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The possibility of finite electrical resistance in a pure metal at T = 0 due to phonon emission by 
electrons is studied. In the limits of small and large fields the kinetic equation is solved and the 
current-voltage characteristic and electron temperature are found. 

1. INTRODUCTION 

Consider a metal which remains nonsuperconducting 
at T = 0. If there are no impurities, the residual resistance 
equals zero, and the electric current should not damp out. In 
an electric field electrons are accelerated until the energy 
difference (on the Fermi surface) for the electrons moving 
parallel and antiparallel to the field is large enough for the 
onset of spontaneous phonon emission. The latter is possible 
if the drift velocity v  = j/en is larger than the sound velocity 
u. The expected current-voltage characteristic should have 
the form shown in Fig. 1. 

This effect was discovered in 1982 by Bogod et  al.' in 
bismuth, whose carrier density and critical current j, are 
small. The curve shown in Fig. 1 is obtained by subtracting 
the contribution of residual resistance from the experimen- 
tal curve.' Twenty years before that Esaki2 had measured 
magnetoresistance in bismuth in a strong quantizing mag- 
netic field and found the current-voltage characteristic 
shown in Fig. 2. 

Esaki was right to connect his effect with the onset of 
phonon emission when the drift velocity u, of electron orbits 
in crossed electric and magnetic fields becomes larger than 
the sound velocity. 

Thus, though the current-voltage characteristics shown 
in Figs. 1 and 2 are opposite to each other, the crucial role of 
the sign of the difference v,  - u in both effects indicates 
their common intrinsic cause. Theoretical reviews of the 
Esaki effect are discussed at length in Ref. 3. 

In the present paper we give the theory of the BVGG- 
effect (Bogod, Valeev, Gitsu, Grozav) (see Ref. 1 ). 

Using the kinetic equation describing the electron scat- 
tering accompanied by phonon emission 1 ) the boundaries 
of nondissipative electron motion as a function of the 
phonon dispersion law and Fermi surface shape have been 
found, and 2) for an isotropic model with the Debye phonon 
spectrum the exact form of the electron distribution function 
has been obtained in two limiting cases, EgE, and E%E0, 
where E,, is the field in which an electron increases its veloc- 
ity by u in the time between two spontaneous phonon emis- 
sion events. 3) In a weak field ( E 4  E,,) the exact solution of 
the kinetic equation for a more realistic model with an ellip- 
soidal Fermi surface has also been found. The theory devel- 
oped below describes well the current-voltage characteristic 
of Fig. 1. 

In the conclusion we direct our attention to the fact that 
the current-voltage characteristic in a magnetic field (Fig. 
2) can be related to the one without the field (Fig. 1)  by 

means of usual theory of galvanomagnetic phenomena in a 
compensated metal. 

2.THE KINETIC EQUATI0N;THE MAXIMUM 
NONDlSSlPATlVE CURRENT; THE T APPROXIMATION 

Consider a metal which remains normal at zero tem- 
perature. If there are no impurities, the only possible mecha- 
nism for electron scattering at T = 0 is phonon emission. 
Then electron conductivity in a constant uniform electric 
field E is determined by the kinetic equation 

Y , ,  = J ~ T ~ W ~ ( I  - fl(rf - r - a), 

We will consider mainly an isotropic model 1 * in which 

Let electrons be in a state with a current j, = vdn  (n is the 
electron density and vd is the drift velocity) and given by the 
distribution 

FIG. 1. 
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FIG. 2. 

f, = e(-E), 5 = E - E;, B(x) = ( 1  + sign x ) / 2  (2.3) 

with a shifted Fermi surface 

E; = EF + VdPZ. 

For this distribution we have 

For v, < u, the function IF, is negative for all transferred 
momenta q. The integrals Y,, and Yo,, vanish, since the en- 
ergy conservation law forbids emission of a phonon. 

This means that the distribution (2.3) for v, < u is the 
solution of the kinetic equation with E = 0. Thus, in the iso- 
tropic model (2.2) with a sound spectrum the electric cur- 
rent is not damped until the drift velocity v, is smaller than 
the sound velocity u. 

If we allow for dispersion of the short wavelength frac- 
tion of acoustic phonons (model 2*) 

w(q),  0 < dwldq < u, (12wldq2 < 0 ,  

we can increase the nondissipative current by choosing a 
deformed Fermi surface in the form 

1 
E> = EF + 2 (1 + P ) w ( ~ P ~  sign p, . (2.7) 

The greatest nondissipative current corresponds t op  = 0. In 
the model 2* the role of (2.6) is played by the expression 

which, like (2.6), is largest when a phonon is emitted in the 
direction of the Z axis: 

The energy conservation law allows phonon emission 
for p > 0. The critical current corresponding to the limit 
y = + 0 equals ( (...) stands for an average over the Fermi 
surface) 

The corresponding critical drift velocity has the limits 

where U is the phonon phase velocity with momentum q. 
Note that, according to (2. lo) ,  the main contribution 

to the critical current is made by short-wavelength phonons. 
At last, having in mind primarily bismuth, we consider 

a model 3* with an ellipsoidal Fermi surface. We will restrict 
the discussion to a linear phonon spectrum, which is reason- 
able since for bismuth p, < 1 holds: 

Here a = 1,2, 3 are the directions of the main crystal axes, 
and u(eq ) is the sound velocity in the direction eq = q/q. 

Choosing a deformed Fermi surface in the form (2.4) 
for which j)lz and j, = u,ne, we find 

It follows from this expression that the critical drift ve- 
locity equals the sound velocity in the direction of the cur- 
rent. 

The distribution in the form (2.3) with the Fermi sur- 
face (2.4) or (2.7) is naturally chosen as an approximate 
solution of the kinetic equation (2.1 ) in connection with the 
moment method (T approximation). We multiply the kinet- 
ic equation (2.1 ) by va ( pa orp,/ma ) and integrate over all 
momenta: 

Here ( (. . . ) ) indicates an average over the Fermi surfaces of 
the initial and final electron states. 

This averaging is done most simply in the model 2* 
without phonon dispersion (w, = w,, Wq = W,). In this 
model [see (2.10) ] 

and the current-voltage characteristic has the form 

The same behavior of the current-voltage characteristic 
in the limits E4 E, and E )  Eo is conditioned by the fact that 
in this model, for v, > u,, the scattering from any point on 
the upper part of the Fermi surface (2.7) to any point on the 
lower hemisphere has the same probability. 

In contrast, in the model 1 *, near the threshold scatter- 
ing is allowed only into a narrow cone about the direction 
opposite that of the current. The integral on the right-hand 
side of Eq. (2.14) is proportional to (v, - u12 and, for a 
large drift velocity when there is no restriction on the scat- 
tering direction, is proportional to v,. As a result, we find a 
current-voltage characteristic of the form 

I (1 + ~ , ( E / E ~ ) " * ) ,  E<<EO, 
j = neu (2.17) 

a2EIE0, E >> Eo, 
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where Eo = WovF u and has the same order of magnitude as 
in (2.15), and a,,, - 1. 

If we allow for anisotropy of electron and phonon spec- 
tra, that will not alter the qualitative dependence of the field 
magnitude on the current magnitude, but the field direction 
does not coincide with the current direction. 

3. "EXACT SOLUTION". ISOTROPIC MODEL 

Only very rarely does the kinetic Boltzmann equation 
allow an analytic solution. Such a solution exists for the 
Maxwell gas and elastic electron scattering by impurities 
(residual resistance). The kinetic equation (2.1 ) for the 
model (2.2), in spite of the inelastic character of the scatter- 
ing, has an exact solution (in terms of perturbation theory) 
in the limits of small and large field values. This is mainly 
because the "exact" distribution function for electrons in a 
field is close to the sample function of the T approximation 
(2.3), i.e., it is a function of one variable (energy) in a coor- 
dinate system moving with the drift velocity. 

We rewrite the kinetic equation (2.1) for E llz in the 
form 

Here, in the left-hand side of the kinetic equation, we have 
replaced df/dpz by v,df/S~, which is always possible for 
metals, where v, gv, and T ~ E , .  The parameter A = eEv,/ 
v, WO is the work done by the field in the time between two 
acts of phonon emission. In the right-hand side we have inte- 
grated over E' and introduced a notation ( . . . ) I  for averaging 
over the Fermi surface: ( . . . ) I  = J...do1/4a. 

In the small-field limit the problem is simplified be- 
cause the electron scattering is restricted to a narrow cone in 
the direction opposite the field. The cone solid angle is the 
small parameter of the problem. Under these circumstances 
emission is possible only from the front (v, > 0)  to the back 
hemisphere ( v ,  < 0). This means that in (3.1 ) for cos 0 > 0 
there is only "outgoing" and for cos 0 < 0 only "incoming". 
We change over to the hole representation on the back hemi- 
sphere and introduce the notation 

The kinetic equations for the functions f + and f - have abso- 
lutely symmetric form 

When scattering occurs backwards into a narrow cone 
we can write where 

where 0 is a small angle between q and the z axis, and reduce 
the problem to a one-dimensional equation 

- 
= - Q ( X ) ~ ~ ~ ( J J  - x ) ,  @(--) = 1, O(-) = 0. 

dx 
0 

Here we have introduced the notations 

Equations f + and f - results in the correct normalization of 
the total distribution function (3.2). 

The function q5 tends to its asymptotic values at e - "*"'. 
However in the region x < 10 it is given by the Fermi distri- 
bution 

@(x) = {exp [(x - 0,42)/0,571 + l)-l. (3.6) 

Thus, for small fields the stationary electron distribu- 
tion is 

The discontinuity near the "equator" is smoothed out 
in the belt (cos B ( < ( E  /Eo) ' I 2 ,  where Y,, and Yo,, cancel 
each other out. Comparison between (3.7) and (2.3) shows 
a qualitative difference between the exact solution and the T 

approximation. 
In the time between two phonon emission events an 

electron is accelerated by the field, and for E, Eo an effective 
electron temperature T, builds up, which is large in com- 
parison with the energy lost in a single scattering event. A 
new small parameter, the ratio up,/T,, arises, and we can 
use the expansion 

3f f(& + 0 )  = I(&) + 0 x. (3 .8 )  

The kinetic equation (3.1 ) acquires the form 

Averaging over the p' directions gives 

(q/2~F)' = 213, ((q/2p,) ccos 8)' = -(2/15) cos 8, 
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Using these relations and assuming that find the solution of the kinetic equation (2.1 ) for an aniso- 
tropic model [see ( 2.12) I .  We restrict the discussion to the 
weak-field limit. Let the phonon spectrum be isotropic 

(3.11) 
acoustic, W = (q/2pF) W, and p, = &. Consider 
phonon emission with momentum q,lle from the point p of 

we find the solution of (3.9) in the form of a series in the the Fermi surface accompanied by electron transition to an- 
small parameter (3.1 1 ): other point of the latter. Allowing for u < u, we find 

where f, satisfies the equation 

(3.12) sion in thee direction the electron moves from the front part 
of the ellipsoid on which (ev, ) > 0 to its back part where 
(ev,,) <O. By analogy with (3.2), we write 

It follows from (3.13) that f, is the Fermi distribution with 
temperature T,. 

The first two terms in (3.12) can be represented in the 
form 

It is interesting that (3.12) is a series in l/E, while in the T 

approximation a function is usually expanded in the small 
field E. Nevertheless, the expression (3.14) is close to the 
test function of the T approximation, (2.3). Both distribu- 
tions give the same current value, since the latter is not af- 
fected by smearing of the distribution in energy. Formally, 
Eq. (3.12) is the usual expansion in field. Only at T # O  is it 
an expansion in E /T, in our case in powers of E / T e .  

Thus, the exact solution of the kinetic equation (2.1 ) 
leads to the same current-voltage characteristic as the T ap- 
proximation (2.17). A new feature is that the electron tem- 
perature departs from the lattice temperature ( T  = O), as in 
the case of hot electrons in semiconductors. We have 

The calculations made above are easily generalized to 
the model, where both the phonon spectrum and the proba- 
bility of phonon emission are arbitrary scalar functions of 
the phonon momentum q. In large fields the generalization 
reduces to changing the numerical coefficients in such rela- 
tions as (3.10). In small fields, if the phonon spectrum does 
not contain portions with zero group velocity, changes re- 
duce to the parametric dependence in (3.5). In this case the 
current-voltage characteristic (2.7) does not change qual- 
itatively. However, if there is a noticeable portion without 
dispersion in the short wavelength region of the spectrum, 
the idea of phonon emission confined to a narrow cone be- 
comes irrelevant, and we have only the result (2.16) at the T 
approximation. 

4. "EXACT SOLUTION" FOR AN ELLIPSOIDAL FERMI 
SURFACE 

It is most interesting, both from the methodological 
point of view and that of applying the theory to bismuth, to 
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qo = 2me(evp) = -2me(evp,) > 0. (4.1) 

Here (me ) - ' = 2, e: /ma. We see that upon phonon emis- 

The same reasoning, as in Sec. 3, leads to two similar equa- 
tions (the field direction coincides with the unit vector e) .  

The equation for f + is 

1 / ~  = u[l(eq)l - q l  = -uqfJ2/2. 

The average over the surface of final states, 
( 4dvF  ) -IS dS '/u;, reduces to integration over a small part 
of the surface near the base of the vector q,: (me /  
$uv,) 1'- _ d$. AS a result, we again arrive at Eq. (3.4) 
and an effective electron temperature equal to 

The energy we has the order of magnitude of the Debye tem- 
perature and depends on the e direction as me- '. Recall that 
in the atomic system of units masses are dimensionless. 

Thus, in the case of an anisotropic Fermi surface a weak 
electric field directed along e forms a distribution 

The current created by this distribution is 

X {exp [(E,, - eP - 0,42Tesign(vpe))/(0,57Te) ] + 1). 

(4.6) 

The first term is the critical current. Extra current is easily 
found in terms ofph =pa /&: 
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Thus, in the model with isotropic sound velocity the 
fraction of the current independent of the field is directed 
along the field and corresponds to the drift velocity v, = u. 
The part of the current proportional to is directed along 
a, and the cosine of the angle between a and e equals m, /me, 
while the anisotropy of Sj is such that 

max Gj/rnin d j  = m a ~ ( r n ~ ) ~ ~ ~ / m i n ( r n ~ ) ~ ~ ~ .  (4.8) 

The sound velocity anisotropy in bismuth in negligible, 
so we might think that the model considered above can be 
used to explain the current-voltage characteristic of bis- 
muth. Since the latter is a compensated metal with one hole 
Fermi surface along the three-fold axis and three electron 
ellipsoids in the perpendicular plane,4 electrons and holes 
give the same contribution to the almost isotropic critical 
current, and in large fields E$Eo the bismuth electrocon- 
ductivity at T = 0 has the same character as at high tempera- 
tures. If we subtract the contribution of residual resistance 
from the experimental curve found by Bogod et al., we will 
get a current-voltage characteristic well described by Eq. 
(2.17) with Eo= 1 V/cm. Note that the field Eo is associated 
with the temperature T, = 10 K, while the experiment was 
carried out at the lattice temperature T,,, = 4.2 K. We do 
not know any experiments in which a "hot electron" tem- 
perature was observed. 

As is well known, in a strong magnetic field B the cur- 
rent in a compensated metal is 

jB = I D ~ ( R ~ ) - ~  + P ~ ~ ( R ~ , B ) - ~  IE. (4.9) 

Here R, and R, are the Hall constants for electrons and 
holes respectively, and p, and p, are the electron and hole 
resistivities in zero magnetic field corresponding to the cur- 
rent equal to the Hall current j, = E/(RB) .  

This formula explains the difference between the cur- 
rent-voltage characteristic without magnetic field (Fig. l ), 
when j,, -p- ', from the current-voltage characteristic of the 
compensated metal bismuth, for which j, -p. We have 

This inequality shows that to observe a bend on the current- 
voltage curve in the absence of magnetic field is much more 
difficult than under the conditions of the Esaki experiment. 

In conclusion the authors wish to express their grati- 
tude to V. E. Egorov, M. I. Kaganov and N. V. Prokof ev for 
discussion of the results. 
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