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A microscopic theory of quantum spin fluctuations in antiferromagnets with a spin density wave 
(SDW) is suggested. The resultive system of equations allows one to find, in a self-consistent way, 
both the single-particle Green's function and low-energy limit of the two-particle spin-spin 
correlator. Calculations are carried out for a three-dimensional isotropic system at T = 0 in the 
weak coupling limit. The energy dependence of the gap in the single-particle excitation spectrum 
is approximated by a steplike function. It is shown that the SDW amplitude is determined mainly 
by the high-frequency behavior of the gap, whereas both the absorption edge and the gap in the 
density of states are determined by the low-frequency behavior. The difference between these 
limits is connected with reduction of the coupling constant by spin fluctuations in the low- 
frequency range. 

1. INTRODUCTION 

The usual description of collective excitations of spin 
density (spin fluctuations) in band antiferromagnets with a 
SDW (spin density wave) is restricted to the random phase 
approximation,' which is not self-consistent. The SDW pa- 
rameters and electron spectrum are calculated in the mean- 
field approximation without allowance for renormalization 
due to electron scattering by SDW fluctuations. This ap- 
proach is asymptotically exact in the limit of a small cou- 
pling constant U / t  < 1 (the so-called logarithmic approxi- 
mation in the model with "nesting," where U is the 
electron-electron interaction potential and t is the band- 
width). The question of correct calculation of spin-fluctu- 
ation corrections in the logarithmic approximation, let alone 
the intermediate coupling regime ( U / t  - 1 ), remains open. 

Meanwhile, as is well known,'spin fluctuations play an 
important role both in the thermodynamics of band magnets 
and in the renormalization of parameters pertaining to the 
magnetic structure of the ground state at T = 0. In the high- 
temperature region (greater than or on the order of the criti- 
cal temperature) the methods most widely used today are 
those which allow for classical thermodynamic fluctuations 
of spin density against the background of a mean-field 
ground state.' The great majority of these methods do not 
allow for quantum fluctuations (or, in terms of functional 
approach, dynamic configurations of spin density). The 
only exception is the early theory of renormalized spin fluc- 
tua t ion~,~  whose range of validity, however, is quite indefin- 
ite ( U / t  > 1, but U / t  - 1 & 1) and for which the correctness 
of the assumptions made is unverifiable. 

In Ref. 4 an attempt was made to extend the method of 
Ref. 3 to the objects of interest-antiferromagnets with the 
SDW described by the "nesting" model. The simplest ver- 
sion of self-consistent (in the static limit) calculations of the 
SDW amplitude and pair spin-spin correlator was carried 
out, taking into account the renormalization of the self-ener- 
gy part of the single-particle Green's function of band elec- 
trons. Though the qualitative result obtained-the decrease 
in the SDW amplitude in comparison with the mean-field 
value-does not arouse objections, the technique used, 

which can be shown, to violate invariance with respect to 
spin rotations1) of a system with purely exchange interac- 
tion, when one exceeds the limits of the mean field approxi- 
mation, seems questionable. 

Until recently, the problem of the self-consistency of 
spin fluctuations and SDW amplitude renormalization has 
been of interest only to a relatively narrow circle of special- 
ists in the field of band magnetism. The situation has, how- 
ever, changed due to intensive studies of magnetic properties 
of metal oxides having high- T, superconductivity. The pres- 
ence of highly developed spin fluctuations in these sub- 
stances, as well as short- and long-range antiferromagnetic 
order, affects their normal and (probably) superconducting 
features5 In the latter case a particularly important role is 
played by low-temperature quantum spin fluctuations, 
which, in some of the models (see, e.g., Ref. 6),  can cause 
Cooper pairing of band electrons. 

The effect of quantum fluctuations on the decrease in 
the mean sublattice magnetization at T = 0 in the Heisen- 
berg antiferromagnets has been investigated by Anderson7 
for S> 1 semiclassical spins in the spin-wave approximation. 
This effect is particularly strong in low-dimensional sys- 
tems. Recently it has been studied in quasi-two-dimensional 
Heisenberg antiferr~magnets.~ As mentioned above, a simi- 
lar problem has been studied in Ref. 4 and, recently in the 
context of application to high- T, metal oxide superconduc- 
tors, in the model of itinerant electron antiferromagnetism 
(the SDW model) in Refs. 8 and 9. In contrast to Ref. 4, the 
authors of Ref. 9 abandoned the idea of a self-consistent ap- 
proach to spin fluctuations, giving the correlation function 
of the latter in a model form and restricting the calculation to 
the usual random phase approximation. 

Meanwhile, a rigorous self-consistent procedure in the 
SDW model must allow for several basic points. Specifically, 
renormalization of the bare electron-electron interaction by 
spin fluctuations causes it to become retarded, so that the 
gap in the elementary excitation spectrum is energy-depen- 
dent, like the superconducting gap in the model of phonon 
superconductivity. To calculate the self-energy parts (nor- 
mal and anomalous) of the Green's functions, it is necessary 
to use a system of Eliashberg equations with a renormalized 
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electron-electron interaction vertex. Furthermore, at all 
stages we must check the system invariance with respect to 
spin rotations, which, in particular, causes the spectrum of 
transverse spin fluctuations to be gapless (the Goldstone 
collective mode is present). In the present study we will try 
to carry out this program. 

2. BASIC EQUATIONS 

Consider a system unstable against triplet electron-hole 
pairing, i.e., against transition to a state with a spin density 
wave." We write the Hamiltonian in the form 

The Green's functions obey the same relation, so in 
what follows we will write the index oonly on the anomalous 
Green's functions and their self-energy parts, bearing in 
mind 2; =axq (i#j,a = + 1). 

The Green's functions (2)  obey the following equations 
of motion: 

(1)  
where iw = i(2n + 1 ) Tis the fermion Matsubara frequency 

where ~ ( k )  = g(k)  - p is the electron dispersion law, p is and ~i~ the temperature. 
the chemical potential, Uis the potential of electron-electron We represent the self-energy parts of the normal 
interaction, N is the number of sites, and u is the electron Green's functions as a sum of odd and even (in frequency ) 
spin. terms 

We assume that for a certain set of quasimomenta k the 
spectrum ~ ( k )  satisfies the "nesting" condition Zif(k, io) = io [1 - Zi(k, iW) I + Si(k9 iW), 
E ( k )  = - E (k  + Q ) , where Q is equal to half the reciprocal 

(4) 

lattice vector. Consider the case of pure doubling of the anti- 
where the functions Zi (k,iw) and S, (k,iw) are even in iw. 

ferromagnet structure. It is convenient to introduce band 
The Dyson equation for the self-energy parts is indices "1" and "2" to denote the nested portions of the 

Fermi surface and the creation and annihilation operators 
for electrons with momentum k and spin u on the corre- 
sponding portions, a,& and a,ku, where i = 1 and 2. The mo- 
mentum-conservation law allows only those scattering pro- 
cesses which are shown in Fig. 1. In what follows we will 
restrict the discussion to the model in which the Fermi sur- 
face consists of spherical sections with identical radii, i.e., to 
the case of equal electron and hole concentration ( p  = 0). 

We introduce, in a usual manner, the temperature 
Green's functions: 

The anomalous (in the band indices) Green's functions 
Gq [and their self-energy parts Zu (i#j),  see below] in (2)  
give rise to antiferromagnetic ordering. The normal Green's 
functions G, (and their self-energy parts 2,) have spin 
structure of the form G :p = G,SaB and the anomalous ones 
(Gq and Xu with i#j)  have triplet structure. We assume that 
the SDW is linearly polarized. Then we have 2yf = Z2,,SZB, 
where S, is the third Pauli matrix, and the direction of the 
quantization axis coincides with the direction of SDW polar- 
ization. In what follows we will denote the components of 
the matrices Gq and Zq in spin space by G z and 2; to allow 
explicitly for the sign of the spin projection on thez axis. It is 
evident that 

where p = (p, iv) ,  k = (k,iw), q = (q,iv); iv, iv and iw are 
the fermion Matsubara frequencies, and V ,,, (p,,p,,p,,p,) is 
the vertex part of the two-particle Green's function con- 
structed using the operators of the bands s, t ,  n, and j. In (5 )  
and in what follows, without mentioning it, we will take into 
account, in the sums over band indices, only allowed combi- 
nations (Fig. 1) of indices of the Green's functions and self- 
energy parts. 

In the block V we single out two groups of diagrams 
which correspond to scattering processes with and without 
spin flip. This step is absolutely natural due to the character 
of the bare interaction Ucorresponding to scattering of par- 
ticles with opposite spins. The simplest diagrams in these 
groups are ladder and polarization diagrams. When the two 
sets of diagrams are summed they yield effective potentials 
in the longitudinal and transverse spin channels, which can 
be represented graphically (Fig. 2) or in the analytic form 

i 

1 FIG. 1 FIG. 2 

I 
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where A:, (k - p )  and 8 :, (k - p )  are the propagators of 
longitudinal and transverse spin fluctuations, respectively, 
and I?; and e, are the vertices in corresponding channels. 

In the effective potentials in (6) we will distinguish the 
contributions of low-frequency spin fluctuations with char- 
acteristic energies w 5 2A ( A  is on the order of half the gap 
width in the electron spectrum). The contributions of high 
frequency fluctuations are taken into account in the initial 
dispersion law through renormalization of quasiparticle 
mass and chemical potential (as in the usual theory of Fermi 
liquid). In the low-frequency part of the effective potentials 
we take the vertices I? and T in static approximation. In this 
case their role reduces to renormalization of the bare 
irreducible block (in fact, to renormalization of the constant 
U) . 

For the frequency-dependent effective potentials A and 
8, as well as for the Green's functions we introduce the Leh- 
man spectral representation 

where i< and iv are the even and odd Matsubara frequencies. 
The label Ret denotes the retarded Green's function. 

Substituting (7 )  into (6),  we can sum over the Matsu- 
bara frequencies in the Dyson equations (6).  As mentioned 
above, the vertices r and are regarded as constants includ- 
ed in A and 8. After summation we have 

where 

and n,, ( E )  are the Fermi-Dirac and Bose-Einstein distri- 
bution functions, respectively. 

When the bands are filled, with p = 0, and the "nest- 
ing" is ideal, the Green's functions, as seen from ( 3 )  and 
(4),  have the form 

l ,22(k9 iw) = [iwZ(k, iw) zi t(k) ID-'(k,  io), 

(9) 
q2,2' (k9 b )  = Z72,21(k9 b ) ~ - I ( k *  iw) ,  

where 

D(k,  iw)  = [iwZ(k, iw) l2 - t 2 ( k )  - Xy2(k, iw)X;, (k, iw). 

Indeed, in the mean field approximation we have the 
following relation between the Green's functions G, , (k,iw) 
and G2, (k,iw : 

which is the consequence of the electron-hole symmetry (of 
the bands 1 and 2). Suppose that this relation also holds for 
the exact Green's functions. This requirement leads to 

Z(k,  iw) = Z l ( k ,  iw) = Z2(k, iw)  

and 

S(k,  io) S l ( k ,  iw)  = -S2(k, i o ) .  

Heres  is a correction to the chemical potential. Since it 
is determined mainly by the high-frequency contribution, we 
assume that it is already allowed for and in what follows we 
omit the quantities S1,2, which leads to the relations (9) .  

Note that the system (8)  is formally similar to the sys- 
tem of Eliashberg equations." In the piecewise-spherical 
model of the Fermi surface (and only this model is consid- 
ered) we change over from summation over p in (8) to inte- 
gration over 6 and q = Ik - pl and the angle p. As a result, 
the self-energy parts are frequency-rather than momen- 
tum-dependent. By means of analytic continuation in ( 8 ) to 
the real frequency axis, iw-w + is, we find for the retarded 
self-energy parts the following equations (for brevity we 
omit the labels Ret) : 

where N(0) is the density of states at the Fermi level in the 
paramagnetic phase; 
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v, is the velocity on the Fermi surface, and q, is found from 
the condition cq, -2A, where c is the spin wave velocity. 

The system (10) is not yet closed, since the effective 
potentials entering into it through the quantities f and g are 
themselves defined through Zij (w). 

3. EFFECTIVE POTENTIALS 

To find the form of effective potentials we will use some- 
thing like the random-phase approximation, but with the 
exception that we will use, as an irreducible element, the 
effective point interaction U *, which allows in the static ap- 
proximation for vertex corrections in the irreducible polar- 
ization loop rather than the bare interaction U. The irreduci- 
ble polarization loop, in contrast to that calculated in the 
random phase approximation, must be constructed not with 
the help of mean-field Green's functions of electrons and 
holes, but using the Green's functions of electrons and holes 
moving in the field of spin fluctuations whose propagators 
are constructed in turn with the help of the same Green's 
functions rather than the Green's functions of the approxi- 
mation of lowest order in the fluctuations, as in the perturba- 
tion theory approach. In this sense we can speak of carrier 
motion in the self-consistent field of the spin fluctuations. 

To find the interaction U * correctly we need to retain 
the gapless transverse mode in the spectrum of spin fluctu- 
ations, i.e., satisfy the Goldstone theorem. In practice, this 
requirement means that the denominator of the pair correla- 
tion function of transverse spin fluctuations vanishes in the 
static long-wavelength limit. 

Since the bare interaction only leads to scattering of 
particles with opposite spins, the transverse and longitudinal 
spin scattering channels do not get mixed up. We have the 
following expressions for A:, and 0 :, : 

where i, j = 1, 2, i#j ,  q = (q,w), and 

We have introduced [in Eq. (12) ] the notation I , ,  (q) 
and T, (q),  i = 1,2,3, for the irreducible polarization opera- 
tors in the longitudinal and transverse channels. (The longi- 
tudinal channel corresponds to fluctuations of the SDW am- 
plitude, and the transverse one to fluctuations of the SDW 
polarization vector direction.) They result from summation 
of elementary loops constructed using the Green's functions 
with self-energy parts obeying ( lo), i.e., the Green's func- 

tions of electrons and holes moving in the self-consistent 
field of the spin fluctuations. We have 

The existence of the gapless transverse mode means that 
we have the relation R (0,O) = 0 which, because the polar- 
ization operator rTT3 ( q , ~ )  is odd in frequency, can be written 
in the form 

In the non-self-consistent random phase approximation 
in which polarization operators are constructed with the 
help of mean-field Green's functions the condition ( 14) co- 
incides with the self-consistency equation for the mean-field 
order parameter and is automatically fulfilled for U * = U. 
In our case Eq. ( 14) gives the effective interaction U *. 

Thus, the expressions ( 10)-(14) form a closed system 
of equations which self-consistently describe low-frequency 
spin fluctuations of the SDW in the model with electron and 
hole Fermi surfaces composed of nested spherical parts. 
Note that Eqs. (12)-(14) are independent of the specific 
form of the electron spectrum and, together with (8) ,  com- 
prise a system of equations valid, in principle, for the solu- 
tion of the problem when portions of the Fermi surface are 
nested anisotropically. However this case is beyond the 
scope of the present study. 

4. SOLUTION IN THE WEAK COUPLING LIMIT AT T=O 

Let us rewrite the system of equations for zero tempera- 
ture: 

1 + sign E - 1 - sign E 

Q + E - w - B  Q - e + w + B  

(1 - sign E) 

- w 
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Here 

+ f2(.).e [%]I ( Q + E - w - i d  1 + sign E - Q - a + w + i d  7 11 
where the quantities f,,2 ( R )  and g,,2 ( R )  are defined in 
terms of A,,? ( q )  and 6,,, ( q )  taken from ( 12 ) ,  just as the 
quantities f';, (0 )  are defined in terms of L in (41 ,  etc., in 
( 1 1 ) .  

We represent 2; ( a )  and Z;, ( w )  in the following 
form: 

( 1 6 )  

where 

From ( 1 5 )  and ( 1 6 )  we get 

In the first term in ( 17) we have cut off the integral at 
the upper limit: Wis an energy on the order of half the band 
width ( 2  W - t ) .  It is evident from Eqs. ( 1 7 ) - ( 2 0 )  that 
Za(w  ) and 2°0s s (w)  are low-energy quantities. We will con- 
sider them approximately constant, i.e., Z O ( w )  = X a ( 0 ) ,  
etc. It follows from the requirement of system compatibility 
that Z a ( 0 )  = 2OS*"(0) = 0 ,  and Eqs. ( 1 8 ) - ( 2 0 )  become 
identities. 

To solve Eqs. ( 17 ) - (21 )  we introduce an ansatz of the 
McMillan type:I2 

A(&) 5 g = pv & < a o  
A,, E >aO' 

where 0, is the characteristic energy scale of spin fluctu- 
ations ( n o - 2 A o )  and 

As follows from ( 21  ), Z ( o )  is a low-energy quantity, 
i.e., we have Z ,  = 1 in ( 2 3 ) .  With the help of Eqs. ( 2 2 )  and 
( 2 3 )  the equations for A,, A , ,  Z,, and U * take the form 

m 

( 1 7 )  
m m 

00 

o 0 ~~z~ = A. + ~ J d a ~ ~ ( a )  

0 
x K + ( Q ,  E ,  w + id),  ( 1 8 )  

xRe [p] K-(Q.  r ,  w + id), ( 1 9 )  

xRe [s] K-(Q,  r ,  w + id). 

Here 

FzVs(Q) = fl (Q)  7 fz(Q) - [g2(Q) 3= gl ( a )  1. ( 2 8 )  

Now the most difficult problem is the self-consistent 
calculation of spin-fluctuation propagators, which reduces, 
in fact, to the calculation of the irreducible polarization op- 
erators ( 13 ) .  Such calculations are carried out, in general, 
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only numerically. It is possible to find the lowest corrections 
to the mean-field solution analytically. For this purpose we 
expand the polarization operators ni (9) ( i  = 1,2,3) in ( 13) 
in small g and w (in the sense that v,g, w (A,): 

In ni (0,O) we use the ansatz (22) and (23) to find U * from 
Eq. ( 14) for the spin-fluctuation spectrum. When we calcu- 
late the coefficients bi and c,, it is sufficient to set 
A(&) = A. = const and not to distinguish between A, and 
A, in the terms of Eqs. (24) and (25 ) containing the spec- 
tral characteristics of the fluctuations F , ,  ( 0 ) .  The calcula- 
tion of the latter reduces to the well-known calculation of the 
resonant parts of spin-fluctuation propagators in the ran- 
dom phase approximation, but with the difference that we 
have A, instead of the mean-field SDW amplitude and the 
irreducible loop must be multiplied by Z; '. In this approxi- 
mation R, = 2A0 holds in (22) and (23). The quantities 
I , ,  (q,w) are calculated in the same way. Thus, we find that 
the amplitude mode spectrum has the Einstein form with 
frequency R,. In the weak coupling limit [ UN(0) ( 1 1, with 
the qualifications made above, the quantities Fz,s ( R )  in (28) 
are written in the following way: 

where 

e(fl) = 4 ( 1 + sign R) ,  and S( R )  is the Dirac delta-func- 
tion. 

Substituting (29') into (24) and (25) we find the fol- 
lowing equations to second order in A,/ W: 

The signs of (andP are chosen, as can easily be seen, so that 
6 > 0 and f l> 0 hold (see Appendix). 

Dividing (31) by A, and then adding (31) to (30), we 
find for the quantity 

the following expression: 

B = (f + @)(A~/~LV)~. 

Here we have used 

which follows from Eqs. (26) and (27), where 

Thus, according to Eq. (32), the A ( E )  high-frequency 
limit differs from the low-frequency one by the factor of 
( A d  W) .' TO find A, as a function of the bare interaction U 
and band width, we use Eq. (26), which yields 

where 

To find the mean-field solution, we must omit the term 
in (Ao/ W) ' in the right-hand side of Eq. (34). Since we have 
C > 0 [Eq. (35 ) 1, the solution of (34) is smaller in magni- 
tude than the mean-field one, which reflects partial suppr6- 
sion of SDW ordering by quantum spin fluctuations. In the 
weak-coupling limit the term (< + P)/2UN(O) dominates 
in (35 ), and (34) reduces to 

As can easily be seen, the role of spin fluctuations reflected 
by the quantity S [see (32) ] reduces, in fact, to attenuation 
of the bare coupling constant in a certain frequency range. 

5. CONCLUSION 

The scheme of allowing self-consistently for quantum 
spin fluctuations in antiferromagnets with a spin density 
wave, suggested above, in principle allows different macro- 
scopic characteristics (for example, the sublattice magneti- 
zation or SDW amplitude) to be calculated using numerical 
methods for the solution of Eqs. ( lo)-( 14). 

The SDW amplitude S calculated as 

with A(&) and Z(E) from (22) and (23) is mainly deter- 
mined by the high-frequency limit of A (&), i.e., by the quan- 
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tity A, . At the same time low-frequency spectral character- 
istics, e.g., the gap in the density of states together with the 
absorption edge, are given by A,. 

The density of states calculated in the usual manner as 

with the ansatz (22) has a gap, which is a consequence of the 
presence of long-range order. The discontinuity in p ( ~ )  at 
the frequency R, is related to the choice of the ansatz (22) 
and has no physical meaning. 

In comparison with the schemes suggested in Refs. 4,6, 
8, and 9 to allow for spin fluctuations, the requirement for- 
mulated in ( 14) that the Goldstone theorem be satisfied and 
allowance for retardation of effective potentials, as follows 
from (29), lead to enhancement of spin-fluctuation effects 
by the factor U/U* > 1. Therefore A, in this scheme is 
smaller than the relevant parameters in the theories which 
are not self-consistent in terms of spin fluctuations, which 
allows larger coupling constants U to be treated using the 
smallness of the parameter A,/ W. 

Note that for the systems in which the Fermi surface 
has anisotropic parts (in particular, for the system consid- 
ered in Ref. 6 )  the method of solution of Eqs. (8)  and ( 12)- 
( 14) used in the present study is inapplicable due to impos- 
sibility of straightforward changing from integration over 
momentum to integration over frequency. 

APPENDIX 

It follows from (30) and (3 1 ) that 

and 

We have used here the following estimates: 

where a is the lattice constant. 
The integral ( A l )  and the second term in (A2) are 

easily reduced to tabulated integrals. To estimate the first 
term in (A2), which is not expressible in terms of elemen- 
tary functions, we split the integration interval into two re- 
gions: 1 < x < 2 and x > 2. In the first region the main contri- 
bution comes from x - 1. In the second region we expand the 
logarithm in a power series. As a result, we have { = 0.37, 
0 = 0.99. 

I '  Here and in what follows we mean invariance with respect to SDW 
polarization vector rotations. 
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