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We use the reduced equations of magnetodynamics to study nonlinear small-amplitude 
excitations in the domain wall of a uniaxial magnet with a large anisotropy. We determine the 
"metastability" time of such solitons, analyze the collision processes of the envelope solitons with 
an isolated Bloch line, and we also elucidate the conditions for their parametric stabilization by an 
external magnetic field. 

The nonlinear transformations of the structure of an 
oscillating domain wall (DW) and the solitonlike effects in 
its dynamics have been studied experimentally in cubic' and 
uniaxial2 ferromagnets. The theoretical study of solitonlike 
effects have mainly been concerned with the dynamics of 
topological solitons-the Bloch lines (BL)3s4-although 
some numerical experiments with nonlinear small-ampli- 
tude excitations in unpinned DW were carried out in Ref. 4. 
One must say that the self-localized oscillations play a role in 
the dynamical "lifetime" of a DW as important as that of 
BL. They are essentially the seeds of a bound state of pairs of 
Bloch lines and accompany their creation and annihilation 
processes. 

A study of the dynamics of topological solitons in 
pinned DW2,3 has shown that they possess properties close 
to those of the electrodynamic solitons of a distributed Jo- 
sephson junction which is described by a sine-Gordon equa- 
tion with  perturbation^.^ Due to the presence of a dynamic 
interaction of the BL with the DW there are not only similar- 
ities in this case, but also differences which are, for instance, 
connected with the possibility of Bloch-line clustering due to 
gyroscopic self-con~triction.~ It is interesting also to discuss 
the physical features of localized solitonlike oscillations of 
DW and to elucidate the nature of their interaction with BL. 

The reduction of the magnetodynamic equations for the 
dynamics to a nonlinear Schrodinger equation6 to describe 
small-amplitude DW oscillations shows that breather self- 
localized oscillations and envelope solitons can arise. How- 
ever, in nonintegrable systems the problem of how funda- 
mental such formations are, even in a nondissipative 
medium is ~ n c l e a r . ~ - ~  This is connected with the fact that 
localized DW oscillations which are periodic in time with a 
frequency below the activation gap are in general due to the 
nonlinearity itself, a source for the generation of oscillations 
at higher harmonics which are undamped at the periphery. 
These oscillations are exponentially small in the amplitude 
of the self-localized oscillation at the fundamental, E< 1, i.e., 
they are proportional to exp( - In this connection it 
is of interest to estimate the possible "metastability" time of 
such solitons in DW and to discuss the problem of their sta- 
bilization. 

In the present paper we use the methods of perturbation 
theory, assuming that in the system considered there are 

small parameters (small amplitude, weak dissipation and 
pumping), to analyze the phenomenon of the collision of 
envelope solitons with BL and the parametric stabilization 
of a self-localized DW oscillation in a dissipative medium. 

1. INITIAL EQUATIONS AND CONSERVATION LAWS 

To study spin wave excitations in a pinned DW we start 
from the dynamic equations obtained by Slonczew~ki'~ for 
magnetically uniaxial materials with a large quality factor 
Q = K ,  /2 rM g 1, where K ,  is the uniaxial anisotropy en- 
ergy and M the magnetization. These equations can be put in 
the following form in normalized  variable^:^ 

where q is the coordinate of the center of the DW, normal- 
ized to the DW thickness S, = (A /K, ) ' I2,  reckoned along 
the y-axis which is normal to its plane; A is the exchange 
constant; $ is the azimuthal angle at which the magnetiza- 
tion emerges from the plane of the DW, reckoned from thex- 
axis; we write b = H 'SW/4rM, where H' is the gradient 
along the y-axis of the magnetic field parallel to the z-axis, 
stabilizing it in the position q = 0; h, is the magnetic field 
along the z-axis, normalized to 47TM; h, is the magnetic field 
along the x-axis, normalized to 8 M ;  the x and z coordinates 
are measured in units of the BL width S, = (A /2rM 2, ' I 2 ;  

the time t is normalized to (4rMy) - ' where y is the magne- 
togyric ratio; and a is the Hilbert damping parameter. 

If there is no dissipation and there are no magnetic 
fields the set of Eqs. ( 1 ) and ( 2 )  has two integrals of motion. 
In fact, multiplying ( 1) by d,q and ( 2 )  by 8, tC, and subtract- 
ing the one from the other we get after some transformations 

where 

is the spin wave energy density in the DW, 
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is the energy flux density, and 

is the dissipation energy density. Equation ( 3 )  describes the 
evolution of the energy density of a system in a dissipative 
medium. Similarly, by multiplying ( 1 ) by 3, q and (2)  by 
a, $, subtracting and performing some transformations, we 
can find an equation for the evolution of the momentum: 

where 

is the spin wave momentum density and 

is the momentum flux density. 
The integrals ofmotion make it possible for us to obtain 

evolution equations for adiabatically changing soliton pa- 
rameters in a perturbed medium. This applies especially to 
the dynamics of an isolated Bloch line, the self-similar solu- 
tion for which in an unperturbed DW is completely charac- 
terized by two free parameters-the velocity and the posi- 
tion of the center. " For a larger number of free parameters 
in a solitary wave the above-mentioned conservation laws 
are insufficient for a complete description of the evolution of 
the soliton in a perturbed medium. In that case we need use a 
singular perturbation theory which is the analog of the Bo- 
golyubov-Mitropolskii method. l 2  

2. SMALL-AMPLITUDE LOCALIZED DOMAIN WALL 
OSCILLATIONS 

We shall discuss the possibility that self-localized 
breather states exist near the DW ground state $ = q = 0. 
We look for a solution which is periodic in time in the form of 
a Fourier series 

where 

while the phase 8 satisfies the condition a, 0 = w = const. It 
is clear that because of the specific form of the nonlinear 
term in (2)  the expansion ( 10) will contain only odd har- 
monics, n = 1,3,5, ... . For small-amplitude oscillations 
I$) < a we get from ( 1 ) and (2)  an infinite chain of coupled 
equations: 

We now assume that the amplitudes of the harmonics in 
the expansion (5) are of increasing order of smallness, in 
fact, that a, -E" where E = max($, ) <r. In that case, as- 
suming that in the wave the size of the localization region is 
determined by its amplitude, i.e., that we have axa ,  -a,&, it 
follows from ( 6 ) and (7 ) that to within third-order terms 

For 1x1 - OJ the solution of Eq. ( 10) with the boundary con- 
ditions $, = a, $, = 0 has the well known form 

in which the size of the localization region is determined by 
the parameter 

A = vob/(2(1 + b2)'12) . 
Moreover, there is a nonlinear frequency shift given by the 
relation 

w2 = b2(1 - *;/4). (12) 

In the same approximation it follows from (7)  that 

Now, retaining the third-order terms in the second pair 
of equations, (8)  and (9),  we find that 

After a direct and an inverse Fourier transformation we find 
from this set 

where 

One can easily evaluate the integrals in ( 15) and ( 16), by 
using the theory of residues after the substitution 
k = 2 = k, + ik,, if we choose an integration contour con- 
sisting of a section of the real axis .? = k, ( - R < k, < + R, 
ky = 0) and the semicircle 4 = R exp(i#), where 0 < 4 <a 
for x > 0 and - a < 4 < 0 for x < 0. To eliminate the singu- 
larities of the integration on the real axis we must put 
k- = l im(ki  + iP) with P-0. The general solution of the 
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system ( 14) can then be written in the form 

a3=a!+a;, (17) 

in which a: is that part of the solution of the system (14) 
determined by the residues on the imaginary axis in the 
points 2: = - A2(2m + m = 0,1,2 ,... . This part of 
the solution describes the localized wave and is damped as 
1x1- W .  It can be approximately found directly from (14) 
when one drops the spatial derivatives so that 

The second part a," of the solution of the system ( 14) refers 
to the "emission" of spin waves at a frequency 
3b( 1 - & / t i ) .  In the continuous spin-wave spectrum this 
frequency corresponds to a wavenumber k = k -  ~ 2 J 2 6  
(for b g  1 ). The amplitude of the travelling wave is deter- 
mined by the residue of the integrand in ( 15) and ( 16) at the 
point 

foro-0, i fx>O and 

foro-0, ifx < 0. Therefore in the far wave zone, for instance 
for x > 0 and also taking into account that usually we have 
b 4  1, 

Thus in the far wave zone undamped spin oscillations appear 
with an exponentially small amplitude, 

a3 - exp(-n2d2/ryo). 

The emission of spin waves causes the original wavepacket to 
lose energy and hence to have a finite lifetime. From the 
energy conservation law (3),  after averaging in time over a 

period of the soliton oscillations and integrating over the 
spatial variable x,  taking into account the fluxes at infinity, 
we can obtain an equation for the temporal evolution of its 
amplitude, qb0 ( t )  , 

The numerical solution of this equation is shown in Fig. 1. 
For large times it is approximately described by the formula 

where 

exp [4nvP1/1~~(0) I 
to = 6 t b  

may be called the "lifetime" of the small-amplitude soliton. 
This time increases without bound as $,-+0. Therefore only 
in the limit of an infinitesimally small amplitude can we talk 
about the self-localization of a wavepacket of DW binding 
oscillations. The example of integrable systems such as the 
sine-Gordon system, shows, however, that taking higher 
terms of the expansion in $into account in the initial system 
may cause the excitations to be damped by interference in 
the far wave zone. It was shown in Ref. 7 by a numerical and 
qualitative analysis that for the occurrence of self-localized 
solutions in a system with a cubic nonlinearity one needs at 
least an additional term of fifth order with a self-consistent 
coefficient in the expansion in $.I' The time (22) can be 
considered to be a rough estimate for the possible metastabi- 
lity time of self-localized excitations in a DW. 

It will be of interest in connection with what we have 
said above to give an estimate ofthe metastability time which 
we have found. Taking $(O) = 0.5 we find from (22) that 
fob = 1.44- 1014 periods of the oscillations. It is clear in this 
case that one can neglect the effect of the emission on the 
higher harmonics. If we put $,(O) = n, we have t,b = 15.5, 
which indicates important possible changes in the structure 
of the initial wavepacket ( 1 1 )-( 13) after a few periods. For 
large amplitudes, however, the formulas for both the local- 
ized solution and for its lifetime are invalid. 

We have therefore carried out numerical solutions of 
the Cauchy problem with an initial perturbation in the form 
( 11 )--( 13). They showed that for small amplitudes, 
1 $ol < 0.5, the solution was observed to be solitonlike during 

FIG. 1. Evolution according to perturbation theory of the amplitude of a 
self-localized spin oscillation in a pinned DW in a nondissipative medium. 

I 
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the whole of the calculation time t,b= 100 (Fig. 2). Solu- 
tions with larger amplitudes, I q0I > 0.75, rapidly disintegrat- 
ed into dispersive large-amplitude spin waves2'as is shown in 
Fig. 3. Attempts to obtain a large-amplitude breather 
through annihilation of the kinks (Bloch lines) which were 
initially at rest also had to be concluded unsuccessfully due 
to the appearance of dispersive spin waves. Direct numerical 
experiments therefore confirm the metastable nature of the 
localized nonlinear DW oscillations. 

3. INTERACTION OF ENVELOPE SOLITONS OF BENDING 
DOMAIN WALL OSCILLATIONS WITH BLOCH LINES 

We now consider a moving solitary wave of localized 
DW oscillations when BL are present. We shall assume that 
we can neglect the effect of dissipation during the collision 
time, that the amplitude of the envelope soliton is sufficient- 
ly small, <7~/2, and that the emission at higher harmon- 
ics is negligibly small. We put 

where 

describes the small-amplitude wave, while 

FIG. 2. Evolution of the amplitude of a self-localized spin oscil- 
lation with a small initial amplitude &(O) = 0.5 in a pinned 
DW. Numerical calculations using Eqs. ( 1 )  and (2)  with 
a = h, = h, = 0. 

is a Bloch line. Form Eqs. ( 1 ) and (2) for a = h , ,  = 0 we 
can then find two coupled systems, one of which describes 
the small-amplitude DW oscillations in the presence of BL: 

There is also the system which is the complex conjugate of 
(23) for a;. The other system of equations describes BL in 
the presence of small DW oscillations: 

where 

F = 2 1 2s in(2q~ + (9; + qi2)sin(2?#d. 

Since according to ( 1 1 ) the size of the localization re- 
gion of the self-localized wave for I <r/2 is much larger 
than the size of the core of the BL, which is -- 1, the right- 

FIG. 3. Decay of a solitonlike spin oscillation with an initial 
amplitude +bo(0) = 0.75 in a pinned DW in a nondissipative me- 
dium (a = h, = h, = 0) .  The chosen times corresponds to 
maximum amplitudes at the center. 
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hand sides of Eqs. (23) and (24) can be considered to be 
perturbations which, without changing the self-similarity of 
the soliton solutions, lead to an adiabatic change in its pa- 
rameters. In that case one can consider the interaction of the 
solitons using perturbation theory methods.'" 

We start the discusson of the properties of an envelope 
soliton by considering the unperturbed system (23) with 
zero right-hand side. As in the previous case we shall assume 
that because of the weak localization of the DW oscillations 
we have ax a, =&a,, where ~ = m a x ( $ ~  ) << 1. For simplicity 
we also assume that ax a, < ba, . Moreover, we shall neglect 
the effect of emission at higher harmonics and thus drop 
small terms of order = E ~  which correspond to its genera- 
tion. In that case, after eliminating q, from Eqs. (23) we get 
the following equation for the complex amplitude $, of the 
angle at which the DW emerges from the plane: 

where 

h 

while the operator L has the form 

The unperturbed homogeneous Eq. (25) has a self-similar 
solution describing an envelope soliton 

in which k is the wavenumber, 

is the position ofthe center of the soliton, v, = ( 1 + b 2 ,  k /b 
is the group velocity of the wave (for k g b ) ,  

is the phase of the soliton, 0 is the phase shift, and w is the 
frequency which satisfies the dispersion relation 

According to (23), in this approximation the amplitude of 
the DW oscillations is then given by the formula 

We now assume that the presence of a perturbation 
d+O leads to a slow (adiabatic) change with time in the 
soliton parameters, i.e., r, ( j  = 1,2,3,4) = $o,xo,v,, 
p= r, ( ~ t ) ,  where E g 1. We can write the solution of the 
perturbed system in the form C = C, + g where 

is a solution of unperturbed system (25) which; determined 
by Eq. 28, and 

is a small correction ( Ig, 1 9 1 $, 1 ) to the main solution 
which satisfies the linearized equation 

in which we have 

zL is the position of the center of the BL, and the operator 
L, has the following form: 

To derive an expression for d, we take into account that the 
core of the BL is described by the formula" 

For the set of Eqs. (30) to be soluble the vector d, must 
be orthogonal to the eigensolutions of the homogeneous set 
of equations conjugate to PO). By virtue of the self-adjoint- 
ness of the operator L, the vectors Ci =aC,*/ar, 
( j  = 1 ,  ..., 4)  are such solutions. From the orthogonality 
condition (Cid,) = 0 after integration, using (27) and 
(29), we get the required evolution equations which can be 
written in the following form: 

where 

is the potential energy of the interaction of the envelope soli- 
ton with the BL, and 

is the mass of the breather. Similarly, using perturbation 
theory for the BL," and taking the form (24) as the approxi- 
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mate self-similar reference solution of Eq. (32) for $, , and hx(t) = hxexp(- S t )  + C.C. 

also taking 
at a frequency w - 2b. 

nvr. 
qL=-exp( -b lx -XLI)  (35 1 It is clear that a uniform pump can stabilize only a 

26 standing wave of DW oscillations with k = 0. Taking as the 

as the self-similar solution for bending DW, we can show 
standard solution of the unperturbed system (1 ), T2) the 
self-similar solution (27) to (29) with k, XB = 0 and follow- 

that the equations for the BL position XL and velocity uL , 
ing the procedure, described above, of eliminating secular 

averaged over a period r = 2r/b of the oscillations of the 
terms in the perturbed Eqs. ( 1 ), (2)  with a ,  h, # 0 (h ,  = O), 

small-amplitude soliton, have the form 
for the amplitude $o(t) and the frequency mismatch 

where mL = d / 2 b  is the mass of the BL (the dimensionality 
of the breather and BL masses is [m] = ( 2 7 ~ 9 Q  ' I 2 )  -'). 

It follows from Eqs. ( 3 3 )  that in a collision between a 
BL and an envelope soliton the amplitude of the latter does 
not change, i.e., $o = const. The change in the phase shift 
p(t) depends solely on the positions XL ( t )  and X, ( t )  of the 
solitons. As can be seen from (33) and (36) the positions of 
the solitons can be described by a Lagrangian of two inter- 
acting material particles with an attractive potential UL, 
and masses m, and mB . One can obtain this result also from 
the conservation laws (3)  and (4), if one assumes that the 
amplitude $o is constant. 

The analysis of the equations obtained shows that a col- 
lision between attracting solitons with a bounded interaction 
potential can, depending on the initial kinetic energy of the 
solitons, 

we can obtain the following equation: 

The phase plane ($,x) of the equation obtained here is a 
generating cylinder ( - oo < $ < + oo ,O <X < 27~) with a 
phase portrait which is symmetric with respect to the line 
$ = 0. The bifurcation diagram of Eq. (37) is shown in Fig. 
4. It is determined by two parameters-the normalized am- 
plitude of the pump field, 

h = hx/hp, 

where 

hp = a(l + b2)lb, 

T = mL$/2 + mB@2 and the normalized frequency mismatch 

lead to the capture of a small-amplitude soliton by a Bloch 
line or, if the interaction potential energy is larger than max 
U,,, they pass through one another causing a shift in the 
initial phase or position. For instance, when the velocity of 
the self-localized wave is close to the critical one a BL at rest 
shifted in the opposite direction from the envelope soliton by 
an amount of order 

For large velocities v, this shift decreases, being inversely 
proportional to the square of velocity of the incident soliton. 

4. STABILIZATION OF THE SPATIALLY LOCALIZED DOMAIN 
WALLOSCILLATIONS BY A MAGNETIC FIELD 

In a dissipative medium ( a # O )  one needs an external 
energy input to sustain the damped oscillations. It may be 
produced directly by the parametric pumping either of a 
magnetic field h, , or h, . Such methods are well known in the 
theory of the stabilization of NLS  soliton^.'^ The conditions 
for the stabilization of self-localized DW oscillations by a 
field 

Q = ( a p  - 2b)l [a( l  + b2)].  

In this diagram in the fl< 0, h < 1 and R > 0, 
h < ~TR' regions there are no equilibrium positions of the 
set (37) which are determined by the condition 
a, $ = a,x = 0 with $#O. In this case it is impossible to par- 
ametrically stabilize the soliton. The required equilibrium 
points occur only for h > 1. 

Note that h = 1 (or h, = h, ) is the condition for the 
threshold of the uniform parametric generation of zero-am- 
plitude spin waves at the frequency w = 2b. This follows di- 
rectly from an analysis of the linearized initial equations ( 1 ), 
(2). The condition h > 1 is necessary, but not sufficient, for 
the soliton stabilization. 

The required nonzero equilibrium position exists for 
R < 0, h > 1 and for R > 0, h > dm5 in the following point 
of the phase plane: 

with a frequency of the order of the activation gap, w-b, 
were considered in Ref. 6 .  Here we analyze the conditions for Linearizing Eqs. (37) near this equilibrium position shows 
parametric stablization by a field that the point (38) is an attractive focus when 
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and a node in the opposite case ( h  < h ,  ). 
There is also the singular point 

corresponding to an unstable saddle-point equilibrium posi- 
tion in the region a < 0 ,  1 < h < d m .  Moreover, there 
are also two equilibrium points on the line $ = 0 with 
cos xo = - R / h  for < h. In that case, they are saddle 
points when h >\im holds and one of them becomes an 
attractive node, i.e., corresponds to stable equilibrium, for 
h < d m .  In this connection the stabilization of the soli- 
ton for 1 < h <\im depends on the matching of the ini- 
tial amplitude and phase of the self-localized oscillation and 
of the pump field. This is clear from the approximate form of 
the phase portrait of Eq. ( 3 7 )  for this case shown in Fig. 5a. 
It is shown in Fig. 5b that the stabilization is independent of 
the initial conditions for h > d m .  

Note that for h, > 0 the DW ground state ($ = 0 )  is 
totally unstable. For parametric stabilization to be possible 
one must thus satisfy the condition 

which restricts the degree of bending "rigidity" of the DW 
and the magnitude of the damping in the system. 

Moreover, it is clear from ( 3 8 )  that for small damping, 
a 1 (a < b ) ,  the amplitude of the stablized oscillation 
is basically determined by the frequency mismatch 
Sw = w, - 2b and depends only weakly on the magnetic 
field mismatch Sh = h, - h,. For small oscillation ampli- 
tudes, 1C.,(< 1, the requirements on the admissible range of 
frequency mismatch, Sw/w, < $:I8 9 1 ,  are rather rigid. 
When one goes beyond this range the self-similar approxi- 
mation assumed here will be violated and the DW oscilla- 
tions may become unstable. At any rate the conclusions of 
perturbation theory cease to be valid. 

We give some numerical estimates determining the pos- 
sibilities for observing parametric stabilization of small-am- 

FIG. 4. Bifurcation diagram of the set of Eqs. (37).  The area 
where there are no equilibrium positions with nonzero ampli- 
tude ($.,#O) is hatched: 1-theline h = In[; 2 - h \ i m ;  3- 
h =  [ 1 +  (R/2+\lR2/4+ 1/8)2]1'2. 

plitude solitons in DW in a uniaxial ferrite-garnet. Taking 
47rM=200 G, b = 0 . 2 ,  a = 0 . 0 2 ,  y = 2 . 8 - 1 0 6  MHz/Oe, 
and $=0.5, we find H, = 8Ma( l  + b 2 ) / b =  12.7 Oe, 
f, = w p / 2 n  = 4Myb = 229 MHz, and Sw/w, = $:/8 
= 3%. 

CONCLUSION 

The studies given here have thus shown that in a pinned 
domain wall of a uniaxial ferromagnetic with a large anisot- 

FIG. 5. The phase portrait of the set of Eqs. (37)  for a = 0.02, b = 0.2: 
a-h = 1.01, R = - 0.2; b--h = 1.2, = - 0.2. 

I 
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ropy there may exist small-amplitude self-localized spin 
wave excitations which have the properties of NLS solitons. 
Like the breathers of the plasma oscillations in a distributed 
Josephson junction which are attracted to the fluxons, the 
self-localized DW oscillations interact with the BL. Because 
of the small amplitude of the solitonlike DW oscillations 
their interaction with BL is described by a single-well attrac- 
tive potential which is proportional to the square of the am- 
plitude of the oscillations. It is clear [as can be seen from the 
expression for the perturbing term in Eq. (24)]  that in the 
case of a cluster containing several BL, the interaction with a 
breather increases proportional to the number of BL. 

Together with the phenomenon of the trapping of the 
envelope solitons of the bending oscillations of unmoving BL 
and their clusters the opposite shift of a BL in which enve- 
lope solitons pass through it when their kinetic energy is 
larger than the attractive potential is also possible. This last 
effect, connected with the momentum conservation law of 
countermoving solitons in the absence of emission, is charac- 
teristic for nonreflecting solitons in integrable systems.15 
Taking into account the emission connected with the partial 
scattering of small-amplitude solitonlike DW oscillations by 
BL reduces this effect. 

In contrast to the breathers of the sine-Gordon equa- 
tion the localized solitonlike DW excitations are metastable; 
this is connected with the generation of spin waves with a 
complex spectrum at frequencies which are multiples of the 
ground-state frequency. Direct numerical calculations show 
that when one increases the amplitude of the breather-type 
solitons they do not change into a bound state of Bloch lines 
but disintegrate into dispersing spin waves along the DW. 
An alternating magnetic field may stabilize the self-localized 
DW oscillations when the synchronization conditions for 
direct6 or parametric pumping are satisfied, similar to the 
NLS solitons.14 The stablization effect has a threshold in a 
dissipative medium. For a small pumping amplitude near 
the threshold value the stabilization effect depends on the 
initial conditions. If the initial conditions are such that the 
oscillation frequency is not trapped, one will observe period- 
ic oscillations of the soliton amplitude in the case of the di- 
rect pumping method, while in the case of parametric pump- 
ing the soliton is damped. When the pumping amplitude 
increases the stablization of the soliton ceases to depend on 
the initial conditions. In that case the restrictions on the 
admissible range for the mismatch of the pumping frequency 
are rather rigid for small-amplitude oscillations because the 
nonlinear frequency shift is small. For large amplitudes of 
the pumping field perturbation theory becomes inapplica- 

ble. Here one may expect that as in a distributed Josephson 
junctionI6 parametric transformations of the small-ampli- 
tude solitons will occur and chaotic and dissipative struc- 
tures will form. However, this requires a separate considera- 
tion. 

In conclusion one should note that diffraction methods 
for visualizing subdomain  structure^'^ may turn out to be 
efficient for the observation of the interaction of the nonlin- 
ear DW oscillations with BL in addition to the methods for 
direct magneto-optic visualization of the DW bending in 
conjunction with high-speed photography.2~17 

The authors express their profound appreciation to 
V. M. Eleonskii for stimulating discussion and his interest in 
this work and are also grateful to A. K. Zvezdin for discuss- 
ing the results. 

"The problem of the existence ofself-localized solutions in a system with a 
q4 nonlinearity was discussed in Ref. 9. 

"An additional feature ofthe numerical solution ofthe set of Eqs. ( 1 ), (2) 
was the nonlinear distortion of the shape of the small-amplitude soliton 
( 11 )-( 13). When the amplitude is increased additional self-constriction 
occurs which is apparently connected with the effect of the leading deriv- 
ative in the initial system of equations. 
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