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The free energy density of the smectic Cphase is constructed for an arbitrary equilibrium 
configuration of the smectic layers. Kinks, vortices, and monopoles in the order-parameter field 
are studied. Two-dimensional periodic structures induced by stretching of a smectic Csample are 
investigated. It is shown that very diverse periodic structures can appear near the smectic A- 
smectic Cphase transition. The theory is compared with other theories and with experiment. 

1. INTRODUCTION 

Smectic C liquid crystals were first studied theoretically 
by Saupe,' the Orsay group,2 and de G e n n e ~ . ~ . ~  In describing 
the smectic A-smectic C phase transition (AC transition) 
de Gennes4 noted an analogy between the smectic order pa- 
rameter and the wave function of the condensate in He 11 

According to this analogy the condensate density corre- 
sponds to the cant angle 9 of the molecules in the smectic 
layer and the phase of the wave function corresponds to the 
angle a giving the cant direction of the molecules. In these 
works, as well as in Ref. 5, the smectic C free energy, which 
describes elastic deformations of the smectic layers and the 
field of the direction n indicating the direction of the long 
axes of the molecules, was constructed for the case of small 
angles a and 9 = const. The theory of the smectic C phase 
was further elaborated by Kats and L e b e d e ~ , ~  who in de- 
scribing the AC transition took into account the interaction 
of the smectic order parameter with the displacements of the 
layers. In Ref. 6 an expression not containing these restric- 
tions on a and 9 was proposed for the free energy. A more 
detailed description of the dynamics of smectics is given in 
Ref. 7. The following, however, should be noted. In spite of 
the significant attention given to the smectic Cphase, there is 
no universally accepted expression for the free energy, such 
as, for example, the Frank energy for nematics. This fact is 
indicated, in particular, in the recent work of Leslie, Stewart, 
and Nakagawa,' where a theory of the smectic C phase is 
given. In Ref. 8 the free energy of the Cphase is constructed 
and the equations of hydrodynamics are derived. Compar- 
ing the works cited above shows that there are disagreements 
between them (some of them will be discussed below). These 
discrepancies probably arise for the following reason. In the 
works cited a flat equilibrium configuration of smectic layers 
is considered, and this makes it impossible for the order pa- 
rameter of the C phase of the smectic to manifest a global 
structure. In order to explain this straightforwardly, we con- 
sider the exotic example of a smectic C film in the form of 
Mobius strip. In such a film the order-parameter field con- 
tains a domain wall in which the director n turns by 180". 
Nothing like this happens in the field of the phase of the 
order parameter of He-11. In other words, the "helium analo- 
gy" for the C phase holds only locally at each point of the 
smectic layer-the global properties of the order parameter 
depend on the global topology of the smectic layers. The 
formation of monopolar structures-observed by Kurik and 

Lavrentovich9 (see also Ref. 10) in drops of the C phase 
where the smectic layers formed concentric spheres-is con- 
nected precisely with the global topology of the layers. 

In the present paper the smectic C free energy density is 
constructed for an arbitrary equilibrium configuration of the 
smectic latyers (in the absence of dislocations in the system 
of layers) and extended objects in the order-parameter field 
(kinks, vortices, and monopoles) as well as periodic struc- 
tures induced by stretching the smectic sample are studied. 

2. ORDER PARAMETER 

A general property of smectic liquid crystals is their 
layered structure. Different phases of smectics are distin- 
guished by the structure of the layers consisting of elongated 
molecules. In the A and C phases the centers of mass of the 
molecules are arranged randomly in the layer, i.e., each layer 
consists of a two-dimensional liquid, and in the B phase (and 
other phases) some crystal order exists within the layer. We 
are concerned with A and C smectics, which are distin- 
guished by the cant of the long axis of the molecules relative 
to the normal direction to the layer: In the A phase the long 
axes of the molecules are perpendicular to the plane of the 
layer and in the C phase the long axes of the molecules are 
tilted with respect to the plane of the layer, and long-range 
orientational order of the elongated molecules, which is de- 
scribed by the nematic director n, such that n2 = 1 and n and 
- n are equivalent, exists. 

It is convenient to describe the orientational order in 
the smectic C phase by a triplet of mutually orthogonal unit 
vectors N, c, and m, where N = [mc] is the normal to the 
smectic layer and the vector c (the C director4) lies in the 
plane of the normal N and the director n, which at a fixed 
temperature make an angle 9.  Since n and - n are equiva- 
lent, for definiteness we assume that the angle 9 is acute. 
Note that c is an ordinary vector, i.e., c and - c are not 
equivalent. It is here that the smectic C phase differs signifi- 
cantly from a nematic: For example, only disclinations of 
integer strength can form in the field of the C d i r e ~ t o r . ~  Thus 
orientational order in the C phase at a fixed temperature 
(9 = const) is described locally by a two-dimensional vec- 
tor c (or m), lying in planes tangent to the smectic layers at 
each point of the sample, i.e., locally the space of the order 
parameter (the range of values of the order parameter) is a 
circles ' or the group SO,. If the configuration of the layers is 
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not two-dimensional, then the properties of the smectic de- 
pend strongly on the topology of the smectic surfaces. A 
smectic layer of the C phase is an example of tangential 
stratification with the stratification group G = SO, and base 
M, where M is some surface. For example, it can be the plane 
R ', the cylinder S ' X R I, or the sphere S '. 

In order to take into account changes in the cant angle if 
(for example, in an A C  transition or in the core of a disclina- 
tion), we shall study together with the vectors m and c, the 
vectors 3, = $nn and Q = $c, where $ = sin 29 (0($( 1 ). We 
describe the smectic layers by the equation 

and then 

We represent the function Win the form 

where F describes the equilibrium configuration, assumed to 
be given, of the layers (for example, flat, cylindrical, or 
spherical), and u is the displacement. With the equilibrium 
configuration of the layers we associate a local coordinate 
system {{,7,1,f> with basis vectors m,, c,, and v,, where the 
subscript "0" indicates the equilibrium state and 
N = v, + v. We also assume that the number of layers is con- 
stant4 

rot V,, = 0, (4)  

i.e., at equilibrium (u r 0) the layers are equidistant and 
there are no dislocations in the system of layers. 

3. FREE ENERGY 

In its simplest form the energy of stretching (compres- 
sion) of the smectic layers can be written thus: 

B 
F~ = T p .  (5 

Here the deformation 7 is a scalar quantity and has the form 

3 y= NVu = u5 - (~,u)~(l  + - u ) + . .. , 2 5 (6) 

where in the approximate equality the fact that 

v = {a*, a,, at} = {v,, at} (7) 

was taken into account. We note that in the local coordinate 
system we have v, = {0,0,1). The form of the expansion of 
the deformation 7 in terms of the gradients of the displace- 
ment (6) makes it possible to generalize the expression for 7 
and FL as follows: 

In the case of smectic A we have B,, = B,, and 

B, =BIZ  = B,." Note also that usually a flat configuration 
of layers with deformation 

(N, = {N, ,N,)) in the formula (5)  is ~ons idered .~ .~  In Ref. 
6 the expression 7, = u, - ~ ( V U ) '  is employed for the de- 
formation. The quantity p, differs from 7 and Pp by the 
presence of the term ut and the absence of terms of the form 
U, (VIu)', etc. 

Next, we must include in the free energy of the smectic 
terms which determine the cant of the molecules in the layer 
(the angle if) and the relationship of the cant of the mole- 
cules to the deformation of the layers.'~~ This part of the free 
energy has the form 

where U, A,  and D are positive constants, and 7 is given by 
the formula (8).  In the A phase of the smectic we have A < 0 
and $ = O ( 9  = 0). We assume that near the point of the A C  
transition A a I T, - TI holds,6 where T, is the temperature 
of the A C  transition. 

It remains to add to the free energy the elastic energy of 
the smectic order parameter: the triplet of vectors N, 3,, and 
Q. As has already been mentioned, in the literature there is 
no universally accepted expression for this energy. (This can 
be seen by comparing Refs. 4-8.) As in Ref. 6, we start from 
the Frank energy for a nematic 

and the representation of n in the form 

n = N-+ [Nv 1 (12) 

where, as above, a local coordinate system {6,7,1,f) is em- 
ployed and N = v, + v. Substituting Eqs. ( 12) and ( 13) 
into Eq. ( 1 1 ) gives two equivalent expressions for F,, , which, 
to lowest order in $ and the gradients of the fields N, Q, and 
3, we represent as follows: 

Fl = 2 (div v12, (15) 

F2 = xrdiv v div Q = xldiv V(Vpt V), (16) 

where, so as not to confuse the constants of the nematic and 
smectic C, the new constants x,, x,, and x, were introduced 
for the elastic constants K,, K,, and K,, respectively. Note 
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that the expression obtained for Fn differs from the analo- 
gous energy given in Refs. 6 and 8. In Ref. 6 the term of the 
form F, is not taken into account. In Ref. 8 the case 
q4 = const is considered, the expression for the free energy 
does not: contain a term of the form ( N  rot c)*, and three 
terms [containing the factor (Nc)rot c]  , which do not fol- 
low from the approach considered above, are included. 

In the derivation of Ref. 14, it was assumed that the 
condition (4)  is satisfied and the average radius of curvature 
of the layers and the characteristic scale of the nonuniformi- 
ties along the normal v,  are significantly greater than the 
dimensions of the transverse gradient of the fields v, cp, and + 
(in particular, it is assumed that rot N-0). When neces- 
sary, the dropped terms can be easily included in Fn . The 
expression for F, is still not the final one. The energies F, and 
F2, containing the term div v, must be generalized as was 
done in the case of the energy ( 5 ) ,  containing the quantity 
NVu. Thus, instead of F, and F2 we have, respectively 

and we rewrite the formulas ( 17) and (18) once more in a 
different form: 

1 + 3 (x2 - x 3 ) ~  rot Q ) ~ ,  

1 + 3 (x, - x3)(N rot yr)'. (22) 

In the case of smectic A we have" C, = C,, = C, = C. The 
transformation in the expressions (21) and (22) [as well as 
in Eqs. ( 17) and ( 18) ] from the field cp to the field $ is made 
with the help of the formulas 

divcp = -N rot v, divv = N rot q, 

(rot Q ) ~  = (div yr12 + (rot \y12 - (N rot \y12 

= (div \y12 - [N rot yr 12. (23) 

So, the smectic C free energy density Fconsists of the terms 
F,, F,, and Fn,  given by the formulas (9),  ( lo), ( 14), and 
( 19)-(22): 

F=FL +F, + F n .  

4. MONOPOLES IN A DROP 

The energy F3, associated with elastic deformations of 
the order parameter cp or +, assumes a simpler form in the 
single-constant approximation: tc, = tc, = x ,  = x .  In this 
case we have 

Recall that cp+ = 0, cp = $c, $ = $m and [me] = N. If 
$ = const (the cant angle of the molecules 8 = const), then 

where 

The vector A is related to the normal N by the Mermin-Ho 
relation: l2  

1 
(rot A)p = 3 E&N [aaNasN I. (26) 

In the case of the A phase of superfluid 3He the superfluid 
velocity v, corresponds to the vector A and the quantization 
axis of the orbital angular momentum 1 of Cooper pairs cor- 
responds to the vector N. 

We demonstrate the usefulness of the formula (26) by 
the following example. Consider the equilibrium spherical 
configuration of layers: 

Then, according to Eq. (26), for r#O 
r rot A = - 

r 3' 
(28) 

The formula (28) makes it possible to draw an analogy with 
the Dirac magnetic monopole described by the vector poten- 
tial A." The following form of the potential A satisfies Eq. 
(28): 

h 

where @ is a unit basis vector of the spherical coordinate 
system {r,B,@), and s = 0, + 1, + 2, ... . For s = 0 

and for s = 1 

For s = 1 the vector potential A is singular on the half-axis 
z < 0 and fors = 0 it is singular on the entirez axis, i.e., in the 
first case we have a monopole with one Dirac string and in 
the second case we have a monopole with two Dirac strings. 
For the field c (or m) such distributions of the field A indi- 
cate that the field of the C director contains disclinations 
emanating from the coordinate origin: For s = 0 there is one 
disclination of strength 2 and for s = 1 there are two disclin- 
ations of unit strength. By analogy with magnetic monopoles 
the structures considered above can be called Schwinger 
monopoles (see, for example, Ref. 13). Such configurations 
of the field of the C director have been observed by Kurik 
and Lavrentovich9 in spherical drops of smectic C. In order 
to describe more accurately monopole structures in the 
smectic Cphase the corresponding equations of motion must 
be solved. 

5. VORTICES 

We now consider the simpler situation of vortices in the 
field cp (or +) for a flat equilbrium configuration of layers: 
u = 0, N = v, = 2, where 2 is a unit basis vector of the cylin- 
drical coordinate system @,@,z). We assume that $ = I@, 
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m = (cos a ,  sin a),  a = a ( @ ) ,  and $ = $( p ) .  Then the 
free energy density is 

The system of equations for a and $ is quite complicated. 
For this reason we give the function a = a ( @ )  in cases cor- 
responding to radial (tangential) a = @ and tangential (ra- 
dial) a = @ + n-/2 disclinations of unit strength in the field 
m (in the field c). Then (for given a)  we find the following 
equation for $: 

where i = 2 corresponds to a = @ and i = 1 corresponds to 
a = @ + ~ / 2 ,  

The equation (33 ) is called the Gross-Pitaevskii equation. It 
describes a single-quantum vortex in a Bose gas. A numeri- 
cal solution of this equation is given in Ref. 14. For p<pi  we 
have $ a p ,  and forp$pi we have $- $,, where pi = p i  ' is 
the characteristic length and = p,/di = (A / D )  'I2. A so- 
lution of this form means that the A phase fills the vortex 
core, and the C phase (condensate) is restored as the dis- 
tance from the center of the vortex increases. The character 
of the solution for $ is the same as for disclinations of 
strength Is1 > 1 (a = s@) in the field m. We note that for 
x ,  = x, the solution of the equation for a has the form 
a = s@ + @,, where s = 0, +_ 1, + 2, ... and @, is a con- 
stant. In this case the equation for $ has the form (33), in 
which the third term is multiplied by s2. Tangential disclina- 
tions of unit strength for the C director (i.e., a = @) were 
observed in Ref. 5. This means that for the smectics investi- 
gated in Ref. 5 x,  > x,. 

6. PERIODIC STRUCTURESAND KINKS 

We now consider wave-like instabilities4 induced by 
smectic C by stretching the smectic sample perpendicular to 
the smectic layers. Wave-like instability was observed in the 
A phase in Ref. 15. Modulated structures have also been 
observed in other smectic phases: the Cphase5 and the B and 
H phases.I6 Wave-like modulation in the C phase with 
9 = const was described in Ref. 5.One-dimensional periodic 
structures in smectic C with modulation of the cant angle of 
the molecules were studied in Ref. 17. 

In this section we investigate two-dimensional modula- 
ted structures in smectic C taking into account changes in 
the cant angle 9 of the molecules. This is especially impor- 
tant near the point of the AC transition, when changes in the 
angle 9 can be significant. The region of the AC transition is 
of interest both from the standpoint of studying the phase 
transition itself and the possibility of observing a new state of 
the smectic-coexistence of the A and Cphases." This state 
is analogous to the mixed state of a superconductor: The A 
phase corresponds to the normal state of the metal and the C 
phase corresponds to the superconducting state. 

We consider a planar equilibrium configuration of the 
layers for a smectic Csample of thickness d along the equilib- 
rium normal vo = {0,0,1) and we determine how uniform 
stretching of the sample perpendicular to the smectic layers 
affect the state of the smectic. In this case the displacement u 
has the form 

u = yz, (35) 

where y > 0 is the deformation, and variation of the energy 
F, [the formula ( l o ) ]  gives the equilibrium value for the 
magnitude of the order parameter $,: 

where 

One can see from the formula ( 3 6 )  that for 

uniform stretching of the sample induces a transition of the 
C phase into the A phase: & = 0 (9 = 0).  Thus we observe 
an effect opposite to that described in Ref. 18: A transition of 
the A phase into the C phase under compression: 1 y l> 1 yol 
(A,Y<O). 

The wave-like modulation of layers in smectic A, pre- 
dicted by Clark and Meyer,I9 is well When the 
sample is stretched perpendicular to the smectic layers, the 
uniform state of the smectic may become unstable with re- 
spect to periodic distortions of the layers. An instability with 
period 

where A, = (C/B,) is the characteristic length, appears 
when the deformation y reaches the critical value 

For typical sample thicknesses d = 100 pm the modulation 
period satisfies LA g d  [AA = 2.2. lo-' cm (Ref. 15) 1. Peri- 
odic structures are found to be metastable: An applied stress 
gives rise to breakage of the layers and the dislocations 
formed begin to move, which reduces the stress.19 

The existence of an order parameter cp = $c in the 
smectic C phase indicates that a greater diversity of spatially 
nonuniform structures should be expected in the C phase 
than in the A phase. For example, wave-like modulation of 
the layers can result in periodic configurations of the $ and c 
fields. The character of such structures will depend signifi- 
cantly on the ratio of the threshold deformation of the for- 
mation of the A phase yo = A /2U (A a T, - T) and the 
threshold of wave-like modulation (a  quantity of the form 
?'A Ya) 

We now continue our description of the C phase when 
the equilibrium configuration of the layers is planar. We as- 
sume that + = $m = $.(cos a ,  sin a,O), cp = $c = { - sin a ,  
cos a,O), N = { - u,, - u,,1), where $ = $(r) ,  a = a ( r )  
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and u = u(r ) .  We assume that the angle a describes deflec- 
tions of the vectors m and c from their equilbrium orienta- 
tion m, = {1,0,0) and c, = {0,1,0) in the Cartesian coordi- 
nate system {x,~,z). 

As has already been mentioned, wavelike modulation in 
smectic C crystals was observed in Ref. 5. When the sample 
was cooled (which corresponds to stretching) wavelike 
modulation usually appeared in the direction of the vector 
m,, and under further cooling periodic structure arose in the 
direction c,. This resulted in the formation of a rectangular 
grid for which the period of the secondary structure was 1.6 
times greater than the period of the primary structure. 
Sometimes the secondary structure appeared as the first 
structure (at the periphery of the sample). In this case, the 
periods were in the ratio 2: 1. The difference in the ratios of 
the periods is apparently associated with the difference in the 
thickness of the sample at the center and at the periphery, 
and the appearance of orthogonal periodic structures at dif- 
ferent temperatures (different stretchings) and in different 
sequence indicates that the periodic structure along m, and 
c, arise independently. 

The latter fact makes it possible to regard periodic 
structures in the C phase as a superposition of two one-di- 
mensional structures: along m, and along c,. This supposi- 
tion is based on the fact that the directions m, and co are not 
equivalent and quantities of the type LA and yA [the formu- 
las (39) and (40)] for these directions differ appreciably 
from one another. Thus we give expressions for the energies 
F2 and F, describing nonuniform states along the directions 
m, and c, for small deviations from equilibrium (a 9 1 ) : 

We recall that the total free energy density Fconsists of F,, 
Fs, and F, = F, + F2 + F3. Correspondingly, we also as- 
sume that the energies F,, F,, and F, (the fields u and $) 
depend either on x or y as well as on z. 

Thus, we have two expressions for the free energy of a 
smectic which in equilibrium has a planar configuration of 
layers. These energies make it possible to describe spatially 
nonuniform states along the directions m, and c,, the super- 
position of the states representing one or another two-di- 
mensional structure. These structures are described in terms 
of the displacement u, the modulus of the order parameter $ 

(cant angle 9 of the molecules), and the Goldstone variable 
a. 

As already mentioned, wavelike modulation of the lay- 
ers of a smectic sample can arise when the sample is 
stretched uniformly perpendicular to the smectic layers. It is 
obvious that the interaction of the displacement u with the 
fields $ and a can initiate spatially nonuniform configura- 
tions of the fields $ and a. Periodic structures for $and a can 
arise in many possible ways even in the case of uniform 
stretching of the sample. For this reason, we confine our 
attention to some typical cases. We assume that the periods 
of u, $, and a modulations are comparable. Specifically, we 
assume that the periods of the modulations of u and a along 
c, or m, are the same, and the period of modulation of $ is 
half of the periods of u and a. The latter circumstance is 
connected with the fact that the quantity $, which describes 
the cant of the director relative to the normal to the layers, 
does not depend on the side to which (left or right) the direc- 
tor cants for a given direction. This means also that under 
some conditions a domain wall perpendicular to a fixed di- 
rection and separating the part of the sample with different 
canting of the molecules (to the right and left), can appear. 
The director does not turn in the wall, but rather the cant 
angle of the director changes from - 9;, to 29-,. In order to 
describe such a wall, it is sufficient to redefine the quantity $, 
making the assumption that $ can be both positive and nega- 
tive (previously $ was defined as a positive quantity). Then 
the domain wall will be the well-known static kink of the $4 

model:20 

It is evident from the solution (47) that $ (for the upper 
sign) varies from - t,b0 to $, ($2 = A / D )  as x varies from 
- w to + w over a characteristic distancep, = (A /x,) ' I 2 ,  

i.e., the domain wall is an A phase separating the "left-hand" 
and "right-hand" C phases. After this digression, we now 
return to the periodic structures and the previous definition 
of*: $>O. 

Thus we consider the following modulated structures: 

u = yz + uocos qxi sin q3z, (48) 

ly = vo - v,sin2qxt sin q3z, (49) 

a) a = aosin qxi sin q3z, (50) 

b) a = aocos qxi sin q3z, (51) 

where the index i = 1 and 2 designates the directions along 
m, and c,, respectively; x ,  =x, x,=y, and q, = r / d ;  and the 
cases a and b differ from one another by the phase. 

The free energy Fi, by varying which it is possible to 
obtain the corresponding amplitudes and periods of the 
modulations, is found by substituting u, $, and a given by 
the formulas (48)-(5 1 ) (for the directions m, or c,) into the 
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free energy density Fi and averaging Fi over the sample 
thickness and the modulation period Ai  = 2n/qi: 

In spite of the restrictions imposed on the form of the 
modulations of the u, $, and a fields [the formulas (48)- 
(5 1 ) 1, periodic structures can still appear in many ways. For 
this reason, we confine our attention to the most typical 
cases: A)  $, = 0 and B) $, = $,. The case A corresponds to 
a uniform distribution of the field $ and the case B corre- 
sponds to complete modulation of $, i.e., alternation of A 
and C phases. In these cases the energy Yi has the form 

where 

All quantities containing constants labeled with the index i 
are also labeled with this index, but for simplicity it is omit- 
ted. Next, we assume 

(B  = B, ,B,i ) and also, as previously, q: /q2 4 1. Then we ob- 
tain for the amplitude of the wavelike modulation the formu- 
la Here and below we neglect terms of order q: /q2 4 1. In the 

formulas (54)-(56) the index iin the quantities q, u,, and $, 
is dropped as a simplification, and the fact that 

where the threshold stress y, has the form 

is taken into account [in the formula (56) 1. The latter con- 
dition means that a is modulated only in the direction m,, 
and for modulations of a and b [the formulas (50) and 
(51)] we have 

The quantity y, has a minimum for q = q, given by 

or for the period of modulation A,: 
The constants appearing in the formulas (55)-(58) are dif- 
ferent for the cases A and B: 

where A, = (K/B,) 'I2 is a characteristic length. The modu- 
lation amplitude u,, corresponding to the period A, is 

where Ai  = (K/B, ) ' I 2  are characteristic lengths, and the 
critical stress y, is given by the formula (Z/B,~ 4 1 ) - c2 = C,, L, = 0,36L1, Fl = 0,57x1 + 0,1x2. 

When necessary we label these quantities with the indices A 
or B. 

Varying the energy ( 53 ) gives the following expressions 
for the amplitudes u, and $,: 

All characteristic lengths A,, j = 1, 2, 3, and 4, are of the 
same order of magnitude and 

250 JETP 76 (2), February 1993 S. S. Rozhkov 250 



The quantities u,, A,, and y, are analogous to the corre- 
sponding quantities for the A phase."*19 A specific feature of 
the C phase is that modulation of the a and $ fields is possi- 
ble. Based on what was said above, the critical amplitude $, 
is obtained by substituting q, into the formula (63) : 

where 

A formula for the critical amplitude a,, is obtained by sub- 
stituting into the formula (7)  for a,, (a,, = 0) the quanti- 
ties q,, u,, and $, ($, = 0)  instead of q, u, and &, respec- 
tively: 

We recall that two types of modulations are possible for a :  a )  
and b ) ,  i f z  :/&,c, < 1 [see the formula (58) 1 .  According to 
the experiment of Ref. 5, the modulation period is 1.6-2 
times longer in the c, direction than in the m, direction. The 
ratio of these periods, according to the formula (68 ), is 

Here the approximate equality is written under the assump- 
tion D s  U, A: x2 -- = C, and El -- C,, where 2, is given 
either by Eq. (58) or (59). Comparing the experiments sug- 
gests that C, $ 2, .  In addition, according to Ref. 5, modula- 
tion in the c, direction appears at higher critical stresses than 
in the m, direction. Their ratio is 

Since y,, cannot significantly exceed y,, (y,, - y,, ), we 
have B,,-B,,. Modulation of the cant angle of the mole- 
cules was not discussed and apparently not observed in Ref. 
5. Probably the case A ($, = 0),  corresponding to a spatial- 
ly uniform distribution of $, was realized in the experiment 
of Ref. 5. 

As one can see from the formula (72), under the condi- 
tions of wavelike modulation of the layers ( y  > y, ) $, as a 
function of y is determined by the relations between the elas- 
tic constants and their temperature dependence: In particu- 
lar, near the AC transition we have yo a A a T, - T. We also 
have E ,  0- 1. For E < 1 the amplitude $, decreases with in- 
creasing y, while for E > 1 it increases. Far from the point of 
the AC transition we have yo% y,, and the case A-a spatial- 
ly uniform distribution of $-obtains. Near the AC transi- 
tion, when yo- y, holds, wave-like modulation of the smec- 
tic layers can induce a mixed state of the smectic, which we 
call the M phase (total modulation or case B) .  As already 

mentioned, the M phase is a state in which the A and C 
phases coexist. " 

The M phase can form by different paths (for different 
smectics), depending on the ratios of the elastic constants. 
For example, for E,  > 1 and yo < y the following transfor- 
mations can occur when the sample is stretched: Cphase-A 
phase-wavelike modulation-M phase. For E,  < 1 and 
yo > y the following path is possible: C phase-wavelike 
modulation (case A)-M phase. Other possibilities also ex- 
ist. It is obvious that for a given sample (specific smectic of 
definite thickness) the energetically most favorable configu- 
ration obtains. We give an expression for the energy Fi in 
the case y = y,: 

and in addition k f =O and 

The formulas (76) and (77) give an idea of how the free 
energy near the threshold of wavelike instability depends on 
the parameters of the system. We note also that in the mixed 
state described above (for one-dimensional modulation) the 
C phase is either the "left-hand" or "right-hand" phase. 
However, structures in which a domain wall separates the 
left- and right-handed C phases (see above) can form. Such 
a configuration is reminiscent of a domain wall in polyacety- 
lene.,' 

7. CONCLUSIONS 

As one can see from the preceding exposition, smectics 
C have very diverse properties. An entire series of questions 
has remained outside the scope of this paper. It is important 
to describe dislocations in a system of smectic layers. Dislo- 
cations in a smectic play an important role in both statics and 
dynamics. For example, relaxation of stresses that appear 
with the formation of the periodic structures considered 
above occurs as a result of the motion of  dislocation^.^.^.'^ A 
large class of phenomena is associated with the motion of the 
liquid (including taking into account the motion of disloca- 
tions as well as in the presence of external fields). A general 
approach-based on the method of Poisson brackets-to the 
derivation of the equations of hydrodynamics for smectics is 
developed in Ref. 7, but the problem of the hydrodynamics 
of the C phase cannot be considered as completely resolved, 
both from the standpoint of constructing a general theory 
and analyzing specific effects. In a nematic, for example, 
motion of domain walls was observed in the field of the direc- 
tor n in the presence of flow of a nematic AS shown 
in Ref. 23, the existence of such domain walls is associated 
with the orienting action of the flow on the director n, similar 
to the orienting action of a magnetic field. A similar effect is 
also possible in the C phase for the Goldstone variable a .  

Finally, we note some experimental aspects of the ques- 
tions considered in this paper. Vortices in the field Q (dis- 
clinations of strength + 1 in the C-director field) were ob- 
served in Ref. 5. The formulas (34) make it possible to find 
the constants A and D (and their temperature dependence) 
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from measurements of the radius of the vortex core (and 
from independent measurements of the elastic constants x ,  
and x , ) .  Just as in He-II or in a superconductor, it is possible 
that vortex lattices can form in the field of the vector Q. The 
distance between the vortices can be estimated from the pho- 
tographs displayed in Ref. 5: It is on the order of the thick- 
ness of the sample. A qualitative comparison of this theory 
with the experiment of Ref. 5 was made above. A quantita- 
tive comparison, however, requires more detailed experi- 
ments, especially near the AC transition for IT, - TI - 1- 

K. This is also important for investigation of the AC 
transition itself. 

"In order to avoid misunderstandings, we note that we are not talking 
about some phase transition or phase interfaces. The Mphase is a modu- 
lated structure in which the cant angle B of the molecules varies sinusoi- 
dally from some value ;f, ( C  phase) to 0 ( A  phase). 
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