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A regular procedure for going over from the Fermi picture to the Bose picture of elementary 
excitations is proposed for Fermi systems with a low density of charge carriers. The residual 
interaction between bosons can be taken into account. The possibility of describing a low-density 
system in the mean-field approximation is analyzed. Systems which are equivalent from the 
standpoint of the mean-field approach may differ substantially in the strength of the residual 
interactions and thus in the nature of the transition to the condensed state. When a system 
contains localized impurity states, the interaction of the carriers with impurities can be described 
through renormalization of the binding energy of the two-particle state. This energy is increased 
by virtual transitions ofparticles from the band to impurity levels. 

1. INTRODUCTION 

Among the various unusual properties of the high T, 
superconductors, one which is particularly interesting is the 
behavior of the energy gap near the superconducting transi- 
tion temperature T,. In contrast with the "old" supercon- 
ductors, whose energy gap increases monotonically from 
zero as the temperature is lowered below T,, in complete 
agreement with the standard BCS theory, the high Tc super- 
conductors have a nonzero gap in the superconducting 
phase even in the immediate vicinity of T,, according to opti- 
cal experiments.' This behavior of the energy gap agrees bet- 
ter with a picture of the superconducting transition as a Bose 
condensation of pairs with a finite binding energy (that pic- 
ture arose with the ideas of Schafroth*) than with the ordi- 
nary BCS mechanism. The latter mechanism assumes that 
large-radius Cooper pairs form and condense simultaneous- 
ly. The optical experiments' suggest more of a tendency to- 
ward the formation of pairs (there are significant pair corre- 
lations) than the actual existence of these pairs above Tc. It 
thus seems more appropriate to speak of the realization in 
the high Tc superconductors of a region, between the Cooper 
and Schafroth limits, in which characteristic features of 
these two models coexist. 

Legget3 has pointed out that a necessary condition for 
the realization of the Schafroth picture of the condensation 
of local pairs is that the system have a two-particle bound 
state. Otherwise, in the absence of a bound state, the super- 
conducting (or superfluid) transition would always corre- 
spond to the picture of Cooper pairing. In band-theory 
terms, a transition from the Cooper picture to the Schafroth 
picture occurs because the chemical potentialp goes into the 
band gap. The energy gap (in the mean-field approxima- 
tion) is determined in this case not by the amplitude of the 
superconducting order parameter A but by the quantity 
d m 2 .  In the 2 0  case, in which bound states exist for an 
arbitrarily weak attractive potential, a continuous transition 
from the Cooper picture to the Schafroth picture occurs as 
the density of charge carriers decreases from values n ) r; ', 
where rp is the radius of the two-particle bound state, to 
values n <rP-' (Ref. 5 ) .  In the 3 0  case, a bound state exists 
only if the strength of the interaction potential or the energy 
dependence of the density of states satisfies certain condi- 

tions. If these conditions are satisfied, the Schafroth picture 
is also realized in the limit of low carrier densities. 

In this paper we analyze the superconducting order in 
systems with a low density of charge carriers, in which par- 
ticular features of the superconducting order associated with 
the proximity to the Bose limit play an important role. In 
Sec. 2 we take up the description of the superconducting 
order in the mean-field approximation for systems of arbi- 
trary dimensionality D with an arbitrary dispersion relation. 
We show that when there is a two-particle bound state with 
an energy E, and a radius rp the formal characteristics of the 
superconducting state in the Schafroth limit (specifically, 
the position ofp  and the functional dependence of the order 
parameter A on the number of particles, n)  are identical for 
systems of any dimensionality. However, the mean-field ap- 
proximation, used in Sec. 2 (and in Refs. 4-7), leaves out 
many important aspects of the problem. This deficiency is 
particularly glaring in a calculation of the transition tem- 
perature Tc:  The mean-field value has nothing in common 
with the Bose condensation temperature. This result can be 
explained quite naturally on the basis that, formally, the 
mean-field approximation is not valid at low densities. The 
qualitative agreement of the mean-field description at T = 0 
and the picture of Bose condensation of local pairs can thus 
serve only as physical justification for the approach taken in 
those papers. In Sec. 3 we take up a systematic description of 
a low-density electron liquid with an attraction. Using a 
functional-integration technique, we show that under the 
condition n"Dr,, < 1 the Lagrangian of strongly interacting 
fermions can be represented as the Lagrangian of a Bose 
liquid of pairs with a residual interaction. The role of the 
chemical potential of the bosons is played in this case by the 
quantity p* = E ,  - 2p, and the strength of the interaction 
between bosons is determined to a large extent by D, the 
dimensionality of the system. Specifically, systems with 
large D correspond to a weaker interaction, so the mean-field 
approximation is better justified (only at T = 0, of course). 

A doped semiconductor can serve as a specific physical 
realization of a system with a low density of particles. The 
new high Tc superconductors can also be put in this cate- 
gory. When such systems are doped, localized impurity 
states usually arise in the band gap. It is particularly impor- 
tant to consider these levels in the case of an elevated density 
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of states at the edges of the allowed spectrum. This is just the 
situation which arises in descriptions of the conversion to an 
insulating state in the high T, superconductors by models 
with a nesting of the Fermi surface.' In this situation, a one- 
dimensional structural feature appears in the density of 
states and gives rise to discrete levels for an arbitrarily weak 
impurity potential. In Sec. 4 we use the mean-field approxi- 
mation to examine superconducting order for the case in 
which there are localized states in the band gap. We find that 
the impurity levels increase the energy of the paired state, as 
a result of virtual transitions from the band to impurity lev- 
els, and superconductivity may be promoted by these levels. 
We should of course remember that, in accordance with Sec. 
3  of this paper, these results are valid only for T = 0, and 
then only for a limited class of systems in which there is a 
weak residual interaction between bosons. 

2. DESCRIPTION OF THE SUPERCONDUCTING ORDER AT 
LOW DENSITY IN THE MEAN-FIELD APPROXIMATION 

We consider a system of Fermi particles with density n 
and an attractive interaction. Under the assumption that the 
s harmonic of the overall interaction potential vkk is the lar- 
gest one, we restrict the discussion to the s scattering chan- 
nel. The Hamiltonian of a system of dimensionality D is writ- 
ten in this case as 

The operator Y: creates a particle with spin u, ~ ( k )  is the 
dispersion relation, andg is an effective interaction constant. 
The latter can be expressed in terms of the scattering length 
in the s channel. The self-consistency condition for the 
mean-field order parameter A is written in the standard 
form. 

where N(E)  is the density of states. This equation must be 
supplemented with the condition that the number of parti- 
cles is conserved: 

The system of equations ( 2 ) ,  ( 3 )  unambiguously deter- 
mines A andp as a function of the density n and the coupling 
constant g. In the high-density limit we find the standard 
expressions of the BCS theory: 

As the density decreases, the system (2) ,  ( 3 )  has different 
solutions, depending on whether there is a two-particle 
bound state or, formally, on whether there is a nontrivial 
solution of an equation for the binding energy of a pair, E, : 

With E, = 0 we can find a solution of ( 4 )  for arbitrarily 
small n. If Eq. ( 5 )  instead has a nonzero binding energy, 
then A falls off more slowly with decreasing n than in ( 4 ) .  As 
a result, there is a spreading of the distribution function in 
( 3 ) ,  which in turn causes a lowering of the chemical poten- 
tial p. Ultimately, p reaches zero and drops into the band 
gap. If the density is lowered even further, the condition 
-,u/A) 1 becomes satisfied. In this case Eqs. ( 2 )  and ( 3 )  

become, respectively, 

From ( 6 )  and ( 7 )  we find the following asymptotic expres- 
sions for A and p in the limit n - 0: 

In deriving ( 8) we used expression (5 ) for g in terms of E,, . 
The general expression ( 8 )  depends on neither the dimen- 
sionality D of the system nor the particular dispersion rela- 
tion ~ ( k )  . In the case D = 2  and ~ ( k )  = k  ' / 2 m ,  this expres- 
sion easily leads to the results of Refs. 4  and 5. The A-fi 
dependence in ( 8 )  is analogous to the dependence of the 
condensate density in an ideal Bose gas and justifies our use 
of the mean-field equations ( 2 )  and ( 3 )  to describe the con- 
tinuous transition to a BCS state to a Bose condensate of 
local pairs. Formally, of course, this assumption is ground- 
less. That the mean-field approximation is not valid for small 
n is especially clear at T = 0. In particular, the transition 
temperature calculated in this approximation is wildly dif- 
ferent from the Bose condensation temperature. In the fol- 
lowing section of this paper we take a rigorous approach 
using a functional-integration method. We will see that there 
nevertheless are cases in which the mean-field approxima- 
tion can still be used at T = 0. 

3. REPRESENTATION OF A LOW-DENSITY FERMI SYSTEM 
WITH AN ATTRACTION AS AN INTERACTING BOSE LIQUID 

We start by writing the partition function Z in terms of 
a functional integral in terms of the Grassmann variables 
Y, ( r , r )  describing fermion degrees of freedom: 

where the action S is 
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Here we have used the conditionp < 0, which holds at small 
n, and we have changed notation: p -+ - )p I. The number of 
particles is expressed in terms of the derivative of the loga- 
rithm of Z with respect to the chemical potential: 

a n = - In 2. act (11) 

In (9)  we introduce a Gaussian integral over the auxiliary 
Bose field A(r,r), and we use the Hubbard-Stratonovich 
transformation to eliminate the four-fermion term in action 
(9). As a result, the action becomes 

In ( 18) and ( 19) we go over to Fourier components of A in 
terms of both the spatial coordinate and the temporal coor- 
dinate, and we find the quadratic term in the action Sbi' in 
( 19a). Taking the trace in ( 19a), we then find 

where E represents the even Matsubara frequencies, and 
n , ( q , ~ )  is the polarization operator in the Cooper channel, 
given by 

where 

The integral with action S' in ( 12) is Gaussian in the Fermi 
fields. The integration over Y can thus be carried out exact- 
ly. As a result we find an effective action which depends only 
on the boson variables A(r,r). Specifically, the partition 
function is given by the integral 

We assume that there is a two-particle bound state in the 
system. Accordingly there is a nontrivial solution of Eq. (5)  
for the binding energy E,. In accordance with the results of 
the mean-field approximation, we then assume that ,u lies 
near 1/2~, . We also restrict the discussion to temperatures T 
which are below the ionization potential E, of the two-parti- 
cle state. As a result we find 

Z = CS D A D A * ~ ~ ~ { - s , ~ ~ { A ,  A*) ) ,  (14) 

and the effective action S,, becomes 

S,,{A, A*) = -In det 2 - drdr 
g 

Since the typical ranges of E and q are determined by the 
temperature T ~ E , ,  and since the condition (2p - E,)/ 

(E, 4 1) also holds, we can expand n,, ( q , ~ )  in E and q near 
the origin and in p near ~ , / 2 .  AS a result we find from (22) 

For convenience below, we have added and subtracted the 
value of S,, at A = 0 in the argument of the exponential 
function in ( 14) and ( 15). This procedure makes it possible 
to rewrite ( 15) as 

where where 

Substituting (23) into (20), and using Eq. (5) for E,, we 
find the following expression for the quadratic part of the 
action, S ii': 

Expanding the logarithm in ( 16) in powers of A, and noting 
that only even powers are present in this expansion, we write 
S,, in series form: 

where The Bose fields have been renormalized in (25) : 
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The quantity S :;' in (25) is evidently the action for an ideal 
gas of ~ o s e  particles with a mass m* and a chemical potential 
p*  = E, - 2p. The other contributions to the total action 
( 19b) determine the residual interaction between bosons. If 
we retain only the quadratic part of the action S,, in ( 18), 
we find the following result for the number of particles n 
from (111, using (14) and (25): 

For the condensate density and the chemical potential at 
T = 0 we then find 

The transition temperature To is given by the usual expres- 
sion of Bose-gas theory. It is determined by the vanishing of 
the chemical potential p*: 

With the renormalization (26), expression (28) is exactly 
the same as the mean-field result, (8).  Expression (25) for 
the action can thus be thought of as a sort of improved mean- 
field approximation, whose validity is not restricted to 
T =  0. 

The terms of higher order in the Bose fields in S,, char- 
acterize the strength of the residual interaction between bo- 
sons, so these are the terms which determine whether the 
mean-field description is valid even at T = 0. Let us examine 
these terms in detail. 

In the calculation of s at I > 1 we can ignore the E 

and q dependence of the coefficients of (A)2', since each 
power of the Bose field appears with an additional small 
factor - fi. Using renormalization (26), we then find the 
following expression for S from ( 19b) : 

where 

Carrying out the summation in (31), we find our final 
expression S,, for a Bose liquid of local pairs: 

The constants u,, which determine the potentials of the I- 
particle interaction, are given by 

For a D-dimensional system with a parabolic dispersion rela- 
tion in the band we find the following estimate of v,: 

To find the relative strength of the interaction, we rewrite 
S,, in dimensionless variables. For this purpose, we normal- 
ize the density of the Bose fields to &, and we scale all 
quantities with units of energy by the condensation tempera- 
ture To. For the dimensionless constant of the I-particle in- 
teraction we then find 

It follows from (35) that representation (32) for the action 
of the original Fermi system is an asymptotic expansion in 
terms of the "gaseousness" parameter rpn'/D and is valid to 
the extent that this parameter is small (r, n'/D < 1 ) , as we 
might expect on physical grounds. Furthermore, (35) shows 
that the binary interaction, v2(I = 2), is the governing inter- 
action for any dimensionality. According to general expres- 
sion (33 ) , this interaction corresponds to a repulsion, deter- 
mining the stability of the Bose liquid of pairs and properties 
analogous to those of He4. For v2 we find the estimate 

For 3 0  systems (D = 3) under the condition n'I3rp < 1, we 
thus have a Bose liquid with a weak interaction; for D = 2 we 
have a liquid with an intermediate interaction strength 
v,- 1; and for D = 1 we have a strongly interacting Bose 
system (v,) 1 ). In the case of a quadratic dispersion rela- 
tion, the picture of a Bose condensation of an ideal gas of 
local pairs (which corresponds in the case T = 0 to the 
mean-field approximation) with a condensate density 
(p ) - & is really accurate only for 3 0  systems. For systems 
of lower dimensionality, the corrections to the mean-field 
approximation for the residual interaction are large even at 
T =  0. 

It follows from the results found by the mean-field ap- 
proach (Sec. 2) that the dimensionality D of the system en- 
ters the problem only through the density of states, so sys- 
tems which have different dimensionalities but identical 
densities of states N(E) behave identically. We can demon- 
strate that it is the dimensionality D which has the governing 
effect on the strength of the residual interaction. As an illus- 
tration of this assertion, we might compare a 1D system with 
systems which have a higher dimensionality but the same 
energy dependence of the density of states. We know that a 
1D behavior of the density of states, N(E) - I/&, arises at 
D >  1 at the edges of the allowed bands which form as the 
result of an exciton instability in metals with a Fermi surface 
with flat regions or in a semimetal whose electron and hole 
Fermi surfaces are congruent (an exciton insulator9). An 
example of a system with a Fermi surface which has this 

350 JETP 76 (2), February 1993 A. A. Gorbatsevich and I. V. Tokatly 350 



property is a half-filled square lattice in the strong-coupling 
approximation. The 1D structural feature in the density of 
states arises in this case as the result of the opening of a gap 
over the entire Fermi surface. For definiteness we consider 
the 3 0  spectrum which is formed at the insulating transition 
in an isotropic semimetal. Near the bottom of the band we 
have the quadratic dispersion relation 

where k, is the Fermi momentum of the original semimetal 
phase. The density of states in a system with ~ ( k )  as in (37) 

Calculating the parameters of the effective boson action in 
(32), we find 

For the dimensionless binary-interaction constant we find 
the estimate 

u2 - (k~2rpn1'2)-' eel. 

Consequently, despite the 1D behavior of the density of 
states, (38), we have obtained for this 3 0  system a nearly 
ideal Bose gas which is very different from the 1D case, in 
which we have v , )  1 according to (36), and the mean-field 
approximation is not valid even at T = 0. 

4. SUPERCONDUCTING ORDER IN SYSTEMS WITH 
LOCALIZED IMPURITY STATES 

In real systems with only a few particles, e.g., doped 
semiconductors, charge carriers usually appear because of 
the introduction of impurity atoms which create a randomly 
distributed nonuniform potential. Such a potential usually 
leads to the formation of local impurity states in the band 
gap. Let us examine the effect of these states on the super- 
conducting ordering in the mean-field approximation. We 
should of course recall that this approximation is justified 
for only a limited case of systems, according to the results of 
the preceding section of this paper. 

The introduction of M impurity atoms with a potential 
u (r)  is described by adding a term 

ing quantity. In the case at hand, this assumption can be 
justified if the binding energy of a pair in the band satisfies 
E~ > 2 ~ ~ .  Under this condition, the spatial variations in A ( r )  
are slight. The self-consistency equation, averaged over the 
positions of the impurity atoms, is 

The quantity a(&) in (41) is the band density of states, re- 
normalized because of scattering by impurities, and n,, is 
the impurity concentration. In addition, we have allowed for 
the circumstance that the chemical potential is negative (as 
we have done everywhere else in this paper). If one particle 
is introduced along with each impurity atom, the equation 
for the number of particles becomes 

We consider the case of light doping (n,, -0). We then have 
A/p< 1, as in Sec. 2. Furthermore, since the contribution 
from the change in the band density is on the order of nim/p 
in this case, we can ignore the change in the continuous spec- 
trum under the condition ( p - ~ ~ ) / p  & 1. From Eqs. (41 ) 
and (42), we then find, respectively, 

m 
i? - 2c0 N(~)dc . 

"in' ,/(G -p2c0)2 + 4A" ~ A ~ J  (2r + rp) (44) 
0 

These equations determine the superconducting order pa- 
rameter A and the binding energy of the two-particle state as 
renormalized by the impurity, ip -2p. Equation (44) dem- 
onstrates the (physically understandable) fact that super- 
conducting ordering is possible in a system in which all the 
charge carriers are localized only if the pair binding energy 
Ep is larger than twice the ionization potential E,. 

Using the expression (5)  for the coupling constant q in 
terms of the seed energy of the two-particle state, we can 
rewrite (43) and (44) as 

dc El - 2c0 
to the Hamiltonian ( 1 ), where R, is the coordinate of the jth '"in$ $ J(G -P2c0)1 + 4A2 = 4 ~ 2 -  

(46) 

impurity atom. We assume that, as the result of the appear- 
ance of inhomogeneities, localized states with energies &, 

arise. When there is an attraction in the system, these states From (45) we find an unambiguous increase in the binding 
participate in forming a superconducting condensate. energy of the pair in the presence of localized states. As we 

We assume that the order parameter A is a self-averag- will see below, this fact is related to an increase in the inter- 
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action constant due to virtual transitions of particles from 
the band to impurity levels. 

We introduce some new variables in (45) and (46): 

We then find the system of equations 

in which the plus sign corresponds to the case 2 ~ ,  - E, > 0, 
and the minus sign to 2.5, - E, < 0. The parameter a in (48) 
is given by 

Eliminating the variable t from (48), we finally find 

Equations (50) can easily be solved in the asymptotic re- 
gions in the parameter a. For a 4 1 we find, for (a)  E, < 2Eo, 

(51a) 

and for (b)  E, > 2~, ,  

For a> 1 we find 

Figure 1 shows the superconducting order parameter A and 
the binding energy ip versus the impurity concentration n,, 
and the depth of the impurity level, E,. 

By changing variables as in (47) we find that the three 
independent parameters n,, , E ~ ,  and E, appear in the'self- 
consistency equations only in the form of the parameter a 
[see Eq. (49)]. To see the physical meaning of this param- 
eter, we calculate the correction to the interaction constant 
for virtual transition from the band to impurity levels. Fig- 
ure 2 shows a diagram corresponding to this process. In the 
case at hand we find 

FIG. 1 .  a-A versus the impurity concentration n,,; b-A versus the 
energy of the impurity level; c-the binding energy Ep versus the impurity 
concentration n,, . 

For the relative change in E, - 2~ , ,  on the other hand, we 
have 

We can thus indeed assert that the increase in the bind- 
ing energy Ep and the appearance of a superconductivity 
(even if the seed binding energy E, is smaller than the energy 
for excitation of two particles in the band) are consequences 
of an increase in the interaction constant due to virtual tran- 
sition from the band to impurity levels. 

5. CONCLUSION 

There is the widespread belief that an explanation for 
the unusual properties of the high T, superconductors 
should be sought in a common model which interpolates 
between the limits of strong and weak interactions." The 
choice of an initial approximation is in many regards just a 

FIG. 2. Diagram for the correction to the interaction constant. 

352 JETP 76 (2), February 1993 A. A. Gorbatsevich and I. V. Tokatly 352 



matter of taste. However, the procedure described above for 
going over to the Bose limit with decreasing carrier den- 
sity-a procedure which incorporates the strong-interaction 
region-demonstrates that the band-theory approach has 
definite advantages. For the case in which the largest energy 
parameter in the system is the energy of the two-particle 
bound state, we have proposed a regular procedure not only 
for describing the transition to the Fermi picture of the exci- 
tations to the Bose picture but also for dealing with the resid- 
ual interactions in the Bose limit. While equivalent from the 
standpoint of a mean-field description, these pictures may 
differ substantially in the strength of the residual interac- 
tions and thus in the nature of the transition to the con- 
densed state. It has been established here that the interaction 
of charge carriers with impurities (or other defects) can be 
described through a renormalization of the bound-state en- 
ergy. This energy thus does indeed serve as a universal pa- 
rameter in the low-density limit. Bose degrees of freedom 
also arise in a fairly natural way in models of nearly local- 

ized, strongly interacting charge carriers. However, strong 
quantum phase fluctuations make it difficult to describe the 
properties of the system over any appreciable range of densi- 
ties in this model. 

This work was performed as part of the Project No. 
9 1186 of the State program "High-Temperature Supercon- 
ductivity." 
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