, whereas S j" 
(aa'v) and Sb:,' (aa'v) contained the off-diagonal elements 
p ( aa fv )  andp (aa'v, ) for the same transition aa' and popu- 
lation of levels a ,  a ' ,  and p. The exchange and interference 
effects manifest themselves most vividly in the diagonal ele- 
ments S"'(aav).  

Here is the explicit expression for S '"(aav)  : 

FIG. 1 .  Diagrams of radiative correlations and collision transitions in- 
volving colliding particles. 
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The elastic part S j l ' ( a a v )  contains the amplitudes of 
scattering which is elastic for each particle, and the popula- 
tions p ( aav )  and p(Ppv, ) of levels a and 8 ,  that is, this 
part is quite traditional. In the exchange part SLi'(aav), 
however, there are amplitudes of forward scattering with 
resonant excitation exchange and only the off-diagonal ele- 
ments of the density matrices, p (pav)  and p(afi, ) 
(b' #a). Thus, SZ:'(aav) describes the level-a population 
relaxation caused by the polarization of ap transitions in- 
corporating level a .  Such polarization (or interference or 
coherent) relaxation was first derived by Kazantsev4 for the 
case of two levels. 

The diagram representing the Si:'(aav) term is ob- 
tained by merging levels a and a' (Fig. Id). Ultimately, the 
analogy with Raman scattering transforms into the analogy 
with resonance fluorescence. 

Let us now turn to the incoming term sI2'(aa'v).  It 
contains the fivefold sum over a , ,  a,, P, PI ,  and P,. Condi- 
tion (2.9) decreases the multiplicity of summation. To clar- 
ify this question we write condition (2.9) as 

Let us assume that in the atomic energy spectrum there are 
no coincidences of the type Ea = Ea, + Eg, , etc., and that 
condition (2.9b) is met only if separate terms on the right- 
and left-hand sides are equal. Then the multiplicity of sum- 
mation in (2.6) decreases to three. 

To simplify the formulas we use angle brackets to de- 
note integration over v,, v,, and v, , with a weight function 
equal to a double Dirac delta function and, in addition, drop 
the arguments u and u, in the scattering amplitudes so as not 
to divert attention from the quantum numbers. 

By direct sorting we can easily determine that 
S'2'(aa'v), a # a l ,  consists of four terms, 

with each term containing a double sum: 

The primes on the sums means that in them a,#a and 
a, #a'. 

The terms in the double sums with equal summation 
indices (p, = /3 or a, = 0) correspond to elastic scattering 
and resonant exchange, and in such terms the delta function 
contains only u2 - u: . The other terms are related to inelas- 
tic scattering and quasiresonant excitation exchange. 

The sum S 12' describes the elastic scattering of a parti- 
cle whose velocity is v, and the elastic or quasielastic scatter- 
ing of the particle's collision partner (velocity v,, ). This 
explains the important fact that S12'(aa'v) contains 
p (aa'v,  ) . The sum S y' incorporates excitation exchange. A 
common factor in all the terms in this sum isp (aa'v, , ). The 
sums S i2) and Si2) result from the interference of scattering 
with excitation exchange and the elastic scattering of the v,- 
,particle. As with S::; in the outgoing term, the sums S:*' 
(aa 'v)  and S i2' (aa 'v)  are "generated" by polarizations in 
the aa, and a,af transitions adjacent to the aa' transition 
rather than by populations. Hence, Fig. l c  can serve as an 
illustration to processes contributing to S ?'(aa1v) and Si2' 
(aa'v).  The only difference is that for the incoming term 
single arrows indicate the polarizations of atoms prior to 
collision (velocities v, and V, , ) while for the outgoing term 
the velocities are v and v, (forward scattering). 

In the case of the diagonal element SI2'(aav) condition 
(2.9) simplifies, 

and the incoming term breaks down into two triple sums, 

The part S i2' ( aav)  of the diagonal incoming term incorpo- 
rates the diagonal elements of the density matrix and the 
squares of the absolute values of the a,P,ul +aDu scattering 
amplitudes. In other words, S t2 ' (aav)  describes "ordi- 
nary" collision transitions from all states onto level a of par- 
ticles with a velocity v. The second part, S:*'(aav), de- 
scribes the collision "arrival" onto level a due to 
polarization of a@, transitions of the colliding atoms and is 
a corollary of the interference of two scattering processes, 
alP1ul +aPu andPlalu,  +apu, with a common final state, 
a&. As before, the interference properties of the incoming 
part of the process are closely related to resonant and quasir- 
esonant excitation exchange. Note that Si2' contains the 
product of off-diagonal elements of the density matrix on 
one and the same transition of the colliding particles. 
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Up to this point we have emphasized the equal status of 
the density matrices, which represent the colliding particles 
in the CI and enter into as factors. Now let us examine the 
differences stemming from their dependence on the veloc- 
ities v, v, , v, , and v,. For the outgoing part of the process it 
is important that there is integration over v,, which in- 
fluences only the factor p (fllf12vb ). The forward scattering 
amplitudes, which are fairly smooth functions of the relative 
velocity u = v - v, , act in such averaging as weight factors. 
In the incoming term integration is carried out over the ve- 
locity arguments v, and v, , ofboth factors, which depend on 
v, and v, , quite differently. The law of momentum conserva- 
tion implies 

(like particles, p = m/2). For the most important elastic 
and resonant processes, 

and, hence, v, - v is orthogonal to v, , - v. The second dif- 
ference is important for small-angle scattering, where 
I U  - u1I is small but lu + uIlz2lul is not. This fact mani- 
fests itself most vividly in the "relaxation-constants model," 
in which no variation in velocity is taken into account and 
integration over v, and v, , is not present while integration 
over vb remains and singles out p(P,P,v, ) to the same ex- 
tent as it does in the outgoing term (see Sec. 3). 

It is expedient to bear in mind that in collisions of like 
particles we have 

f(aPula,Plul) = fG6a - ulPlal - u,), (2.32) 

which explicitly reflects the fact that the colliding particles 
are equivalent. 

There is also an additional conservation law character- 
istic of interference phenomena of any kind. It is known that 

which means that the number of particles in collision pro- 
cesses is conserved. The optical theorem makes it possible to 
obtain a more explicit conservation law, 

Combining (2.33) and (2.34) yields 

whose validity can also be proved directly by employing the 
generalized optical theorem and the symmetry relations 
(2.32). 

The reader will recall that S 6" and S 12' contain prod- 
ucts of the populations of the colliding particles, while S ::' 
and S i2' contain products of the off-diagonal elements of the 
density matrices. Allowing for a certain leeway, we can say 
that the number of particles is conserved both in "collisions 
of populations (of particles)" and in "collisions of dipoles" 
[Eqs. (2.34) and (2.35) 1 .  In the absence of external fields 
there are no induced dipoles and only Eq. (2.34) is impor- 

tant. An external field changes the populations (the satura- 
tion effect) and induces polarization, but Eq. (2.34) retains 
its appearance, while for polarization there is its own conser- 
vation law (2.35). 

Suppose that for some reason inelastic processes and 
nonresonant excitation exchange can be ignored. Then colli- 
sions do not change the number of particles on a level: 

On the whole the situation is almost trivial: by its very defini- 
tion elastic scattering does not change the number of parti- 
cles on a level, and in resonant excitation exchange the de- 
parting particle is replaced on the same level by its collision 
partner. What is worth noting is also that the population and 
interference parts in the integrals ofS(aav) with respect to v 
vanish separately. 

An analysis of the matrix structure of the CI leads to the 
following conclusion. For collisions with a buffer gas the 
following mnemonic rule is valid: "like is excited by like." 
According to this rule, a population CI is formed only by the 
populations p (aav )  and p(a ,a ,v , ) ,  and the CI for the po- 
larization of the aa' transitions is formed only by the polari- 
zations p (aa'v) and p (aa'v, ) . In both cases the buffer gas 
contributes only its populations to the CI. On the other 
hand, in the collision of like particles polarized by an exter- 
nal field the above rule does not hold, and relaxation or exci- 
tation of particles occurs because of the presence of off-diag- 
onal elements of the density matrices. For the diagonal CI to 
contain such an interference term, polarization must be in- 
duced at least on one transition, and for off-diagonal CI po- 
larization must be induced on two transitions adjacent to the 
aa' transition. 

3. THE EIKONAL APPROXIMATION 

Collision-integral theory often uses scattering ampli- 
tude calculated in the eikonal approximation, according to 
which (see, e.g., Refs. 12, 14, 15, and 19) 

where integration over the impact parameter R is performed 
in a plane perpendicular to u, and separated from the inter- 
action region by a distance (ru,)/u, such that 

wherep, and A are the radius of the interaction region (the 
Weisskopf radius) and the de Broglie wavelength. We re- 
strict our discussion to elastic and resonant processes. The 
functions S(afl la,fl,u,R) are solutions of the system of 
equations (the approximation of straight trajectories) 

390 JETP 76 (3). March 1993 S. G. Rautian 390 



in the plane just mentioned, and satisfy the boundary condi- 
tions 

S ( a B l a l B l ~ ~ r )  = 6aa1Q1, ml + - m  (3 .5)  

[ W(aP lalP,r) is the matrix element of the interaction 
Hamiltonian of the colliding particles]. In approximation 
(3.1 ) we get 

d l ) ( aa 'PB  l ala2 PlPzu) 

= - l { F ( a p  l a I ~ l u ~ ) ~ a l a ~ B B 2  + da56p8,P(a1~ B 2 u R ) ) m  

(3 .6 )  
d2'(aa'PBwblala2 B ~ B ~ v I v ~ ~ )  

d [v  - v ,  - r ( u  - u I ) ]  6(u2 - u 3  
m 

Introducing the scattering matrix S(aB IalPlulR) by (3 .2)  
makes it possible to write the CI in the formI2 

In its dependence on the scattering matrix Eq. (3 .8)  resem- 
bles the expression for the scattering amplitude [compare 
the expression in braces in (3 .8 )  with Eqs. (3.1 ) and (3 .2)  ] 
and, hence, agree with intuitive ideas. Sometimes the terms 
with the product SS * and with the delta symbols are called 
the incoming and outgoing terms, respectively (see, e.g., 
Ref. 4 ) .  Note, however, that the integrals of SS * and of the 
delta terms are infinite and have no meaning of their own. 
Only their difference has a definite physical meaning. The 
reason for this is that the S matrix describes the entire scat- 
tered wave while F describes the difference of the scattered 
and incident waves. 

Equation (3 .8 )  for the CI is less convenient than (3 .6)  
and (3 .7)  also because it combines the terms S"' and S'2', 
which have much different analytical structures, namely, 
different multiplicities of the integrals and different velocity 
arguments of the density matrix elements. This fact becomes 
unimportant if for some reason the changes in velocity in 
collisions are ignored. In a linear CI this case is known as the 
relaxation-constants model. The law of momentum conser- 
vation implies that 

If the terms p ( u - u , ) / m  and p ( u - u , ) / m ,  can be 
dropped, we obtain 

with S'" and S"' corresponding to the terms that are linear 
and quadratic in F. Since approximation (3 .9 )  does not al- 
low for velocity variation, the fact that the CI splits into S"' 
and S'2' becomes unimportant and the merging of the two 
terms seems natural. Also, using a scattering matrix to de- 
scribe the CI yields a more compact notation. 

The optical theorem for the F and S matrices has the 
form 

S S + = I ,  F + F + = - F F + .  (3.10) 

The fact that the velocity does not change in collisions leads 
to additional conservation laws that follow from (3 .10):  

where S,  ( a a v )  and S, (aav)  are the population and inter- 
ference parts of the CI similar to (2.28) and (2 .29) .  Thus, as 
before, there are independent conservation laws for the pop- 
ulation and interference parts of the CI. 

4. THE COLLISION INTEGRAL IN THE TWO-LEVEL MODEL 

The two-level model is often used in many fields of 
physics, for instance, in spectroscoy and quantum electron- 
ics. In this section the general formulas of Sec. 2 are concre- 
tized for a system of two levels m and n, where it is assumed 
that n is the ground level and m the excited. 

The two-level model adopts a simplified system of nota- 
tion, making the problem of labeling the internal states more 
manageable: 

More than that, without risk of misunderstanding, the veloc- 
ity arguments can be dropped from the scattering ampli- 
tudes: r, (ulu,)  = r,, etc. Combining (2.19)-(2.21),  
(2.28),  and (2.29),  we get 

s$l)(mmv) = (4nTi lp)pm(v)~ 1m [rrn prn(vb) + pmn pJvb)l dvb. 

(4.1) 
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In (4.3) and (4.4) we have retained only the terms that 
describe elastic scattering and resonant exchange, since in 
the two-level scheme and the optical spectral range, the 
range of interest to us, inelastic processes contribute little. 
The collision integral S(nnv) for the ground level n is ob- 
tained from (4.1 )-(4.4) by replacing m with n andp(v) and 
p* ( v )  . In the "elastic" approximation adopted here colli- 
sions do not change the number of particles on each level, 
which is true separately for the population and interference 
terms in the CI, 

and similary for S(nnv). 
Let us write the expression for the CI in the approxima- 

tion where no changes of velocity in collisions are taken into 
account. From (3.9) we find that 

where the following notation has been introduced: 

Ra = S(aalaauR),  ((A)) = S ~ u d v ~ d R .  (4.7) 

According to the conservation laws (3.1 I ) ,  the follow- 
ing equalities are true in the (4.6) approximation: 

that is, the sum of collision integrals, 
S(mmv) + S(nnv) = 0, vanishes, and so do separately the 
population and interference terms in this sum. 

According to (2.10)-(2.12), (2.23), and (2.24), for 
the off-diagonal CI in the two-level system we obtain 

In the model equivalent to the relaxation-constants model 
we get 

S(mnv) = ~ ( ~ > ( ( ( ~ ~ ~ i ~ ~  - l)pm(vb) + (PmnRi - l)pn(vb))) 

+ ~ ( " b ) ) )  + Pn(~)((QmnR; P(vb))). 

(4.12) 

The two-level approximation is often used for a reso- 
nant transition. In this case the dipole-dipole interaction 
plays the main role in collisions of neutral particles, and for 
such an interaction the scattering amplitudes f(aP la ,P, ) 
with equal values of the quantum numbers a and P and of a, 
and p, v a n i ~ h . ~  Hence, 

It was the dipole-dipole interaction that was considered by 
Kazantsev4 (without allowing for degeneracy and with de- 
generacy, level moments 0 and 1, and without allowing for 
velocity variations). 

The product of scattering amplitudes in the incoming 
term [Eqs. (2.23)-(2.26)] contains in the left-hand argu- 
ments the same numbers /3, while the numbers a and a' are 
different. Hence, for a two-level system, in one of the ampli- 
tudes the left arguments must be the same and for the dipole- 
dipole interaction this amplitude ianishes. Thus, for this in- 
teraction the incoming term of the off-diagonal CI is exactly 
zero and S(mnv) is specified by the following expression: 

If the population of the upper level is moderate and the terms 
with p, (v)  and p, ( v b  ) can be dropped, 

The role of the nonlinearity in the CI is clearly seen in Eq. 
(4.15). Withp, (v, ) corresponding to a Maxwellian veloc- 
ity distribution, Eq. (4.15 ) for atoms in the ground state 
resembles the linear CI in the strong-collision model. The 
second term on the right-hand side of (4.15), however, is 
due to the nonlinearity of the CI and originates in the outgo- 
ing term in the CI, while in the canonical linear CI the corre- 
sponding term is the incoming one. 

Adopting the relaxation-constants model and Eqs. 
(4.6) and (4.12), we can obtain the Kazantsev collision in- 
tegra14 in the nondegenerate state approximation). Accord- 
ing to Ref. 4, 

that is, the elastic-scattering amplitudes are real and the res- 
onant-exchange amplitudes are imaginary. Thus, 

Note that in the last formula the real factor ofp(v) contains 
the sum of populations, which does not change in the two- 
level approximation, while the imaginary coefficient in the 
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second term on the right-hand side of (4.18), the term with 
averaged product of p (v, ), contains the difference of popu- 
lations, which changes under radiation. These facts prove to 
be important for nonlinear optical phenomena. 

5. THE SATURATION EFFECT IN A TWO-LEVEL SYSTEM. 
OPTICAL BlSTABlLlTY 

Let us consider the simple problem of absorption of mo- 
nochromatic radiation by a two-level system. We ignore par- 
ticle motion and Doppler broadening. In such a model, 
equivalent to the Karplus-Schwinger model," Eq. (2.1 ) 
and formulas of Sec. 4 yield the following system of equa- 
tions: 

Pm = -Y,P,, + 2Re(iGp), (5.1) 

Here w and E are the field's frequency and strength, a,, and 
dm, the Bohr frequency and the matrix element for the mn 
transition, N the total number of particles, y, the spontane- 
ous decay rate of level m. Inelastic processes are caused only 
by spontaneous emission and are described by the terms 
- ympm and - &,p. Collisional nonlinear effects are rep- 

resented by the terms y,N and y,(p, -p, ) in Eqs. (5.2) 
and (5.4). The collision-broadened linewidth depends on 
the total concentration N. On the other hand, the line shift is 
proportional to the difference p, - p, = N - 2pm, which 
depends on the field's intensity. This fact leads to interesting 
consequences. 

The steady-state regime (p, = 0 and p = 0) is de- 
scribed by the following formulas: 

C 1 - 2 x  - - 1 - i(c + px) p = -ip-Ny, 
= 1 + i(c + V X )  1 + x + ( E  + px)2 ' 

The solutions of Eqs. (5.5) and (5.6) coincide, to within 
notation, with the respective results of Karplus and 
S~hwinger,~' except for the term r]x. 

Equation (5.6) must be considered a cubic equation 
with respect to x,  and we are, naturally, interested in its real 
roots. For small and large values of x there is only one phys- 
ical root and, obviously, 

Equation (5.8) gives the linear root in low fields, and (5.9) 
the complete equalizing of the populations of levels m and n 
in high, saturating fields. In the intermediate range, x- 1, 
there can be three real roots. 

The values of the roots of Eq. (5.6) depend on three 

parameters: x is proportional to the radiation intensity, E is 
specified by the difference between the field frequency and 
the transition frequency, and 7 is determined by the interre- 
lationship between the line shift and linewidth. The value of 
7 is determined by the object of investigation, while both x 
and E are in the hands of the experimenter and can be varied 
in a continuous manner. Hence, it is expedient to examine 
the roots of Eq. (5.6) as functions of x and E for fixed values 
of r] .  

Figure 2 depicts x plotted against x for a number of 
values of 7 and E. The reader can see that at r ]  = 1 and 
E = + 1 the x (x )  curves have the usual shape of curves with 
saturation and do not differ qualitatively from the case 
w h e r e r ] = O a n d ~ = O ( ~ ~ r ~ e l ) . A s r ] g r ~ w ~ ( r ] =  5,8,and 
lo), the appearance of the diagrams changes and, as the case 
where r] = 10 and E = - 4 shows, Eqs. (5.6) can have three 
different positive roots, that is, optical bistability sets in. The 
physical reason for bistability is obvious. As the field's inten- 
sity grows, so does the upper-level population. This changes 
the line shift (the r]x term), which may balance the initial 
frequency detuning E. If the line shift is much greater than 
the linewidth ( r ]  % 1 ), even a small increase in x may put the 
system in a resonance state and dramatically increase the 
absorption coefficient, and this generates other steady states. 
This interpretation agrees with the fact that the points where 
the "anomalous" diagrams touch curve 1 ( r ]  = 0 and E = 0) 
correspond to the resonance condition E + = 0. 

By Gibb's classification, the above case of bistability 
belongs to optical bistability with increasing absorption. The 
main feature of such bistability is that it emerges as a result 
of an increase in absorption due to an increase in inten~ity,'~ 
which corresponds to what has just been said. Our case is 
special in that optical bistability emerges, so to say, on a 
purely atomic level, while situations described earlier re- 
quired additional external devices.23 

Let us examine the conditions in which bistability is 
realized. Note, first, that the problem must have two param- 
eters rather than three, since any cubic equation can be re- 
duced to a two-parameter form. It is convenient to introduce 
the following quantities: 

FIG. 2. The relative population of the excited level as a function of the 
field's intensity. Curve I, q = 0 and E = 0; curve 2, p = 1 and E - - 1; 
curve3,q= l a n d & =  l ; c u r v e 4 , q = 5 a n d & =  -2;curve5 ,q=Sand 
E = - 3; curve 6 , q =  10 and E = - 4. 
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Then instead of Eq. (5.6) we have 

where there are only two (albeit combined) parameters 6 
and g. 

As is known, the three roots of a cubic equation are real 
if the equations's discriminant is negative, which in relation 
to Eq. (5.6a) means that 

In Fig. 3 the region in the 6, g plane where condition (5.11) 
is met is hatched. The initial point of the region, 

60 = - 1 ,  go = 4a/9 (5.12) 

at x = 2 corresponds to 7 = 8 and E = - 3 (curve 5 in Fig. 
2 ) .  Here are simple approximate equations for the lower and 
upper boundaries of the bistability region: 

g1 = -3612, g2 = -6(Z2 + 1/2), (5.1 la)  

which follow from Eq. (5.11 ) and provide good accuracy if 
the distance from point (6,,g0) is not too great. 

Many types of interaction that result in broadening and 
shift of spectral lines lead to 7=: 2, while values of 7 greater 
than eight are unknown, to my knowledge. Nevertheless, 
large values of 7 do not contradict the general laws of phys- 
ics, and objects with such properties may exist. At any rate 
they can be considered at least as models. 

Of great interest is population x  [or Re y ( ~ )  ] as a func- 
tion of E at fixed values of x and 7, that is, the absorption 
profile. Figure 4 depicts the &-dependence of 2x/x  for some 
values of x and 7. At v =  1 there is a slight asymmetry, 
which increases with 7. Curve 4 at E = - 3 corresponds to 
point (6,,g0) of Fig. 3. Figure 5 shows that the x  vs E depen- 
dence is not unique. The manifestation of bistability in the 
real part of polarizability [or Im y (E)  1, which fixes the re- 
fractive index, is nontrivial. Figure 5 shows that an increase 
in 7 violates the antisymmetry of the dispersion curve, which 
begins to represent a multivalued function. 

As is known, bistability is accompanied by hysteresis 
phenomena in both active optical systemsz4 and passive opti- 
cal systems.23 In our case hysteresis phenomena manifest 
themselves in variation of the field's frequency and intensity. 

FIG. 3. The region of optical bistability (hatched region). 

FIG. 4. Absorption profiles: curve I ,  7 = 0 and x = 1; curve 2 , 7  = 1 and 
x = l ;cume3,7= 5 a n d x =  l;curve4,7= 8andx=2;curve5 ,7= 10 
and x = 2 .  

In addition to absorption and dispersion, mentioned 
above, bistability manifests itself in all quantities related to 
the populations p, and p, and the polarization induced in 
the mn transition. For instance, this is true of absorption and 
scattering of a test field in resonance with the adjacent ml 
and nj transitions, of other multiphoton processes, and of 
diffusion of excited atoms in the presence of the radiation 
field. 

An equation similar to (5.6) has long been known in 
nonlinear oscillation theory: it describes forced oscillations 
of a nonlinear oscillator driven by a harmonic force. The 
equation contains a similar term reponsible for the variation 
of the natural frequency due to the nonlinearity of the oscil- 
lations [see, e.g., Ref. 25, Sec. 14, and Ref. 26, $29, where a 
point similar to (So,go) is defined]. This analogy produces a 
richer picture of the known correspondence between a clas- 
sical oscillator and a transition from one quantum state to 
another caused by an electromagnetic field. 

FIG. 5. Dispersion curves: curve 1 , ~  = 0 and x = 1; curve 2, 7 = 1 and 
x =  l ; c u r v e 3 , q = 5 a n d x =  l ; c u r v e 4 , ~ = 8 a n d x = 2 ; c u r v e 5 , q =  10 
and x = 2. 

394 JETP 76 (3), March 1993 S. G. Rautian 394 



6. CONCLUSION of a phenomenological nature, and calculations involving a 

The above analysis has revealed the nontrivial role of 
the nonlinearity in the CI and the strong polarization of a gas 
in spectroscopic phenomena. The principal new feature of 
the collision integral is believed to be the existence of inter- 
ference terms in the integral. The diagonal element S (aav )  
of the "ordinary" CI is expressed, for a low polarization of 
the gas or absence of such polarization, in terms of the level 
populations p(a ,a ,v)  and p(PPvb ) of the colliding parti- 
cles, while the off-diagonal element S (aa fv )  for the aa' 
transition is expressed in terms of the combinations 
p(aalv)p(PPvb and p(aa1vI  )p(Pb'vb , of the popula- 
tions and polarization of the same transition. Of course, a 
strong external field influences the level populations ( a  satu- 
ration effect) and, hence, the CI, but this in itself does not 
alter the general structure of the CI. The polarization in- 
duced by the external field generates unusual components in 
the CI, components that do not incorporate populations ex- 
plicitly and contain products of only off-diagonal elements, 
p (aPv)p (Pa'v, ). Terms of this kind appear because of in- 
terference or correlation of steady states (a process caused 
by the external field) and, therefore, it is natural to call them 
interference terms. There are also exchange terms since they 
contribute to the CI only through collision exchange pro- 
cesses. The special nature of the interference terms is 
stressed by the fact that the integral relations associated with 
the conservation of the number of particles in collisions are 
formulated independently for the population terms and for 
the interference terms in the CI [see Eqs. (2.34)-(2.37)]. 

Equation (2.9) and Fig. lc  specify the analogy between 
the interference effects in the CI and in radiative processes. 
This analogy is deeply rooted in the general physical laws. In 
weak fields, as is known, the probabilities of radiative pro- 
cesses obey Einstein relations, according to which such 
probabilities are proportional to the populations of the ini- 
tial levels in the process. Such is the case when different 
steady states evolve independently. A strong resonant field 
causes transitions to emerge between levels, thus establish- 
ing a correlation between the levels. The evolution of these 
levels can no longer be considered independent, and the 
probability of a radiative process is determined not only by 
the initial-level population, &en though the field has altered 
the population, but also by the off-diagonal elements for ad- 
jacent transitions. The respective phenomena, known in 
spectroscopy as nonlinear interference effects (NIE) , 
change the spectral density of the transition probability, in a 
different manner for direct and reverse transitions. How- 
ever, spectrum-integrated probabilities depend only on pop- 
ulations, and the integral contribution of NIE is nil. l 4 . I 5  

The origin of the interference terms in the CI is the 
same: the interdependence of the evolution of different 
steady states mixed by a resonant field. Equation (2.9) and 
the integral conservation laws (2.34)-(2.37) serve as a di- 
rect quantitative corollary of the discussed analogy. 

For a polarized gas, the nonlinear collision integral in- 
corporating the collisions of like particles proves to be ex- 
tremely complex even in the model of nondegenerate states. 
A well-developed theory concerning particle interaction is 

concrete type of interaction are, undoubtedly, of interest. All 
this complexity is the reverse side of the richness and diversi- 
ty of the phenomena potentially contained in the CI. One of 
these, the nonlinear line shift in saturation, has been dis- 
cussed in Sec. 5. Systems with three or more levels will exhib- 
it other phenomena, which hopefully will be investigated in 
future studies. Note the possibility of experimentally includ- 
ing or excluding transitions by varying the spectral composi- 
tion of the resonance radiation. 

I would like to express my gratitude to F. Kh. Gel'muk- 
hanov, L. V. Il'ichev, A. M. Shalagin, and D. A. Shapiro for - 
discussions concerning various aspects of this paper. 
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