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Effects of impurities and Coulomb screening on the Raman scattering of light by electrons in 
normal and superconducting metals are considered. In contrast to scattering in pure metals, the 
effect of Coulomb screening is unimportant. Impurities leave unchanged the threshold of the 
frequency shift but have an appreciable influence on the intensity of the scattering both near the 
threshold and at higher frequencies. 

1. INTRODUCTION sumption makes the problem tractable and is physically 

Electronic Raman light scattering continues to attract justified by the fact that the screening of an impurity poten- 

the attention of both theorists and experimentalists be- tial in a metal typically occurs at interatomic distances. 

c a u s e a s  the original theory suggest~'.~-it gives a direct 
measure of the superconducting energy gap. As far as con- 
ventional superconductors are concerned, the first scatter- 
ing  experiment^^.^ have confirmed this prediction: the 
threshold based gap is identical to that from tunnel experi- 
ments. 

High-temperature superconductors present a more 
complicated situation (see Ref. 5 for a review; also note Refs. 
6 and 7). Scattering below the expected threshold has been 
experimentally observed, as well as a polarization depend- 
ence of the position of the cross section maximum. The for- 
mer phenomenon may be explained by the energy gap going 
to zero in some regions either of the Fermi surface8 or of the 
sample. The polarization dependence has recently been ac- 
counted for9 by modeling a superconductor as a system of 
alternate normal and superconducting layers. 

On the other hand, analysis of anisotropic supercon- 
ductors shows the theory to be inadeq~ate :~ .~  at large fre- 
quency shifts the scattering cross section tends to zero in- 
stead of approaching the value in the normal metal as it 
obviously should. The present study shows that this diffi- 
culty may be eliminated by introducing the effects of impuri- 
ties. 

So far, the effects of impurities on the scattering have 
only been considered for a normal metal. For an isotropic 
metal, it has been found1' that scattering appears only in 
second order in the momentum transfer q and that it is due to 
diffusion creation processes. For an anisotropic metal," a 
nontrivial result is obtained even in zeroth order in q. The 
important point here is that in a dirty metal the scattering 
cross section only starts to decrease when w,) r-  ', whereas 
in a pure metal this occurs at far lower values of the shift 
frequency w, = wi - a, (mi and w, are the frequencies of 
the incident and scattered light, respectively, and T is the 
electron-impurity collision frequency). The scattering anal- 
ysis of Ref. 11 neglects Coulomb screening effects whose 
crucial importance for a pure metal was demonstrated in 
Ref. 12. 

In the present study the effects of impurities and Cou- 
lomb screening on the Raman scattering in a normal metal 
and a superconductor are considered. The impurity poten- 
tial is taken to have a short range and hence to be indepen- 
dent of the scattering angle in momentum space. This as- 

2. RAMAN SCATTERING IN A NORMAL METAL 

We begin by calculating the electron loop diagram re- 
sponsible for the inelastic light scattering in a metal. In Fig. 1 
the effect of impurities on the scattering is represented by a 
typical diagram having an arbitrary number of dashed impu- 
rity lines. A vertex in the diagram is associated with the 
momentum-dependent factor y(p) = e~ 'maB- ' e~ ' ,  where 
eg' and ez' are the polarization vectors of the incident and 
scattered light, respectively, and m , ~ '  is the (generalized) 
inverse effective-mass tensor which we assume to take ac- 
count of the interband transitions resonant at the frequen- 
cies mi and w, of the incident and scattering light. 

A series of such diagrams is summed using the vertex 
function equation 

whereG(p) = [iw - ( + (1/2r) (w/lwI ) ] -'is theelectron 
Green's function dependent on the four-momentump = (p, 
w);p, = p  f q/2, where q = (q,  9,) is the four-momentum 
transfer; n is the impurity concentration; u(p - pl )  the am- 
plitude of impurity scattering; T- ' the collision frequency. 

In the approximation where the amplitude is indepen- 
dent of the scattering angle, u (p - p1 ) = u,, and Eq. ( 1 ) is 
easily solved to give 

where 

FIG. 1 .  Electron correlation function. Solid lines: Green's functions; 
dashed lines: impurity scattering; y: electron-photon vertex. 
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and the quantity I differs from I, in not having y under the 
integral. We now write f (p , ) = l( p) f vq/2 and integrate 
over 6 using 

where Y is the density of states and do is the solid angle ele- 
ment on the Fermi surface. We find 

and 

Iy(q, go) = 0 for w2 > qi14, 

where T-I = T Y ~ I u ~ ~ ~  is the collision frequency. 
The scattering cross section is determined by the imagi- 

nary part of the retarded function K (q, a,) obtained from 
the integral of the vertex part, 

by analytically continuing it to the real frequencies w, = iq, 
so that the resulting function has no singularities in the up- 
per half a, plane. For a normal metal, we will see below that 
it suffices to formally replace q, by - io  in K 2 (q, q,) in 
order to obtain a retarded function with the required analyti- 
cal properties. 

The calculation is complicated by the fact that we must 
first sum over the frequencies w = (2n + 1  tin (5 ). Since 
it is easier to begin with the f integration-and noting the 

the bar denoting averaging over the angle over the Fermi 
surface. Substituting (8)  into (7)  and taking the imaginary 
part we obtain 

Note that the frequency dependence of (9)  agrees with that 
obtained in Ref. 1 1; in the isotropic case this expression van- 
ishes in accordance with Ref. 10. 

As we shall see, at low frequencies w, the following ap- 
proximation in q is useful. Turning to expression (4),  let us 
expand its integrand to second order in vq/(oo + i / ~ )  (we 
note that the first-order term vanishes because of the v + - v 
symmetry). Integrating over the angles then yields 

Substituting (10) into (7) and separating the imagi- 
nary part we have 

where z = gig, E? for w , ~ (  1 and z = - gig, viv,72 for 
w0.r) 1. Note that the pole of the first factor in (11) de- 
scribes the creation of diffusions. 

It should be emphasized that Eq. ( 11 ) is obtained by 
expanding in z: We have neglected the z terms as small com- 
pared to unity but retained the terms of order .Z/(W,T)~ and 
(z/w,T)~ because w,r may be small. 

slow convergence of (5)-let us modify the integrand by 
adding and subtracting the corresponding value calculated 

3. EFFECT OF COULOMB SCREENING ON THE SCATTERING 
in the T+ co limit. For a pure metal, K 2 (q, a,) is readily IN A METAL 
calculated to give 

To account for the Coulomb interaction of electrons, 

v the loop for the series of diagrams shown in Fig. 2 needs to be 
Iim K~,(~, wo) = - doy2(p) 
7-L - 4n ' S -vq + zo + io* (6)  calculated. A wavy line in the figure describes the electron- 

electron potential V = 4ne2/q,q,&0, with screening account- 
Now we may change the order of summation and integration ed for by the dielectric function &: due to the valence elec- 
when evaluating the remainder. We find trons (the conduction-electron contribution is represented 

by the series of Fig. 2) .  

K ~ !  (q ,  wo) = &Jdo Y ( P )  Performing the summation we find 

Tyz = KYz + KYVKY + KyVKVKy + ... 

[ "0 ( 7  - ] (7)  
-Y@) + O0 - vq + i l l  [.(p) + 1 - I(., -bo) 

where KJ is the loop diagram (7)  accounting for the effect 
where I, and I should be taken as given in (4)  for w2 < q;/4. 

The characteristic value of q will now be obtained by 
integrating expression (7) multiplied by a factor that de- 
pends on the electric field distribution in the metal. For a 
dirty metal, the dominant role is played by the small values 
of the parameter vq/(w, + i /r) .  For q = 0, + ... 

i / r  - I ( 0 ,  -bo) = - FIG. 2. The sum of Coulomb diagrams. Wavy line: electron-electron in- 
Y w, + i / r  " ( 8 ) teraction potential. 
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of impurities in the absence of the Coulomb interaction, K, 
is the integral of the vertex function (2),  -- - 

- i 2 e 2 ) 2  J 
dwsdos ficzn 1 - exp(-Tiw/ kT) 

(13) 2  2  
u) x [(I + n d  + x i ]  -' [(I + ni) + %;I - I ,  

and K is obtained from K, by replacing y by unity. 
Using Eqs. (2)-(4), it is found that following the angle oo 

integration, the zeroth-order term in q disappears from K ,  I 
and the remaining expression is proportional to q2: J = - jJdqlj(q) I Im ~ ; ( q ,  wo), 

0  

where lf(q) 1' depends on the propagation characteristics of . . ,  
( 14) the electric field in the metal. For example, 

Equation (12) shows the importance of the quantity KV 
Using ( 14) we find that for the dominant region w, < 7-' 

rv2 -2 

1 )  = n i + n S - q  + i + x s  

where r, - (4ave2/&O) -'" is the Debye radius and I = r v  
I' :2 

the mean free path. Since the latter is usually much greater 
than the former, we may neglect unity in comparison with 
KVin Eq. ( 12) to obtain 

~ , , 2  = K,,Z - K,,z /K.  (16) 

By ( 14) and ( 15 ), the ratio K,/K is found to be 

Using ( l l ) ,  (16),and (17) onefindsthatforw,<~-'  

where z = q,q, K?. 
By comparing Eq. (18) with Eq. ( 11) for o, < T-I, we 

see that it is only the last term which has changed: if y is 
independent of the angle, Im 3; vanishes when the Cou- 
lomb screening is taken into account. The frequency depend- 
ence of Im X$-and hence of the cross section-remains 
unchanged. 

4. EFFECTIVE SCATTERING CROSS SECTION IN A DIRTY 
NORMAL METAL 

Note that Eq. (20) implies that the attenuation of light in the 
metal is small and that the assumed "back-scattering" geom- 
etry results in the momentum transfer being the sum of the 
momenta of the absorbed and emitted photons. Clearly this 
equation yields a greater scattering cross section than does 
Eq. (21): note the small quantity x which appears in the 
denominator following the q integration. We thus restrict 
ourselves to the more interesting case of Eq. (20). 

In order to evaluate the integral ( 19), we note that the 
spread (in q) of the maximum of the function (18) is esti- 
mated by the inequality z < o , ~ ,  i.e., ~ - z " ~ / v T  5 ( l /  
v ) G .  If ( l/v) (w,/T) 1'2$-oi ( n ,  + n, ) /c,  then the sharp 
maximum of the function (20) is superimposed on the rela- 
tively broad maximum of ( 18) [or (9)  1 and the integral 
( 19) becomes 

It is essential for scattering cross section calculations - 
that the incident and scattered radiation propagate in a me- ~ ( ~ 2  - y 2)  

J = 
dium. In the optical range, we may characterize the medium wOt(w; + T - ~ )  

by its permittivity E and refraction and attenuation coeffi- 
cients (ni + ix, = 6, a = i, S) referred to a given fre- 
quency of the (incident or scattered) light. We consider the x 0 ; + 2 $  
frequency shift o, = mi - w,  to be small compared to oi [ - ~ ' ) ' ( . i ' . ' ~ ) ~ ] w ~ ( x : + x ~ ) '  (22) 

and a,, but we retain the dependence of both n  and x on the 
light polarization direction (assumed to coincide with one of where v, denotes the projection of the electron velocity on 
the principal axes of the E tensor). A particularly simple the surface normal. 
cross section formula is obtained for the incident and scat- If (w,/T) 112/~40i (ni + n, ) / c ,  then themaximaofthe 
tered light propagating normal to the plane surface of the functions (18) and (20) do not overlap one another and 
metal:'.'3 their contributions must be calculated separately. We have 
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FIG. 3. Scattering cross section versus shift frequency for low tempera- 
- 

tures kT&frw,; o, - TU: [o, (n, + n, )/cI2. 

A plot of Jversus w, is shown in Fig. 3. For the low frequen- 
cies 

- 
wO < T ~ [ w ~ ( x ~  + xS)/cl2,  

the cross section exhibits the square root behavior corre- 
sponding to the first term in (23). Next follows the region 

which shows a linear dependence corresponding to the sec- 
ond term in (23), and then we come to a maximum whose 
position corresponds to the creation of a diffusion with a 
momentum equal to the sum of the momenta of the absorbed 
and emitted photons: 

Following the maximum the cross section starts to decrease 
[the second term in the bracket in (22), w,(r-'1 and 
reaches a minimum at 

FIG. 4. Equation for the vertex function 11"'. 

and that both the incident and scattered light experience a 
relatively weak attenuation in the metal (xi < ni ) . 

5. SCATTERING IN A DIRTY SUPERCONDUCTOR 

Our analysis is limited to the most interesting case, that 
for which vwi ( ni + n, ) / c  A, A being the gap, and we again 
assume (24) to hold. We allow the effective mass to be aniso- 
tropic (noting that it determines the vertex y ) ,  but we ne- 
glect the anisotropy of the energy gap A. In this approxima- 
tion, it is known2 that the loop diagrams with 
superconducting vertices contribute little-in much the 
same way as the Coulomb interaction in a normal metal 
turns out to be small: see the second term in (22) for w0>2A. 
We may therefore restrict ourselves to the main loop dia- 
gram as shown in Fig. l. This time, however, the anomalous 
Green's function Fenters the analysis and we therefore have 
four types of vertex diagrams to consider. Instead of ( 1) we 
have 

One of equations (25) is shown in Fig. 4. 
To zeroth order in the impurity scattering, the vertex 

diagrams are 

After this the dominant role is played by the first term in 
(22), and we thus arrive at a second maximum, located at ni2)@+* P - >  = Y ( P >  [G@+)F@-) + F@+)G(-P-) I, 
w, = r-' and having the same height as the first. (26) 

At nonzero temperatures, the exponential factor in n63)@+, p- )  = y(p)  I G ( - ~ + ) G ( - ~ - )  - P ( ~ + ) F ( ~ - )  1, 
( 19) should also be taken into account. Note that for T >  w, 
the low-frequency maximum is absent. It should be empha- 
sized that the conditions for which the above formulas are nh4)@+, P-) = Y ( P )  [ - ~ ( P + ) G @ _ )  - G(-P+)F+(P-) I .  

obtained are that the mean free path is small, The coefficients aik form the matrix 

I 
and the quantities A") are obtained by integration, in the frequency variable, o, = w + qd2.  In the case of 

impurity scattering the Green's functions areI4 = I u(p - P I )  1 2n(l)(,,:, p!)d3p1. f2rt)3 
(28) . , 

The condition (24) enables one to restrict the analysis G = - h q + t  F = F + =  Aq 
to the q-0 limit, the * signs then only indicating the shifts t2 + 7 2 ( ~ 2  + u2) ' t2 + q 2 ( ~ 2  + w2) ' 
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where 7 = 1 + 1 / 2 7 d m i .  
If the scattering amplitude is taken to be independent of 

the angle, then u (p - p' ) = u, and Eq. (25) assumes the 
algebraic form 

A(') = ~ $ 3  + l ik~(k) ,  (29) 

where 

Now the odd powers of f disappear when the products of the 
Green's functions are integrated over 6. Hence 

A$,') = and hf) = Ah4), (31) 

and from the symmetry of the integrals Ii, it follows that the 
expressions (3 1 ) relate the exact A"' as well. 

Using Eqs. (26)-(28) and (30), we evaluate the quan- 
tities A:' and Ii, and solve Eqs. (29) to obtain 

wheres, = d(w * qd2)  + A 2 .  
The Raman scattering cross section is calculated by 

performing an analytical continuation to real frequencies 
w, = iq, of the correlation function 

which may be rewritten using (25) as 

The integrand of this expression [which we denote by 
f(qO, w ,  f )  ] must first be summed over w and then integrated 
over 6. It is convenient to interchange these processes, how- 
ever. For this purpose, let us make (34) convergent by add- 
ing and subtracting the term f(0, w, 6 )  in the integrand. 
Summing and integrating f(0, w, f )  then yields a pure real 
expression of no importance to the problem, whereas the 
difference f(q,, w, 6) - f(0, w, 6) may be summed and inte- 
grated in either order. 

Integrating over 6 we find 

Substituting (35) into (34) yields 

We proceed by shifting the summation variable accord- 
ing to w -+ w - q d 2  and replacing the sum by the integral 

over a contour enclosing the real axis. The analytical con- 
tinuation of the integral is performed using the procedure 
given in Ref. 14. Separating the imaginary part we find 

where 

In Eq. (37) the second term describes the light scatter- 
ing due to thermal excitations above the gap; this term de- 
creases exponentially for T( A. 

The first term in (37) relates to across-the-gap excita- 
tions and shows the threshold w, = 2A is not altered by im- 
purities. For T = 0 this is the only term present, and if we 
change variables to x = w, - 2A, w = A - xt, it becomes 

where 

2 

x ( [ d  xi(2A + xi) + d x(1 - 1) [2A + x(L - 1) I] + T-']-' 

2A2 + Ax + x2t(1 - t) 
7. = 

x{t(l - t)(2A + xt) [2A + x( l  - t) ]}"2' 

In the vicinity of the threshold frequency (x +0), (39) 
yields 
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FIG. 5. Scattering cross section versus shift fre- 
quency in a superconductor at low temperatures 
kT(A. The dashed line corresponds to a normal 

0 
1 ---- k 

metal. (a) :  relatively pure superconductor 
/ 

/ 2A (7- '; (b):  dirty superconductor 2 A s  7-I. 

In the limit as A-0 ,  (37) reduces to the normal-metal 
expression (9 ) .  This result has already been mentioned in 
the Introduction and is in fact quite natural to expect: at 
large frequency shifts the scattering in a superconductor 
does not differ from that in a normal metal. The transition to 
the normal metal case depends on the relation between A and 
T - I .  Using (39) gives 

for 2A<x<.r- '  and 

for T-' g 2 A - g ~ .  
In the latter case, it is seen that the superconducting 

contribution is smaller than the normal term only for 
x ) 2rA27.  

From Eqs. ( 19) and (37)-(41), the light scattering 
cross section may be obtained. The integral in ( 19) is 

The variation of the cross section with a, for the limiting 
cases (40) and (41) is shown in Fig. 5. 
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