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A general regular self-consistent procedure is developed to determine the reflection and 
transmission amplitude coefficients of polarized electromagnetic waves of arbitrarily layered 
inhomogeneous uniaxially anisotropic media perturbed by the presence of a surface layer of 
arbitrary physical origin and homogeneity. The result is applicable to the entire frequency range, 
including the vicinity of resonant natural modes of the medium. A connection is established 
between these coefficients and the integral effective-layer parameters of first and second order in 
thickness; these coefficients are uniquely expressed in terms of the microscopic susceptibility of 
the layer. 

1. INTRODUCTION 

Surface (including molecular) layers present on inter- 
faces between media alter their optical properties (reflection 
and transmission coefficients, locations and widths of reso- 
nant natureal modes). A microscopic description of the sur- 
face region, which is obligatory in the case of adsorption by 
molecular layers, calls in general also for a like description of 
the volume,' thereby complicating the problem greatly. In a 
number of typical cases, however, when the surface effects 
are not small compared with the inhomogeneity of the vol- 
ume, for example adsorption of a layer of resonant mole- 
cules, or when the layer is macroscopic but thin, a <d<A (a  
is the lattice constant, d the layer thickness, a n d l  the wave- 
length), a simpler formulation is possible, with the bulk of 
the material described by averaged equations of macroscop- 
ic electrodynamics, and the surface region by microscopic 
relations. Even in this simpler formulation, however, which 
is typical of most studies in this field2-" and is adopted also 
in the present paper, the results are particular and restricted. 
The reason is either the elementary character of the iteration 
method used to solve the equations by the Green's function 
(GF)  method24 (in which case only the nonresonant fre- 
quency region can be described), or the cumbersome system 
of equations involved when the problem is solved by "match- 
ing" the fields on the b ~ u n d a r y ~ - ~  and by the FG method 
when a self-consistent method is used to solve the prob- 
lem9.'' (in which case analytic results can be obtained only 
for the simplest models of layered media and surface layers). 

We develop here a regular self-consistent procedure for 
calculating the reflection and transmission amplitude coeffi- 
cients of arbitrary inhomogeneously layered media which 
are perturbed by the presence of a surface layer of arbitrary 
physical nature and arbitrary degree of anisotropy. The pro- 
cedure developed does not call for solving a cumbersome 
system of algebraic equations, and the obtained reflection 
and transmission coefficients have correct analytic proper- 
ties in any finite order of expansion in powers of the pertur- 
bation. They are valid in the entire frequency range, includ- 
ing the vicinities of resonant natural modes of the medium. 

The solution is obtained by the G F  method, but in con- 
trast to the traditional approach,24.9.'0 in which the radia- * 

tive Green's function G is used, we employ retarded and 
advanced G F  G' which, unlike G, have no pole singularities 

corresponding to natural modes of the unperturbed medi- 
um. 

For an optically thin transition layer with arbitrary 
physical properties and degree of anisotropy, located on the 
interface of arbitrary inhomogeneously layered uniaxially 
anisotropic media, the formalism developed yield in elemen- 
tary fashion the entire set of integral effective parameters of 
the layer of first, second, etc., order in thickness, in terms of 
which the optical characteristics of the medium are uniquely 
expressed. Similar equations were heretofore self-consistent- 
ly solved only for various particular cases of spatial distribu- 
tion of the contiguous media or of the form and degree of 
anisotropy of the transition layers, and as a rule only in an 
approximation linear in d /A. 

2. FORMULATION OF PROBLEM AND FUNDAMENTAL 
RELATIONS 

According to the traditional f~rrnulation,~-" averaging 
of the icroscopic equations of linear electrodynamics in a 
layer plane2 = const over a dimension exceeding the charac- 
teristic scale of the inhomogeneities, leads for the field of a 
monochromatic electromagnetic (EM) wave 

where p = (x,y ) and b is the projection of the wave vector on 
the plane z = const, to the equation 

4ni 
(rot rot - k ; Z Z ) ~ ( b ,  2)  = k; y- 6j (b ,  4 ,  

where 

rot = (ib + ;-+, 
k, is the wave number in vacuum, and S j  (b,z) is the current 
density or the polarization P = Sj/w of the transition layer, 
induced by the field E(b,z): 

djl(b, Z )  = -PI 4ni J ~ z ~ A & ~ ~ ( ~ ,  Z .  z l ) ~ , , , ( b ,  z J ) ,  

AZ(b,z,zl) is the perturbation of the dielectric constant 2, of 
the medium, due to the presence of the transition layer 
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2, is the dielectric constant of the unperturbed medium 

A h h 

P, = 22 and PI,  = 1 - P, are projection operators on the di- 
rection of the normal to the planez = const and on the plane 
z = const, respectively. The dependences of E, (2) and (z) 
on z are arbitrary with a single restriction that they take on at 
infinity a constant value E, (z) = E,, (z) = E,, where j = 1 or 
2, respectively, for z- + co and - co . This constraint is not 
fundamental and its only purpose is to simplify the expres- 
sions for the asymptotic expansion of the fields [see Eq. (9)  
below]. Any specific choice of the coordinate dependence of 
E , , ~ ~  on z is determined by the distinctive features of the 
solved problem. It will be assumed henceforth that a com- 
plete set of linearly independent analytic solutions E,; (b,z) 
of the unperturbed equation ( 1 ) with a zero right-hand side 
is known (the subscript j = 1, 2 labels the medium E,, in 
which is specified for lzl - co an incident 0 = s-, orp-polar- 
ized EM wave",'2). The solutions E,$ are used to construct 
the GF equations ( 1),".12 after which the equation takes the 
integral form 

A feature of all the preceding studies in which the G F  tech- 
nique was used2499.'0 was that E, in (4)  was the general 
solution of the unperturbed equation ( 1 ) at Sj = 0, which 
imposed on the G F  G the condition of radiation at infinity. 
In contrast to the traditional approach, we choose below the 
unperturbed solution to be one of the independent solutions 
from the complete set E,;. This splits (4) into two pairs of 
independent equations 

for the sought functions of the field E = Ejp with subscripts 
j = 1, 2 and P = s, p in accord with the employed unper- 
turbed solution E,; . 

Since the perturbation Ab is localized in the region of 
the transition layer (z(<d, the normalization of the solutions 
Eja can always be reconciled with the normalization of the 
solutions E ,$ to unity amplitude of the transmitted 
wave.'','2 It is necessary then to impose on the G F  G* the 
conditions 

These functions are derived in Appendix A. They are ana- 
logs of the retarded G + and advanced G - G F  of the quan- 
tum theory of scattering, if the spatial variables z and z' are 
identified with the times t and t '. The presence of theta func- 
tions in G* in Eq. (A2) reduces Eqs. (5)  to the Volterra 
type. In the traditional formulation, however, Eq. (4)  is of 
the Fredholm type. A specific feature of Volterra equations 
is an empty set of eigensolutions for finite AE (Ref. 13). 
Therefore the retarded and advanced G F  G' , in contrast to 
the radiative G, will have no pole singularities whatever con- 
nected with the eigenmodes of the unperturbed medium [see 
also, e.g., the expansion (A3) 1. A simple iteration solution 
of (5) will contain no pole singularities in any order of the 

expansion of the fields Ejp in powers of the perturbation AE, 
and this expansion will converge uniformly in the entire fre- 
quency region, including the vicinity of the resonant eigen- 
modes of the unperturbed medium. The case when the per- 
turbation AE is not finite is considered at the end of the 
article. 

We introduce in standard mannerJ4 the retarded and 
advanced scattering operators T* , as the solution of the 
equations 

We obtain then from (5)  for the sought functions Ejp the 
representation 

E , ~  = (1 + G+T+)E$,  

E@ = ( 1  + G-T-)E$. 
(8)  

Calculation of the asymptote of (8)  as lzl+ and tak- 
ing (A3) into account we obtain for the solutions Elp the 
expansion 

where rl, = ( k j  - b2) ' I 2  is the projection of the wave vector 
on the normal to the plane z = const in the medium j, 
Re(Im)vj 2 0  for ImEj 20; kj = k,~,"' is the wave number in 
the medium j; 6,; are the unit vectors of the a = s- and p- 
polarized electromagnetic waves in the medium j; 

The coefficients of the functions A 2 are determined by the 
matrix elements 

where 

ajz are the coefficients of the asymptotic expansion of the 
fields E,; , and the reflection r, and transmission t ,  coeffi- 
cients are expressed in their terms: 

Just as the solution of Eqs. (5) ,  the expansion of the 
coefficient functions ( 10) in power of AE, following substi- 
tution of the iteration solution of Eq. ( 7 )  in Eq. ( lo), will 
not contain pole singularities corresponding to eigenmodes 
of the unperturbed medium, in any order of the expansion in 
powers of the perturbation AE. 

Renormalizing (9) to unity amplitude of the incident 
waKe, i.e., mult~lying (9) from the right by a matrix inverse 
to A _ ,  ?here A - + and 2 x 2 matrices specified by the ele- 
ments [A , ] ,p = A & , we obtain for the amplitude reflec- 
tion and transmission coefficients rU and taB of the per- 
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turbed medium following the incidence of a /3= s- or 
p-polarized electromagnetic wave from the upper medium, 
the representation 

rap = [ A + A T ' I ~ ~  t4 = [ A I ~ I ~ ,  ( 1 2 )  

or, in expanded form 

h h 

where D = [ A -  1 is the determinant of the matrix A -  

D = A~- / ;~  - ~~;/l;.. ( 1 4 )  
A 

Equations ( 12 are meaningful only if the matrix A - is 
not degenerate. Otherwise, for 

which corresponds to the pole of the reflection/transmission 
coefficients, the solution ( 9 )  determines the field of the 
eigenmodes En (z) of the unperturbed medium. Condition 
( 15) is then the dispersion law b = bn (w) of these modes. 
Taking ( 1 5 )  into account, we obtain from ( 9 )  from the ei- 
gensolutions the representation 

En(") 

The solutions ( 9 ) ,  ( l o ) ,  ( 13),  and ( 16) were obtained 
for the general case of an arbitrarily anisotropic susceptibil- 
ity of the transition layer. All the elements of the matrices 
A  * are then different from zero, the reflection/transmission 
( 1 2 )  coefficients contain off-diagonal components with 
a #/3, and the eigenmode field ( 16) is a mixture of s- andp- 
components. The entanglement of the s- and p-components 
is due to the elements AE,~, A&,, hebs, and AE, of the transi- 
tion-layer tensor A?. If the tensor A& has a block-diagonal 
structure such that = A&, = = AE, = 0 ,  the 
cross coefficients A  Z p  with a #/3 are zero. The matrices raB 
and tap are then diagonal and are determined by expressions 
that are simpler than ( 13) 

r = A a a  t,, = 1 /A&, 

a = s or p, and the dispersion equation ( 15 ) breaks up into 
two independent ones 

for the two types a = s, p of the eigenmodes whose field is 
given by 

In the general case the coefficient functions A  & are not 
independent, and their relation is 

which follows from the analyticity of the solutions Ejp ( z )  in 
the variable z  and from the form ( 9 )  of the solutions. It 
suffices therefore to calculate only the matrix of the coeffi- 
cients A ,, and the other coefficients A  & are obtained from 
( 1 7 ) .  

h 

The zeros of the determinant [ A -  I of the matrix A  
specifies dispersion equations ( 14),  ( 15 ) for the eigenmodes 
of the pert5rbed medium. The zeros of the determinant of 
the matrix A + ,  on the other hand 

I A + I  =A;#,+, - A,+,A,+, = 0, ( 1 8 )  

specify the position of the Brewster angle. In fact, from ( 12) 
we h p e  f%r the geteminant of the reflection-coefficient ma- 
trix r = [A+  I/IA- I. Therefore the zeros of ( 18) yield the 
zeros of [?I. The condition 1i.l = 0 ,  however, determines in 
fact the position of the Brewster angle [ 151 at which an inci- 
dent unpolarized beam becomes fully polarized upon reflec- 
tion. 

From the symmetry p~operties ( 19 of the coefficients 
A $  follows the relation IA+(q l ) l  = / A - (  - q l ) l .  There- 
fore each pole of the reflection-coefficient matrix in the com- 
plex q,  plane corresponds at 7 ,  = qlc to a zero of the deter- 
minant of the matrix i. at q1 = - q , ,  . This generalizes the 
known analytic properties of the quantum-theory scattering 
Smatrix for a scalar field16 to include the case of multicom- 
ponent fields. The solution ( 10) obtained for the coefficient 
functions A  3 has this property in any order of the expan- 
sion of the scattering operators Ti in powers of the pertur- 
bation AE. The iteration solution of the traditional equation 
( 4 ) ,  however, does not have this property in any finite order 
of an expansion in powers of AE. 

The general standard equation ( 7 )  for the scattering 
operators T* , and expression ( 10) defined by it for the coef- 
ficient functions A  &, are not quite suitable for practical 
calculations in view of the singular behavior of the G F  ( A 1  ) 
at z  = z' and of the discontinuous behavior, at abrupt inter- 
faces, of the fields E: making up the G F  and used to calcu- 
late the matrix elements ( 10) .  These two circumstances are 
interrelated and can be excluded by a single transformation. 
A similar transformation, used in Ref. 1 1  for the particular 
case of a uniaxially anisotropic local A&, will be generalized 
in the next section to the general case of an arbitrarily aniso- 
tropic nonlocal A&. 

3. TRANSITION TO A BASIS OF CONTINUOUS FUNCTIONS 

We introduce a new basic system of functions 

using for this purpose a symmetric 3  x 3  transition matrix 

A 

where the projection operators P,,,, are those described 
above, and a is an arbitrary constant (chosen to simplify the 
equations that follow). The final result is independent of the 
choice of a. The basis X,; is obviously made up only of field 
components that are continuous on the boundary. We define 
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the new scattering operators i* by the relation 

T*(z, z') = U(z)t*(z, zl)U(z'). (20) 

We obtain then for the coefficient functions ( 10) the repre- 
sentation 

which contains only field components that are continuous 
on the boundary. 

The new scattering operators t * satisfy, according to 
(7)  and (20), the equation 

t2 = R ~ U - ~ A E U - ~ ( I  + uc+ut2). (22) 

The Green's functions G* contain a singular incre- 
ment (A l )  which we shall move to the left-hand side of Eq. 
(22). Denoting by G ,+ = UG ; U the transformed nonsin- 
gular GF part G * (A1 ), (A2) : 

G ~ ( z ,  z') = + g0(z, zl)e[+ (2 - z')], 

where B(z) is the Heaviside unit step function (we use dyad 
notation), and denoting the new perturbation of the problem 
bv 

we obtain as a result from (22) for the modified scattering 
operators t * the equations 

which are fully equivalent to the initial (7). The inverse op- 
erator in (23) can be calculated explicitly: 

where E is the dielectric-constant operator of the perturbed 
medium, given in expandzd f2rm by Eq. (3),  and EL ' is an 
operator inverse to E,, = Pll 2Pll in the usual operator sense: 

Substituting (25), (3) and (19) in (23) we obtain ultimate- 
ly for a the operator expression 

o = P,(E - E P ~ ~ E ~ ; ~ P ~ ~ E  - E*)P, + a 2 p l l ( ~ i 1  - E~ ' )P , ,  

+ ~ ( P , E P ~ ~  "'pII + pll "'P~~EP,). (26) 

Equations (21) and (24) complete the calculation of 
the coefficient functions of the pertubed medium. Equation 
(24) is the standard equation of the quantum theory of scat- 
tering,14 in which the GF G $ contains no pole singularities 

or singular terms whatever. The end result ( 10) and (21) is 
the same if the problem is correctly calculated in the discon- 
tinuous basis (7)  and (10) or the continuous one (24) and 
(21). The initial transformation, in a number of studies,24 
of the initial system of equations (4) into continuous field 
components E, and D, , which violates the covariance of the 
equations and makes the subsequent computations very 
cumbersome, seems therefore superfluous. We assume here- 
after that the free parameter a in ( 19) and (26) is equal to 
unity. 

Up to now, the procedure developed was general, with- 
out any restrictions on the degree of polarization or on the 
thickness of the transition layer. The formalism developed 
above will be applied in the next section to the case of an 
optically thin transition layer. 

4. OPTICALLY THIN TRANSITION LAYER 

A simple iteration solution of Eq. (24) for the scatter- 
ing operators t * 

yields a series in powers of the perturbation a(z,zl). This 
perturbation is localized in the transition layer region 121, 
Jzll<d. The characteristic range of variation of the fields 
Xjz (2) contained in the GF G $ and in the matrix elements 
(21) is of the order of 77, ', where 77, is the largest of the 
components of the field vectors along the normal in the con- 
tiguous media adjacent to the interface. The fields for opti- 
cally thin transition layers are smooth functions of the vari- 
able z and can be expanded in powers of z under the integral 
signs in (21) and (27): 

The dielectric constants E, (2) and E~~ (2) in the linear terms 
of the expansion (28) reflect the discontinuous behavior of 
the derivatives, with respect to z, of the fields at z = 0; EJs, 
E;s = dEjs (z)/dzl, = , , while Ejb and DJ = DJz are the inter- 
nal values of the s-, 6-, and z-components of the electric field 
and of the displacement vector D = 2, E in the transition- 
layer region, which are uniquely determined by the solutions 
E,: (z) of the unperturbed problem. If, however, one of the 
contiguous media is homogeneous all the way to the boun- 
daries, these fields are expressed in terms of the external 
characteristics of the unperturbed problem, viz., the reflec- 
tion/transmission coefficients ( 1 1 ) . Thus, for example, if 

(z) = (z) = = const at z>0 (but E,,~~ (z) are arbi- 
trary at z<0), we have 
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Dl = (a:, + a ~ p ) b ~ l / k l ,  D2 = b e l / k l .  kt 
~ , ( 2 )  = - - 

27 1 tbElsE2rAsbAsz + ~(EI,E{S + EisE2r)rssI 9 If both contiguous media are homogeneous and isotropic all 
the way to the boundary, so that 

Ez = t l e ( z )  + E ~ o ( - z ) ,  

then + b [(D1D2AZz - bEaAbb)AZb 

+ 7 1 7 7 2  a- = - a* = &211 T E1'/2 + D2Elb(Azzbb + 'zbzb) - D1E2b(Abbzz + *b~bz)~) '  
I s  2v1 ' l P  211(~1&2)1'2' 

Each integration in ( 2 1 )  and ( 2 7 ) ,  over the variables z  AS;)(^) = - - (iEi(Dlrsz + Elbr~b) + bE1bE2sEZr(rk + Asbzb 
an z',  of the product of the perturbation a ( z , z l )  by a power 29 1 

function of z and z' E D  
[k:rbs - b2(rjs - ASbzz - Aszbz)l)* + 'szbb) + - 

( 3 4 )  

yields a factor of the order of d" + " . Therefore, substituting 
the solution ( 2 7 )  in ( 2  1 ) and gathering together terms of 
like order of smallness in the parameters 7 ,  d ,  we obtain an 
expansion of the coefficient functions A ,> in powers of d :  

OD 

where A 2'"' - (7" d ) "  . The above expansion of the fields 
( 2 8 )  up to the terms linear in d inclusive suffices to solve the 
problem in an approximation quadratic in 7 ,  d .  

We introduce now the effective integral parameters of 
the transition layer, of first order 

Av(b) = Jdzdzfov(b,  Z ,  z l )  ( 3 1 )  

and second order 

in thickness, respectively. 
We obtain then from ( 2  1 ) and (27 1, for the coefficient 

functions ( 3 0 ) ,  the linear terms 

The functions A 2, which we need to calculate the matrices 
of the amplitude reflection coefficients ( 13 ) , are obtained 
from the symmetry relations ( 17) ,  e.g., 

where E,, ( 7 , )  = EzS, etc. To simplify the equations, the 
quadratic terms are written using the Onsager principle of 
the symmetry of the kinetic coefficients" and the assump- 
tion that the medium is nongyrotropic in the plane of the 
layers; the first of these, with averaging of the microscopic 
dielectric constant of the medium in the plane of the layers, 
leads to the relation" 

and the second to an even dependence of E , ~  on b (Ref. 2 1 ) : 

Similar relations hold also for the components of the modi- 
fied perturbation tensor o0 ( b , z , z l )  [Eq. ( 2 6 )  1. The rela- 
tions for the effective parameters under the conditions ( 3 4 )  
and ( 3 5 )  are then 

and the quadratic terms 

with analogous relations for f t  ( b )  and ( b ) .  The supple- 
mentary assumption ( 3 6 )  that the medium is nongyrotropic 
leads to an even dependence of the parameters ( 3  1 )  and 
( 3 2 )  relative to the replacement of b by - b. As a result the 
argument - b in the right-hand sides of ( 3 7 )  can be re- 
placed by b .  Under these assumptions, the contribution of 
the off-diagonal quadratic parameters of the type l?, and 
f O ,  etc., vanishes from the coefficients of the second-order 
function. 
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No restrictions whatever were imposed in the deriva- 
tion of (33) and (34) on the character of the anisotropy of 
the transition layer. The effective parameters enter in the 
coefficient functions in a basis (3,6,f) defined by the propa- 
gation direction of the electromagnetic wave and the normal 
to the surface. Their definition (3 1 ), (32) is specified, how- 
ever, in an arbitrary basiz For the nongyrotropic transition 
layer model, the tensor A is symmetric, and can always be 
reduced in the corresponding~oordinate frame to diagonal 
form. The parameter matrix A is therefore defined only by 
three functions A, (w) that depend on the frequency and are 
independent of the orientation of the principal axes and of 
the electromagnetic-wave incidence angle. In particular, 
when the principal axes of the microscopic dielectric con- 
stant tensor of the transition layer are oriented in the plane of 
the layer z = const and along the normal to it 

.. 
E = E~;; + E2yy + E ~ Z Z ,  (38) 

Where E, (z,zl) are the principal values of the tensor 
E~ (z,zl), we have 

A,, = IIcos2ty + I,sin2q, Abb = 11sin2ty + A2cos2ty, 

ASb = Abs = (A, - 12)sin + cos ty, (39) 

$ is the angle between the unit vectors 9 and 6.  The remain- 
ing parameters A,. are equal to zero. 

Let us compare the above equations with the analogous 
results of other studies. If the transition layer is macroscopi- 
cally thin, a &d g A  ( a  is the lattice constant) and is uniaxial- 
ly anisotropic with the principal optical axis normal to the 
plane of the layers, so that 

E,(z, z') = EZ(z, z') = El(z)d(z - z'), 

E;'(z, z') = ER'(Z)~(Z - z'), 

while the contiguous media or homogeneous all the way to 
the separation boundary (29), then Eqs. (30), (33), and 
(34) yield, to second order in q,d inclusive, the diagonal 
reflection coefficients r,, and rpp ( 13) obtained in Ref. 5. For 
the same contiguous media and an arbitrarily anisotropic 
microscopic transition layer, Eqs. ( 13), (30), and (33) 
yield in an approximation linear in 7, d the diagonal reflec- 
tion and transmission coefficients r,, and t,, obtained in 
Ref. 8. The off-diagonal components rap and tap with a#B, 
whose appearance is a characteristic distinguishing feature 
of the presence of an anisotropic transition layer on an iso- 
tropic substrate, are not cited in Ref. 8. For an inhomogen- 
eous unperturbed medium of the "film on a substrate" type 
with an anisotropic transition layer of type (38) located on 
the interface between the film and the substrate, when an 
electromagnetic wave is incident along one of the principal 
axes (the angle $ in (39) is then 0 or n-/2), the coefficients 
( 19), (30), and (33) yield, in an approximation linear in 
qmd, the reflection coefficients r,, obtained in Ref. 9 
(a = sg). Equations (13), (30), (33), and (34) contain 

thus all the known results of the preceding studies as a par- 
ticular case. 

The dispersion equations ( 14), ( 15) for the electro- 
magnetic surface eigenwaves with coefficient functions 
specified in the linear approximation by Eqs. (30), (33), 
and (39) takes for homogeneous contiguous media (29) 
with anisotropic transition layer (38) the form 

A similar equation was obtained in Ref. 7 using phenomeno- 
logical boundary conditions. The main difference between 
(40) and the analogous error-corrected result of Ref. 7 [y,y, 
in the Eq. (36) of Ref. 7 must be replaced by (w/c)> and the 
right-hand side of this equation reversed] is that our Eq. 
(40) contains in addition to the parameters A, and A, one 
more independent effective transition-layer parameter A,, 
which is missing from the results of Ref. 7. To explain the 
onset of this parameter, we express the phenomenological 
boundary conditions of Ref. 7 in terms of the effective inte- 
gral parameters introduced above for the transition layer, 
confining ourselves to the linear approximation in the layer 
thickness. 

Independently of the nature of the surface current Sj, 
we obtain from Eq. ( 1 ) for the discontinuities A H  and AE of 
the magnetic and electric fields, in an approximation linear 
in d /A, the expressions (see Appendix B) 

Two other conditions for AD, and AH, are a consequence of 
Maxwell's equation ( 1)  and of the conditions (41) [see 
(B l )  and (B7) 1, and need not be written down. The first 
condition (41a) coincides with the one used in Ref. 7, but the 
second does not. The right-hand side of the second condition 
of [7] is zero. The reason is that 

The right-hand side of (41b), however, is in general nonzero 
even under the physically justified condition (42), since the 
density of the normal component of the microcurrent enters 
in the right-hand side of (41b) with a weight ~~l '(z). The 
function (z) cannot be taken outside the integral sign, as 
was done in Refs. 6 and 19, since it is discontinuous precisely 
in the region where the microcurrent Sj, (z) is localized. The 
components Sj, and Sj, are independent and are generally 
speaking of the same order. 

To establish the connec2on between the right-hand 
sides of (41 ) with the matrix A of the transition-layer effec- 
tive parameters, we express in the microcurrent (2) the dis- 
continuous z-component of the field in terms o i  the contin- 
uous D, = (PE), and EL, respectively, where E is given by 
(3): 

E, = B;'D, - (EZX% + EZY~,,). 

We obtain 
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where 3 and B are given by Eqs. ( 1 9 )  and ( 2 6 ) .  The two 
integrals in ( 4  1 ) can be combined into J U -'Sjdz. We obtain 
then, taking ( 4 3 )  and ( 3 1 )  into account, 

4ni - w l iY-ldjdz = JG(z, zf)~(z')dzdz' = k ( z 0 ) ,  

where X(z , )  is the sought value of the field at the boundary. 
For the boundary conditions (41 ) we obtain ultimately in 
the linear approximation 

1% AH1 = -iko(ix),,  ( 44a 

Comparison of (44a)  with the analogous phenomenological 
equation ( 2 0 )  of Ref. 7 makes it possible to identify the ma- 
trix A, with the matrix [,. introduced in Ref. 7 for the sur- 
face dielectric constant of the transition layer. In Ref. 7, 
however, only some of the components, i = x, y  and 
j = x,y,z, were introduced in Ref. 7 for this matrix. The re- 
maining components i = z  and j = x,y,z, which enter on a 
par in ( 4 4 b ) ,  are not defined in Ref. 7. 

Nontrivial solutions of the inhomogeneous set ( 4 4 )  ex- 
ist if the determinant of its coefficients is 

Its expansion, with allowance for the relations 

that follow from the independence of the Wronskian of the 
variable z ,  leads to the dispersion equation ( 14),  ( 15 ) whose 
coefficients are given in the linear approximation by Eqs. 
( 3 0 )  and ( 3 3 ) .  A particular case of this equation for homo- 
geneous~ontiguous media (29 ) and the effective-parameter 
matrix A ( 3 9 )  corresponding to orientation of the micro- 
scopic dielectric tensor axes of the layer ( 3 8 )  is the disper- 
sion equation ( 4 5 ) .  

Thus, the two approaches to the optics of thin transition 
layers-the method of effective boundary conditions and the 
proposed method of the retarded/advanced Green's func- 
tions-are equivalent. The latter, however, is preferable 
since it permits a simple iterational self-consistent solution 
of the problem in the most general formulation, and the re- 
sult can be obtained without final solution of a cumbersome 
system of algebraic equation. 

However, the iteration method used above to solve the 
basic equation ( 2 4 )  is inapplicable when the perturbation a 
has singularities, as for example when the surface adsorbs 
molecules containing resonant eigenfrequencies in the inves- 
tigated wavelength range. The very expansion ( 3 0 )  of the 
coefficient functions in powers of the parameter d  /A  be- 
comes in this case meaningless, as is correspondingly the 
introduction of the effective integral parameters ( 3  1 ), ( 3 2 )  
of the surface layer, since the poles in the perturbation a, due 
to the poles of thex and y  components and to the zeros of the 
z components of the layer's microscopic-susceptibility ten- 
sor, lead to the onset of nth order poles in the coefficient 
functions A a>'n' ( 3 0 )  and in the nth order poles in the coef- 
ficient functions A a>'n' ( 3 0 )  and in the nth order integral 
parameters ( 3  1 ) and ( 3 2 )  (n = 1,2,. . . ). This situation re- 

quires an initially exact solution of the basic equation ( 2 4 ) .  
We consider now a model of a transition layer with fac- 

tored dependences of the perturbation B(z ,z l )  on z and z': 

which permits an exact solution of Eq. ( 2 4 ) .  Here o, and T, 
are the location and width of the molecule's proper transi- 
tion, while f ( z )  and g ( z )  are functions localized on the 
boundary. We obtain then for the coefficient functions ( 2  1 ) 
the exact result 

In contrast to the case of a finite perturbation [see the text 
following Eq. ( 1 1 ) 1, the functions A ,; have now pole singu- 
larities. These are due, however, not to the eigenmodes of the 
medium, but to resonance transitions of the adsorbed mole- 
cules. 

An exact dispersion relation for the eigenmodes of the 
perturbed medium is, as before, Eq. ( 15 ) . In particular, for 
the block-diagonal matrix f ( z ) g ( z f )  this equation reduces 
for arbitrary layered-inhomogeneous media to the form 

where y = s, p. A similar equation was obtained in Refs. 9  
and 10 for the particular case of a three-layer medium (a  film 
on a substrate), but there the square bracket of the left-hand 
side of Eq. ( 4 5 )  does not contain the last term, since the 
problem was solved in these references approximately, accu- 
rate to terms linear in d ,  which is incorrect in the vicinity of 
w - a , .  The ignored term, as well as the right-hand side of 
Eq. ( 4 5 ) ,  leads to a shift and broadening of the resonant 
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where the transmission coefficients t, are defined by Eq. \ / 

( 1 1 ), the normal projection of the wave vector q, is defined (B6) 
in text following Eq. (9),  and E& in the text following Eq. 
( 10). Calculating the asymptote of (A1 ) asz- m , we obtain In the mixed (b,z) representation the operators a, and a,, in 

(B1)-(B6) are replaced by the factors ib, and ib,. Equa- 

&(z, z l )  = 2 [31%L~G(-n , ,  z') tions (B2), (B3), and (1  ) lead directly also to equations for 
s t + "  2'h a=&P the components E, and D, = (LE), : 

transition of the molecules, and its contribution is of the f iax \ 

where the unit vectors of the polarization 62 are given in the 
text following Eq. (9).  Equation (A3) was derived using the 
relations 

which follow from the analyticity of the solutions with re- 
spect to the variablez and from the normalization condition 
assumed for the functions E,: to unity amplitude of the 
transmitted wave. The latter cause also an absence of singu- 
larities in the right-hand side of (A4). 

same order as the right-hand side. 
In conclusion, the author considers it his pleasant duty ' 4' 

APPENDIX B 

Conditions for discontinuity of the tangential components of 
the electric and magneticfleidson the boundary 

We eliminate from the initial system of Maxwell's equa- 
tions ( l ), written in terms of the E and H field components 
(at a magnetic permeability p = 1 ), the linearly dependent 
components 

The Green's functions G* 

In a mixed (b, z)  representation, in the dyad notation of 
Eq. ( 1 ), we obtain for the GF G* which satisfy Eq. ( 6 )  / 

..A 
0 k; + , a: 

+ zz 
0 

G-(z, z') = - d(z - z') + G+'(z, z'), (A1 
I I 

ko& II(Z) 
- 

kitL + a; o - axay o i 

koe "2 

dlx 

l?Ldjz 
kge II(Z) 

diy  

to thank M. I. Ryazanov for helpful and critical remarks 
made in a joint discussion of a number of questions touched F = 

upon in the article. 

We introduce the auxiliary function 

' 

where F' (z) are exact solutions of the system (B4) outside 
the transition layer: 

, - "., 
APPENDIX A 

HY 

EY 

F'(z) =' ~ ( z )  for z 1 d and F<(z) = F(z) for r 5 0; 

K = ' 

z = z, is an arbitrary plane in the region of the transition 
layer, O<zo<d. The function F ( z )  is a solution of the equa- 
tion 

i azFO - - LFO = A F ( ~ ~ ) ~ ( ~  - z ~ ) ,  
ko 

(B8) 

where AF(z,) is the discontinuity of the function F*(z) on 
the plane z = z,: 

AF(zo) = F'(z0) - F<(z0). 

The field difference F(z) - F ( z )  is localized in the region 
of the transition layer O<z<d. It is equal to zero outside the 
layer. Subtracting (B8) from (B4) and integrating over z, 
we obtain for the discontinuity AF(z,) the expression 

As a result we obtain in place of ( 1 ) an equivalent system for Equation (B9) is exact and determines the discontinuity of 
the fields E, and H, : the exact solutions F' (z) on the boundary z = z, in terms of. 

the exact solution F(z) and the solutions F' (z) analytically 
continued into the region of the transition layer. The first 

i A  4n a,F - - L F  = - - K ,  (134) term in the right-hand side of (B9) is of order d, and the 
ko c second is of order d '. To prove the last statement we express 
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the difference F(z) - P ( z )  in terms of the GF of Eq. (B4): 

wherej(z) is the fundamental matrix of the solution of the 
inhomogeneous equation (B4) with a zero right-hand part. 
The function O(z,z'z,) = 6(z - 2 ' )  - 8(z - zo) takes on 
the values + 1 ( - 1 ) forz '~z<zo(zo<z~z ' )  and is equal to 
zero in the remaining region. Therefore 

Thus, in the approximation linear in the thickness of the 
transition layer we can neglect the second term in the right- 
hand side of (B9). Changing next to the expression of (B5) 
in components, we obtain the boundary condition (41 ). 
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