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The role played by spin fluctuations in forming the superconducting state in heavy-fermion 
compounds is discussed. A mechanism involving these fluctuations is offered as a possible 
explanation of the splitting of the phase transition in UPt,. It is suggested that anisotropic singlet 
superconductivity occurs in UPt, as the result of spin correlations at the Fermi surface near an 
antiferromagnetic instability. If sufficiently large, the spin fluctuations lead to splitting of the 
superconducting transition. Discrepancies between the weak-link theory and experimental 
results on the jumps in the specific heat are discussed. The effect of the superconducting state on 
the antiferromagnetism in UPt, is also discussed. 

1. INTRODUCTION 

The origin of the superconductivity in UPt, and other 
heavy-fermion compounds has been under discussion for a 
fairly long time now, but has yet to be finally resolved. The 
most popular interpretation these days is that singlet aniso- 
tropic superconductivity (i.e., the spin of the Cooper pair is 
S = 0; this is a d pairing) operates in these structures. Al- 
though that interpretation has numerous pieces of experi- 
mental support, alternative explanations are not completely 
ruled out. It has been shown'-3 that spin correlations near an 
antiferromagnetic instability can lead to a d  pairing. Experi- 
ments on neutron scattering in UPt, do indeed indicate such 
 correlation^.^ An antiferromagnetic transition at TN = 5 K 
has also been observed. The magnetic moments correspond- 
ing to antiferromagnetic order are exceedingly small 
[p = (0 .01 -0 .02 )~~  1. Measurements reveal no jump in the 
specific heat in the course of this transition. As the tempera- 
ture is lowered, the magnetic moments which arise at TN 
increase down to T :  = 0.5 K ,  which is the temperature of 
the first superconducting transition. Below this point, the 
moments stop increasing. At T ;  = 0.45 K ,  a second super- 
conducting transition occurs in UPt,, according to measure- 
ments of the jumps in the specific heat, the ultrasound veloc- 
ity, etc. Many theoretical papers have attributed the splitting 
of the superconducting transition to interaction between the 
superconducting order parameter and the antiferromagnetic 
order parameter. In these theories the superconductivity is 
usually described by the Ginzburg-Landau functional 

where the complex vector 21, = ($,,$,) is the order param- 
eter of the superconductor, and 

F~~ = y l u l ~ l ~ ,  (2)  

where M = (M,,M,), is the antiferromagnetic order param- 
eter. 

It is not difficult to see that the interaction Fin, causes 
local disruption of the perfect crystal symmetry (D,, - D,, 
in the case of UPt,). If we assume a spatially uniform distri- 
bution of the vector M, the solutions for 21, are also uniform. 
In a "pure" superconductor (i.e., one with /MI = O), the 

solution for 21, is 21, = ( l,i), and the perfect crystal symmetry 
is not disrupted. However, the appearance of a nonzero vec- 
tor M has the consequence that the superconducting transi; 
tion at T  = T,, goes to the state 21, = ( 1,O) (phase 1 ), while a 
second transition occurs at T = T,, to the state 21, = ( 1 , i ~ ) ;  
E < 1 (phase 2; see Ref.5, for example). Phases 1 and 2 are 
asymmetric under rotations in the basal plane of the hexa- 
gonal crystal. In the case of UPt,, this circumstance means 
in particular that the upper critical field H,, is anisotropic in 
the basal plane, but this conclusion contradicts experiment. 
If we instead consider a nonuniform distribution of the vec- 
tor M, we do not run into this contradiction, but the effective 
interaction is weaker in this ~a se~ .~ - too  weak to explain the 
observed splitting T,f - T  ,- /T  ,+ = 0.1. 

In taking this approach, one is essentially assuming that 
the distribution of magnetic moments is already frozen at the 
superconducting transition temperature and that fluctu- 
ations can be ignored. It follows from this assumption, in 
particular, that the superconductivity has only a weak effect 
on the antiferromagnetism. This conclusion contradicts 
neutron-scattering  experiment^.^ These experiments indi- 
cate that the antiferromagnetic order parameter ceases to 
increase upon the transition to the superconducting state, so 
the superconductivity suppresses the antiferromagnetism. 

There is still some uncertainty regarding the actual 
width of the band of electrons involved in forming the anti- 
ferromagnetic state, but the density of states at the Fermi 
level corresponds to a width EF = 10-20 K .  The weak-link 
theory seems to be insufficient to describe the antiferromag- 
netism in UPt,, since the quantity TN/EF is not small. The 
width of the fluctuation region of the phase transition in the 
quasi-2D case (which is apparently the case which holds in 
UPt,) is 

Here t z J / T , ,  where J is the jumping integral between 
planes,' and Iln(t) 1 can be numerically large enough to 
make the quantity T of order unity. Fluctuations must there- 
fore be taken into account all the way to absolute zero. 

The mechanism proposed below for the splitting of the 
superconducting transition in UPt, is based on a considera- 
tion of spin fluctuations in a calculation of the free energy. 

Brinkman et have shown that spin fluctuations in 

293 JETP 76 (2), February 1993 1063-7761 /93/020293-04$10.00 @ 1993 American Institute of Physics 293 



He3, provided that they are sufficiently large, make the AM 
phase preferable to the BW phase from the energy stand- 
point. In contrast with 3He, in which the superfluidity is of 
thep type, it is believed that UPt, is a d-type superconductor, 
but there are formal analogies in the descriptions of these 
two substances. A parameter of the theory is the quantity 
a = Tc/EF. (1 -71, wherelis the average interaction con- 
stant, which will be determined below. For both substances 
the quantity 1 -Tis small, and the parameter a ,  which is 
equal to the ratio of the fluctuation component of the free 
energy to the ordinary component, may be of order unity. 

We will calculate this component to terms of fourth 
order in $. The contribution of fluctuations with a wave vec- 
tor q = 2k, gives us a ratio of coefficientsf12/fl, which is the 
same as in the weak-link theory (fl2/DI = 1/2), but this ra- 
tio changes under the condition q < 2k,. Furthermore, the 
overall coefficient fl, may change sign, causing a splitting of 
the transition in the superconductor. In the following sec- 
tion of this paper we calculate the absolute value of the fluc- 
tuation component. In Sec. 3 we show that the fluctuation 
component alters the symmetry of the solution for the super- 
conducting order parameter, and we discuss possible scenar- 
ios for the onset of superconductivity in UPt,. We conclude 
with a discussion of the effect of superconductivity on the 
spectrum of paramagnons in UPt,, in particular, suppres- 
sion of the antiferromagnetic order parameter by the super- 
conducting order parameter. 

2. CALCULATION OF THE FREE ENERGY; THE 
FLUCTUATION CONTRIBUTION 

We assume that d-type superconductivity, due to the 
exchange of paramagnons, operates in UPt,. 

It was shown that in Refs. 1-3 that depairing is prefera- 
ble to s orp  pairing if the interaction Zx0(q) is of the form 

where Jo and J, are constant such thatx0(q) has a minimum 
at q#O (q-2kF ). A p-type superfluid state occurs in 3He, 
and the interaction has a maximum at the wave vector q = 0. 
This circumstance has important implications for the sym- 
metry of the solution. The calculation of the absolute value 
of the fluctuation contribution in the case of d pairing is 
nearly the same as in the case of 3He. 

Following Ref. 8, we consider the standard expression 
for the spin-fluctuation component of the free-energy in the 
random phase approximation: 

where 

A 

is the susceptibility, M is the magnetic moment operator, 
and SX = xS - xN is the difference between the susceptibili- 
ties in the superconducting and normal states. To calculate 
the absolute value of the change in the free energy, we as- 

sume that the order parameter A is a scalar; we can then 
write 

~ e r e l =  max Zx0(q). We of course cannot calculate the nu- 
merical coefficient in (4);  in order to do that we would need 
to know the details of the interaction X ,  and we would also 
need to know the exact solution A(k,iw, ) in weak-link theo- 
ry. The ordinary component of the free energy is 
AF4' = N(0)l(3)A4/(.rrT)2, we then have 

If a- 1 and T- T, , the fluctuation component is compara- 
ble to the ordinary component. As T-0, the fluctuation 
component becomes negligible. A pronounced increase in 
the spin-fluctuation component occurs near the antiferro- 
magnetic transition. In the random phase approximation, 
the effective interaction is 

Right at the transition point we have 1 - Ix,(Q,O) = 0, 
where Q is the antiferromagnetic vector, and the fluctu- 
ations are large. When the antiferromagnetic parameter ac- 
quires a finite value, the denominator in ( 6 )  becomes finite, 
although small (the magnetic moments arep =:O.O1pB ) . Be- 
cause of this small value, fluctuations must be taken into 
account. In the following section of this paper we consider 
the contribution of spin fluctuations for various wave vec- 
tors q, and we calculate the ratio of Ginzburg-Landau coef- 
ficients P,/fl,. This ratio determines the symmetry of the 
solution. 

3. EFFECT OF SPIN FLUCTUATIONS OFTHE SYMMETRY OF 
THE SOLUTION; POSSIBILITY OF SPLITTING OF THE PHASE 
TRANSITION 

We first consider the symmetry of the ordinary super- 
conducting component of the free energy: 

Following Millis et we separate the frequency part from 
the momentum part in the expression for A: 

We also expand the function 7 in the basis functions of the 
2 0  representation of the crystal symmetry group of a hexa- 
gonal crystal: 

We assume q = ( ~ ~ , 7 7 ~ ) ,  then substituting (8)  and (9) into 
( 7 ) ,  we find 
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We now wish to calculate the fluctuation component. 
To do this, we go back to expression (3).  To calculate the 
contribution to the free energy of fourth order in A, we need 
to determine Sx(q,w, ) to within terms of second order in A. 
Using the standard expression for the susceptibility X, 

we find 

The quantities a and b in ( 11 ) depend on the form of 
A (iw, ) and cannot be calculated for the general case. How- 
ever, if A is independent of the frequency, then the quantities 
a and b become D2(m) and Dl (m) ,  respectively, to within a 
coefficient which is independent of w, (Ref. 8).  Integrating 
in ( 1 1 ), we find an expansion of SX in components of the 
vector 77: 

ax(% bJ = 4s. b,) In l 2  + B(q, bm)(~)(?*4). ( 15 

Without going through an explicit calculation of A and 
B, we can write 

The vectors p + q/2 and p - q/2 lie on the Fermi surface 
(they correspond to electron Green's functions), so if 
Iql = 2kF holds then p = 0. Taking the parity of q ( k )  into 
a c c ~ u n t , ~  we find Sx(q) - Iq (q)  1'; expression ( 14) then fol- 
lows as a result. The ratio of coefficients P2/p, = 1/2 has a 
value of 1/2 when spin fluctuations with a wave vector 
q = 2kF are taken into account. In other words, its value 
here is the same as in weak-link theory. We can now write a 
complete expression for A p F ,  derived under some rather 
severe limitations (X and A are independent of the frequen- 
cy, and all the electron momenta lie on the Fermi surface) : 

Here = q/2kF, P < Q (see the Appendix), and ~ ( c )  is the 
susceptibility of the normal metal (which is now indepen- 
dent of the frequency). It follows in particular from ( 16) 
that we have 2B sF> p fF (p sF and p SF are the coefficients of 

the terms 1q2/2 and / q  14, respectively, in the expansion of the 
spin-fluctuation component of the free energy, A p F ,  in 77). 
The complex expression for the free energy (the terms of 
fourth order 1 is 

Here p1 > 0, p SF < 0, and p SI.. < 0. We introduce the param- 
eters 6 =  IpfF/p,/ and x=2pZF/f lsF(x>1).  We then 
have 6za. The parameter 6 falls off with decreasing tem- 
perature. Three scenarios for the onset of superconductivity 
are possible, depending on the parameters 6 and x (Ref. 6). 

1. There is a simple transition (6  < l /x  < 1). In this 
case we havep?"=fl,  +DfF>O,P;' =p1/2+f l fF>0 at 
all temperatures below T, . The transition is to a symmetric 
phase q = ( 1,i) (the condition lq2 1 = 0 is favored from the 
energy standpoint). 

2. The transition splits ( l/x, 6 ( Tc ) < 1 ). In this case 
we have p;"( T, ) > 0, p Zff ( T, ) < 0, and the transition is to a 
real phase q = ( 1,O) ( 111'1 = 1qI2). At a sufficiently low 
temperature T = T,, , the coefficient p ;' changes sign. This 
change in sign occurs because the fluctuation component is 
inversely proportional to the temperature, while the ordi- 
nary component is proportional to the square of the tem- 
perature [see (4) and (5)  1. Let us single out the functional 
dependence F,( 14'1 ), i.e., the part of the free energy which 
depends only on the invariant /+* / '. If the function F, has a 
minimum, then at a temperature T; such that the condi- 
tions Tc>Tcp  >T,,, and F2(I+(Tc-)'1 =minF,  hold 
there will be a second superconducting transition: 
q = (1,O) -q  = ( 1 , i ~ )  (cf. Ref. 6) .  At thetemperature T,,, 
a third transition occurs: q = (1,O) -q = (1,ic). There is 
the further possibility that this third transition does not oc- 
cur, since the minimum in F2 may survive the change in the 
sign of p p (this would be fully developed superconductivi- 
ty, and the region of small values of A would no longer be 
important). 

IfF2 is instead always a monotonic function then a first- 
order transition occurs at the temperature T =  T,,: 
q = (1,O) -+q = (1,i). 

3. There is a first-order transition (2  ( Tc ) > 1 ) . In this 
case we have p, < 0, p2 < 0. The functional is stable in this 
case, by virtue of the sixth-order coefficients. The supercon- 
ducting transition is a first-order transition. This scenario 
may also apply tos-type superconductivity, but it is doubtful 
that it actually occurs. Ifit did, the implication would be that 
the fluctuation component would be greater than the ordi- 
nary component at small values of A. 

4. CONCLUSION 

We have examined the effect of spin fluctuations on the 
superconductivity in UPt,. We have shown that fluctuations 
apparently must be taken into account in studies of heavy- 
fermion compounds, in which the width of the electron spec- 
trum near the Fermi level is small. If the effect of the fluctu- 
ations is sufficiently large, the phase transition will split in a 
d-type superconductor. Within the framework of this model, 
of course, we cannot derive numerical expressions for the 
magnitude of the splitting of the transition, the jumps in the 
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specific heat, etc. In order to do this, we would need to know 
accurate values of the interaction constants, the details of the 
spectrum, etc. At a qualitative level, however, it is possible to 
explain (for example) the relatively small splitting of the 
transition. The explanation is that the free energy is deter- 
mined primarily by spin fluctuations with q = 2kF (in 
which case the effective interaction increases rapidly near 
the antiferromagnetic instability). It has been established 
that the relationfl, = 2f12 holds exactly for such excitations. 
If we were to analyze the contribution from such excitations 
alone, we would reach the conclusion that no splitting of any 
sort could occur: The superconductivity would arise in ac- 
cordance with either the first or third scenario outlined 
above. Only by incorporating fluctuations with q < 2k, 
could we obtain splitting of the transition. However, the 
magnitude of the effective interaction, I,, (q), falls off fairly 
rapidly at q # 2kF, and the contribution of such excitations is 
not very significant, nor is the magnitude of the splitting. 
From this theory we draw the following conclusions, in par- 
ticular: A finite superconducting gap leads to a suppression 
of the low-frequency part of the paramagnon spectrum. In- 
corporating spin fluctuations is equivalent to incorporating 
renormalization of the paramagnon spectrum in the transi- 
tion to the superconducting state. 

Millis et aL9 have shown that excitations with frequen- 
cies w < w, - T, exp(J,/J, ) suppress the superconductivity. 
A negative spin-fluctuation contribution to the free energy 
signifies a decrease in the density of states of low-frequency 
paramagnons. It is thus not difficult to draw the further con- 
clusion that the superconductivity suppresses the antiferro- 
magnetism: The suppression of the antiferromagnetic order 
parameter means that the isotropic susceptibility in the basal 
plane is joined by an anisotropic part at w = 0, and the latter 
is suppressed in the transition to the superconducting state. 

I wish to thank V. P. Mineev for useful discussions of 
these results and for constant assistance in this study. 

APPENDIX 

Introducing the one-particle Green's functions 

substituting them into expression ( 13) for X, and subtract- 
ing the normal-metal susceptibility, we find 

The integration here is carried out under the conditions 

P - P ' = ~ ,  lpl = lp'l = P F  

We can write explicit expressions for P and Q: 

The quantities P and Q are real and positive. Their specific 
values depend on the electron spectrum. In the simple case of 
a spherical Fermi surface, P and Q become the D2 and D,, 
respectively, of Ref. 8. The condition D2 < D l  holds. Now 
substituting the explicit expressions for A [see ( 10) ] into 
the expression for SX, and integrating /A, 1' over the angle 4, 
we find 

(I A, 1 2, = A2(1 - E2) [ l t11 2(1 - t2) + (tlv)(q*v)(5F2 - 1) I. 
Correspondingly, we find 

(ApAif) = ~ ' ( 1  - t2) 1111 12(1 - E2) - (qv)(q*v)(3F2 + I)], 

where 6 = q/2k,,v = q/q. We thus find 

Finally substituting the expression for SX into ( 5 ) ,  and inte- 
grating over the direction of the vector q, we find the expres- 
sion which we have been seeking [expression ( 16) 1. 
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