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The question of the effect of a stochastic oscillatory mode on the large-scale inhomogeneities of 
the metric of characteristic dimensions much larger than the size of the horizon is investigated. 
The description of the inhomogeneities is given in a canonical formalism which explicitly singles 
out four physically arbitrary functions. It is shown that in the process of evolution one of them, 
having the significance of the Arnowitt-Deser-Misner Hamiltonian density, remains constant, 
while the other three acquire the character of random functions of the coordinates. A statistical 
description of the latter is obtained. 

1. INTRODUCTION 

As is well known, one of the problems of relativistic 
cosmology is the formulation of initial conditions for the so- 
called standard model of the universe. In spite of the fact that 
the standard (hot) model gives an adequate description of 
the current state of our universe, there exist several observ- 
able facts (such as the flatness, the absence of a horizon, the 
occurrence of density fluctuations necessary for the forma- 
tion of structure in the form of galaxies and their clusters), 
whose origin it is unable to explain. These facts enter the 
standard model in the form of initial conditions. The possi- 
bility that these facts could be given a rational explanation 
arose in the framework of models containing a phase with 
exponential growth of the universe, the so-called inflation- 
ary models.'-3 The presence in these models of the de Sitter 
phase provides the mechanism by means of which the neces- 
sary initial conditions can be formulated naturally. Never- 
theless it is still of interest to look for other possible mecha- 
nisms for the solution of this problem. 

In the present article we consider the possibility of uti- 
lizing for such a mechanism the chaotic oscillatory mode 
discovered in Ref. 4. In a somewhat different context this 
idea was first proposed by M i ~ n e r . ~  Misner considered a ho- 
mogeneous type IX model and attempted to explain the isot- 
ropy of the relict radiation by supposing that the horizon 
could open in some directions in the vicinity of a singularity 
in the oscillatory mode of evolution of the universe. Al- 
though that attempt was later discredited, a similar idea 
could be given a different direction by taking into account 
the inhomogeneity of the gravitational field. The question 
can be posed as follows: can the large-scale structure of an 
inhomogeneous field become homogeneous and isotropic in 
the course of evolution? The oscillatory mode has been stud- 
ied in detail in homogeneous  model^.^-^ In this article we 
investigate the influence of this mode on the spatial distribu- 
tion of large-scale inhomogeneities in the metric, and at- 
tempt to answer thereby the question posed above. 

As is well known, the dynamics of a large-scale quasi- 
homogeneous gravitational field in the vicinity of singulari- 
ties consists in an alternating series of "Kasner epochs"" 
replacing each other.4 In an individual Kasner epoch the 
metric (in leading order in l/t) has the form 

2s dr2 = d l  - ( t  'la$ + tamrnpp + ta ' 'nanP)d~dd, ( I .  1 ) 

where the Kasner vectors I, m, and n and the exponents s,, 
s,, and s, are functions of the coordinates. The law of re- 
placement of Kasner regimes determines the transformation 
of Kasner epochs (TKE) T: (l,m,n,s,, s,, s,, ) 
+ (I ',m',nl, s', , st,, s', ) (for its explicit form see Ref. 4). We 
note the following characteristic properties of TKE. 

1. In the "deep oscillations" approximation the trans- 
formation formulas for the exponents and the vector ampli- 
tudes turn out to be local (i.e., independent of spatial deriva- 
tives) .496  

2. TKE has the stochastic property.&' 
It follows from the second property, in particular, that 

for a sufficiently prolonged action of TKE the information 
about initial conditions is "forgotten" (the imprecision in 
the determination of the initial conditions grows exponen- 
tially with the number of elapsed Kasner eras), and the evo- 
lution of the field admits a statistical description indepen- 
dent of these conditions. It is natural to expect that the 
stochastic nature of TKE, together with the already indicat- 
ed locality property, should lead to a monotonic decrease of 
the coordinate scale of the metric inhomogeneities and, in 
final analysis, to the formation of spatial chaos in the metric 
functions (we note that the spatial scale of the inhomogene- 
ities can, nevertheless, turn out to be increasing when the 
cosmological space expansion is taken into account). In- 
deed, it was shown in Ref. 9, using as the example the general 
solution constructed in Ref. 10 with a scalar field, that as 
t - 0 the action of TKE leads to the fractioning of the coordi- 
nate scale A of the inhomogeneities of the Kasner exponents 
s, (A -A,2 - N ,  where N is the number of elapsed Kasner 
epochs and A, is the initial scale of the inhomogeneities). 
Moreover, during the last (monotonic) Kasner epoch, dur- 
ing which the cosmological collapse ends in the presence of a 
scalar field, the chaotic cellular structure of the exponents is 
formed with universal (for sufficiently large N) statistical 
properties. 

In the absence of the scalar field, as well as in the prob- 
lem of cosmological expansion, the study of the properties of 
the spatial distribution of the metric inhomogeneities with 
the help of the TKE turns out to be inconvenient. This is due 
in the first place to the fact that the change in the Kasner 
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epochs at different points in space proceeds not simulta- 
neously but on a certain hypersurface, which in the general 
case is not spacelike. Moreoyer, TKE has bad statistical 
properties (as manifested by the absence of an invariant 
measure; in this sense a representation factorized over the 
Kasner eras is more adequate, see Ref. 6).  It turns out that to 
this end the canonical approach, proposed previously by 
Misner,' is more convenient. In this article a generalization 
of the Misner approach to the case of an inhomogeneous 
field is given (for simplicity the case with matter absent will 
be considered ) . 

In the case of the homogeneous model the gravitational 
field can be described by a complex quantity z, which is char- 
acteristic of the degree of anisotropy of space, and by its 
canonical conjugate variable p characterizing the speed of 
variation of the ani~otropy."~'~ In the case of an inhomogen- 
eous field the quantities z and p become functions of the 
space coordinates. At the singularity the dynamical system 
describing the inhomogeneous gravitational field degener- 
ates into a direct product of a continuum of systems of homo- 
geneous type (a  result, obvious a priori from the already 
mentioned locality of the transformation formulas for the 
exponents and vector amplitudes and indicating the absence 
of an effect on the dynamics by the space derivatives). 

In terms of the variableszandp the system ofthe homo- 
geneous type represents the geodesic flow on parts of a Loba- 
chevskii plane having a finite phase-space volume. As is well 
known, the behavior of geodesics on a manifold with nega- 
tive curvature is characterized by exponential instability I 3 3 l 4  

(during the motion along a geodesic the normal deviations 
grow no slower than the exponential of the traversed path, 
whose exponent equals the square root of the modulus of the 
curvature). This instability gives rise to the stochastic na- 
ture of the corresponding geodesic flow. The system pos- 
sesses the mixing property and an invariant measure induced 
by the Liouville measure. The absence of influence of space 
derivatives on the dynamics of the inhomogeneous field sim- 
plifies the description of the spatial structure of the dynamic 
functions. In particular, the function h = 4(1 - 1 ~ / ~ ) 1 p l ,  
which is the ADM (Arnowitt-Deser-Misner") Hamilto- 
nian density and characterizes the rate of variation of the 
spatial volume, remains constant in the process of evolution 
and, consequently, conserves its initial inhomogeneity. The 
remaining dynamical functions acquire the character of ran- 
dom functions of the coordinates. Moreover, the statistical 
properties of the temporal as well as spatial behavior of these 
functions turn out to be the same and are characterized by 
the invariant distribution (4.1 ) . 

Here Nand N" are, respectively, an arbitrary function and a 
vector field on S, which are interpreted as the lapse function 
and displacement vector in space-time, constructed from the 
temporal evolution of S, and 3R is the scalar curvature of S. 
In the canonical formalism Nand Na appear as Lagrange 
multipliers. Variation of the action with respect to them 
gives the equations of constraint (the so-called Hamiltonian 
and momentum constraints) C = 0 and Ca = 0 which, to- 
gether with the equations of motion for (naB,  g,, ), consti- 
tute the Einstein equations. 

The existence of constraints reduces the number of in- 
dependent variables in the Lagrangian (2.1 ) to four func- 
tions. To study the question on the behavior of the metric 
inhomogeneities it is necessary to extract in some fashion the 
independent variables explicitly. This can be achieved by 
solving the equations of constraint (in the following it will be 
convenient to keep the Hamiltonian constraint unsolved, 
thus keeping a freedom in the choice of time). The form of 
the metric ( 1.1 ) indicates how such variables can be extract- 
ed. To this end we parametrize the metric and the momenta 
in the form 

where La = gaBIB, while p,, p, ,and p, are the eigenvalues 
of the mixed momentum matrix (which are scalar densities 
of unit weight under coordinate transformations in S) ,  and I, 
m, and n evidently coincide with the Kasner vectors. We 
note that in the general case the representation (2.3) is un- 
ambiguous. As independent variables we can takep, , p, , p, 
and a set of quantities canonically conjugate to them, which 
are evidently the logarithms of the scales of the vectors 
(2.3). The following procedure will be employed to extract 
them explicitly. Making use of the freedom in the choice of 
the coordinate system in S, we require that the conditions 
(1,m) = (m,n) = (n,l) = 0 be satisfied (here and below all 
vector operations are performed in the same way as in a Eu- 
clidean space). In this system of coordinates we define the 
scale functions by the relation exp(ql) = 1 = (1,l). Going 
over now to arbitrary coordinates, we obtain a parametriza- 
tion of the vectors by nine functions in the form - 

la = exp(qi/2)<, I, = u&,# (K = 1, m, n), (2.4) 

2. THE HAMlLTONlAN FORM OF THE THEORY OF GRAVITY where ULK E So( 3 ) is a matrix depending on three angles. 
Substituting (2.3) and (2.4) into (2.1) we obtain for the 

The basic variables in the canonical formulation of Lagrange function the expression 
gravity are the Riemann metricgap specified on the 3-mani- 
fold S, and its conjugate momentum matrix nap = & r\ = l(x p 2 $ + 2 nA $ @ - NC + p c a ) & ,  (2.5) 
(KaB - fBK) ,  where K,, is the extrinsic curvature of S. A a t  A 

S A  
The Lagrange function for the gravitational field has in 
Planck units the form where the quantities .rr, are expressed in terms of UL, and 

p, , pm , and p, by the relation 

where This relation can be solved for the quantities ULK and in this 
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way all the functions in the vectors (2.4) can be expressed in 
terms of the canonical variables only. In terms of the canoni- 
cal variables the constraint equations take the form 

where the scalar curvature 3R is given by the expression 

1 
g ( - 3 ~ )  = Z ( I  rot o2 - 7 (2 I rot l)' - 2 2  (I rot m)(m rot I) 

+ 2~ G, (1  rot m ;m rot L (Im]) (2.8) 

(here the sum is taken over cyclic permutations), and in 
view of (2.4) and (2.6) is a function of vA , p, , $ , and p A .  

Solving the momentum constraint equations for T ,  and 
choosing p A as the new coordinates we can completely ex- 
clude these variables from the Lagrange function (2.5). In 
terms of the remaining independent variables the action for 
the inhomogeneous gravitational field takes the form 

3.THE ASYMPTOTIC FORM OFTHE THEORY IN THE VICINITY 
OF A COSMOLOGlCALSlNGULARlTY 

Asymptotically close to a singularity the system (2.9) 
has a rather simple model representation. To pass to this 
representation we parametrize the scale functions as fol- 
l o w ~ " . ~ ~  

1 + 1212 - 4 ~ e [ z  exp(iOA)l 
$ = -e-'tlA(z), I A  = 

1 - 1zI2 
7 

(and similar inequalities for the vectors m and n ) .  Here the 
coordinate scale over which the metric changes substantially 
is of the order of l/k. Therefore the inequalities (3.3) im- 
pose on the degree of inhomogeneity of the gravitational 
field definite restrictions. A rougher, but physically clearer, 
estimate of these restrictions can be obtained by setting 
z = 0. Then the conditions (3.3 ) will take the form I, $1, 
(where li, I, are characteristic spatial dimensions of the in- 
homogeneity and the horizon, respectively). A change of the 
Kasner regimes is caused by the violation of one of these 
inequalities. This happens when one of the quantities 7, 
reaches the minimum value 7;11n(z,r)cc -eTln  
I ( f i / ~ ) e  - Ti curl I I (which corresponds to the maximal 

value of q, ) .4 AS T-+ - CQ we can use, to leading order, the 
"deep-oscillations" approximation, i.e., set 7,"'" = 0 and re- 
place quantities of the type exp($ ) in Uby their asymptotic 
values exp($ 1: - , Z, (z) = {O for r] ,  (z) > 0  and CQ for 
7, (2) < 0). We then obtain for U the model representation 

which depends only on z (x)  . Choosing as time the quantity T 

(i.e., setting the lapse function N to be 3&e - 2T/h ) and mak- 
ing use of the asymptotic expression (3.4) for the potential, 
we can reduce the action to the form 

a 
Zg = rReGx Z) - h@, z) ]d3x dr, (3.5) 

S 

where h (p,z) = [c2 ( z , ~ )  + V(Z) ] 'I2. The expression (3.5) 
formally coincides with the action for the homogeneous 
m ~ d e l , ~ ? " . ' ~  but differs from this model in that the basic 
variables are already functions of the spatial coordinates. 
The absence of spatial derivatives from (3.5) leads to the 
result that the corresponding dynamic system is a direct 
product of a continuum of systems of the "homogeneous" 
type. 

A =  I, m, n, ( 3.1  ) 4. HOMOGENEOUS GRAVITATIONAL FIELD 

For a homogeneous gravitational field the system (3.5) 
wherez = z(x) is a complex function, /z12g 1, and OA = (0, represents a "billiard" on a part of the Lobachevskii plane. 
+ 2n-/3). Now the action (2.9) becomes To see this it is convenient to make use of the Poincari model 

of the Lobachevskii plane on the upper complex half-plane 
a N H = { W = U + iV, V>O), the quantity Wbeing related to z - h - - 3 [ c 2 ( 2 ,  p) + ,y - h2 1 
at 6< by z =  1 +iv3W/(1 - i f l W ) .  Theline V=Oiscalled the 

absolute and its points lie at infinity. The geodesics in Hare  

X d3x dt, given by semi-circles with centers on the absolute, or by rays 
(3'2) 

perpendicular to the absolute. The billiard constitutes the 

where U =  6e-2Tg( - 3R), and E ~ ( z , ~ )  = a( l  - 1z12)21p12. 
As already noted above, the evolution of the metric near a 
singularity corresponding to the asymptote r+ - co con- 
sists of alternating series of Kasner regimes (1.1 ). The 
Kasner regime corresponds to ignoring in (3.2) the poten- 
tial in comparison to the kinetic term ( E ~ %  U). Making use 
of the expression (2.8) for the potential, the condition for 
the applicability of the Kasner regime can be written in the 
form (see Ref. 4) 

- - 
region KEH, bounded by the geodesic triangle 
d K = { r ] A ( ~ ) = O , A = I , m , n ) = { I W l = l , U =  +l) .The 
area of the billiard is finite and equal to T. The Kasner re- 
gime corresponds to the motion of a point along a geodesic 
inside the region K, and a change in the Kasner regime oc- 
curs upon reflection from the potential walls. As is well 
known, geodesic flow on a manifold with negative curvature 
possesses the mixing property (i.e., s t o ~ h a s t i c i t ~ ) . ' ~ ~ ' ~  This 
means that an arbitrary initial measure relaxes to an invar- 
iant one which in this case has the form 

(3.3) where the angle 9 determines the direction of the velocity 
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and is connected with the momentum variables by 
p = h exp(i9)/( 1 - lzI2), while h is an integral of the mo- 
tion. The characteristic relaxation time is determined by the 
entropy of the system, which in this case is equal to unity 
(this means that the "coarse" element of phase space grows 
with time like hT- AT, exp(Ar). It can be shown that the 
results obtained here within the framework of the homoge- 
neous model give, upon passage to the Kasner variables, the 
same stationary distribution as in Refs. 6-8. However, the 
present approach is more convenient for the study of the 
spatial distribution in the inhomogeneous case. 

5. INHOMOGENEOUS GRAVITATIONAL FIELD 

In the presence of inhomogeneities in the gravitational 
field the quantities h, z, and 9 are functions of the spatial 
coordinates. The absence in (3.5) of derivatives with respect 
to spatial coordinates results in the coordinates playing a 
passive role. This role reduces to an additional coordinate 
dependence of the initial conditions for the homogeneous 
field. This makes possible a translation of the results for the 
homogeneous field to the inhomogeneous case. In the pro- 
cess of evolution the function h(x)  remains constant. The 
characteristic scale of the inhomogeneities of the functions 
z(x)  and 9 ( x )  (as a result of mixing) behaves on the average 
like l/k = (dz/dx) -' - ( l/ko)exp( - AT) and after a suf- 
ficiently long time AT+ oo the quantities z, and 9 become 
random functions of the coordinates. The spatial distribu- 
tion of these functions can be described by their average val- 
ues (z(x) ), (ei"'"' ) and the corresponding correlation func- 
tions of the type (z(x)f ( y ) ) .  Here the angular brackets that 
denote averaging can be interpreted in two ways: either as 
averaging with the help of the distribution function that de- 
scribes the lack of precision in the determination of the ini- 
tial data, or as averaging over a certain coordinate volume 
A V of the   pace.^' In the latter case it is convenient to make 
use of the n-point distribution function defined by the rela- 
tion 

The presence of mixing leads to relaxation of the initial dis- 
tribution function (5.1) to the limiting one (for AT+ co ), 
which is expressed in the form of a direct product of the 
measures (4.1 ) 

From (4.1 ) and (5.2) we readily obtain the limiting expres- 
sion for the averages and the correlating function 

where the applicability of the Dirac delta-function is in actu- 
ality restricted on the small-scale side by the inequalities 
( 3 . 3 ) .  

6. CONCLUDING REMARKS 

In this manner the large-scale structure of the quasi- 
homogeneous gravitational field is determined by the single 
function of the spatial coordinates h (x) .  In this sense the 
dynamics of the field acquires the character of the quasi- 
isotropic Lifshitz-Khalatnikov solution. l5 The function 
h(x) ,  which is (in the vicinity of a singularity) an integral of 
the motion, carries the information on the primordial degree 
of inhomogeneity of the space. We note that this does not yet 
allow one to make definitive conclusions about the inhomo- 
geneity or homogeneity of the Universe at a later stage of 
evolution. Here the main contribution to h(x)  comes not 
from the gravitational field but from the field of ordinary 
matter; and the investigation of this question requires addi- 
tional research. 
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"The correctness of the representation of the dynamics of the gravitation- 
al field by a sequence of Kasner epochs of the form ( 1 . 1 )  imposes the 
restrictions (3.3) on the degree of inhomogeneity of the field (see Ref. 
4) .  

"Note that the coordinate volume must not be too small. Otherwise there 
would not be enough time for the establishment of an invariant distribu- 
tion and (5.2) will not be true. 
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